
Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Chen et al. BioMedical Engineering OnLine          (2023) 22:102  
https://doi.org/10.1186/s12938-023-01165-0

BioMedical Engineering
OnLine

Automated evaluation of typical patient–
ventilator asynchronies based on lung hysteretic 
responses
Yuhong Chen1, Kun Zhang1, Cong Zhou2,3*, J. Geoffrey Chase2 and Zhenjie Hu1 

Abstract 

Background:  Patient–ventilator asynchrony is common during mechanical ventila‑
tion (MV) in intensive care unit (ICU), leading to worse MV care outcome. Identification 
of asynchrony is critical for optimizing MV settings to reduce or eliminate asynchrony, 
whilst current clinical visual inspection of all typical types of asynchronous breaths 
is difficult and inefficient. Patient asynchronies create a unique pattern of distortions 
in hysteresis respiratory behaviours presented in pressure–volume (PV) loop.

Methods:  Identification method based on hysteretic lung mechanics and hysteresis 
loop analysis is proposed to delineate the resulted changes of lung mechanics in PV 
loop during asynchronous breathing, offering detection of both its incidence and 7 
major types. Performance is tested against clinical patient data with comparison 
to visual inspection conducted by clinical doctors.

Results:  The identification sensitivity and specificity of 11 patients with 500 breaths 
for each patient are above 89.5% and 96.8% for all 7 types, respectively. The average 
sensitivity and specificity across all cases are 94.6% and 99.3%, indicating a very good 
accuracy. The comparison of statistical analysis between identification and human 
inspection yields the essential same clinical judgement on patient asynchrony sta‑
tus for each patient, potentially leading to the same clinical decision for setting 
adjustment.

Conclusions:  The overall results validate the accuracy and robustness of the identi‑
fication method for a bedside monitoring, as well as its ability to provide a quantified 
metric for clinical decision of ventilator setting. Hence, the method shows its potential 
to assist a more consistent and objective assessment of asynchrony without undermin‑
ing the efficacy of the current clinical practice.

Keywords:  Patient–ventilator asynchrony, Mechanical ventilation, PV loop, Hysteretic 
lung mechanics, Hysteresis loop analysis, Intensive care unit

Background
Mechanical ventilation (MV) is the standard therapy for intensive care unit (ICU) 
patients with respiratory failure [32], and was one major therapy during the Covid-19 
pandemic [28, 30, 54]. The major goal of MV is to support patient breathing to allow 
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recovery and improve outcomes. However, optimizing patient-specific ventilator setting 
or modes is difficult, with few accepted or standardized endpoints or guidelines [32, 36]. 
Significant inter- and intra-patient variability in lung mechanics and response to MV 
[8–10, 29] can thus lead to sub-optimal care and outcomes.

In particular, suboptimal MV settings can lead to a mismatch between patient demand 
and ventilator delivery, defined as patient–ventilator asynchrony. More specifically, 
asynchrony is caused by poor patient–ventilator interaction when the ventilator supplies 
of flow, pressure is uncoordinated with patient demands regarding time, magnitude or 
effort [4, 24, 35]. Patient asynchrony can reduce outcomes, increasing length of ventila-
tion, length of stay, risk of death, and thus cost. The ability to accurately identify and 
monitor asynchrony incidence and type, in real-time, would provide significant clinical 
information to both guide and personalise care, ameliorating these issues.

Visual inspection of ventilator waveforms (pressure and/or flow) has been a major 
approach for bedside asynchrony identification [21, 38], but requires skilled training and 
experience, and is subjective. However, subjective bedside waveform analysis lacks accu-
racy and robustness, and is not continuous. In particular, research indicates less than 
25% of ICU health professionals could identify all typical types of patient asynchronies 
[14, 41], where each asynchrony type merits a specific therapeutic strategy to reduce 
asynchrony and prolonged weaning [24]. Therefore, automated, computer algorithm-
based recognition of asynchrony types has been evaluated to overcome subjective bias 
and the lack of a continuous measurement, and thus improve care and outcomes [7, 22, 
37, 39, 40, 55].

Whilst patient asynchrony may occur in various forms, seven types of patient–ventila-
tor interactions have been recognized as the most common asynchronies, in specific, 
flow asynchrony, ineffective effort, reverse triggering, auto triggering, double triggering, 
premature cycling, and delayed cycling [14, 20, 21, 24, 38]. However, automated algo-
rithms in the literature focused on identification of only one or a few types of asynchro-
nies, and thus did not generalize well over a wide range of asynchronous scenarios [7, 11, 
22, 37, 39, 40, 55].

Patient asynchrony does generate clear, discriminating information in the waveforms 
[12]. Thus, identification algorithm performance is highly dependent on accurately mod-
elling and capturing these unique waveform characteristics. In searching for effective 
detection methods, it is important to account for the coupling effect of waveforms dur-
ing asynchrony identification as the analysis of one-dimension waveform (pressure or 
flow) may not present the complete information necessary for accurate recognition of all 
asynchrony types [11, 26, 31]. Even methods analyzing both pressure and flow signals, 
whilst failing to consider their coupling effect, could still miss some path-dependent 
mechanics for a unique identification [6, 34, 38].

Hysteresis loops, representing coupled force and deformation relationships, have 
proven effective for accurately identifying the fundamental mechanics of nonlinear 
dynamic systems [57, 58]. Importantly, the pressure–volume (PV) loop is equivalent to 
the nonlinear force and deformation structural hysteresis loop [49, 60]. Particularly, PV 
loops shows a similar explicit hysteretic mechanism to hysteresis loop, including both 
pressure, volume data and their variations over breathing history. Therefore, the piece-
wise regression model for a hysteresis loop can be further used to capture the coupled 
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mechanics observed in PV loop, with a global minimum solution required for an identi-
fiable model, showing its advantage over black-box methods given limited data are avail-
able [53].

In addition, traditional model-based methods aim to define mathematical equations 
and find model parameters governing physical or physiology properties for a fixed sys-
tem. They are thus more suitable for a relatively fixed pattern of responses, rather than 
highly nonlinear and highly variable systems. In contrast, model-free methods are more 
likely necessary for modelling highly nonlinear responses with many potential underly-
ing mathematical functions, but are limited by their lack of explicit physical/physiology 
meanings with little interpretable knowledge about the internal structure of the defined 
arbitrary model functions. The hysteresis loop analysis (HLA) method used in this 
study combines the advantages of traditional model-based and model-free methods to 
explicitly examine a range of nonlinear responses without requiring a single fixed math-
ematical equation, further enabling an automated assessment of asynchrony directly via 
ventilator-collected pressure and flow data.

Research based on PV loop has shown its promising utilization for modelling, identi-
fication and prediction of fully ventilated breath cycles [47, 48, 50, 59]. More specifically, 
Zhou et  al. developed a nonlinear hysteretic lung mechanics model (HLM) combined 
to HLA to replicate the fully ventilated respiratory response without considering asyn-
chrony [59]. The HLM model was further combined with identification method to 
reconstruct complete ventilated breathing cycles removing the impact of asynchronous 
patient effort [61], showing the potential to identify various forms of asynchronies via 
PV loop analysis. However, the explicit relationship of unique patterns of PV loop over 
common asynchrony types remains to be interpreted for all types of asynchronies, which 
would be of significant clinical utility.

Therefore, this study proposed a hysteresis loop analysis method based on piecewise 
regression linear model to explicitly represent the patterns of seven types of asynchro-
nies. The goal of developing this method is to automate the inspection and analysis using 
measured PV loops constructed from the recorded pressure and flow/volume waveforms 
with competitive efficacy to visual inspections. The specific patterns of 7 most common 
major asynchrony types were defined via PV loops with piecewise regression models. 
Finally, the incidence and types of asynchronies were identified for clinical data of 11 
patients with comparison to human inspection as a ground truth, with results presented 
as sensitivity and specificity.

Results
Table 1 shows per-patient and overall performance in detecting asynchrony. In Table 1, 
the count of asynchrony includes cases of TP when identified as asynchrony for asyn-
chrony breath, and FN when identified asynchrony for non-asynchrony breath. In 
addition, the count of non-asynchrony includes cases of TN when identified as non-
asynchrony for non-asynchrony breath, and FP when identified non-asynchrony for 
asynchrony breath. Sensitivity and specificity are then calculated using Eqs.  (12) and 
(13), respectively. The accuracy is calculated using Eq. (14).

Table  2 shows the performance for each type of asynchrony. Overall identification 
accuracy is high ranging from 94.2 to 100% per-patient (97.3% over all patients), and, 
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equally so for asynchrony type, ranging from 97.4 to 99.6%. Specificity results are slightly 
higher than accuracy, and sensitivity is slightly lower accordingly. Overall, these results 
show significant robustness across patients, asynchrony types, and incidence rates per 
patient. High accuracy implies clinical decisions would not be altered.

It is worth noting, the sensitivities for P3, P5 and P8 are relatively lower than other 
patients due to the low magnitude of asynchronous segment in the PV loop, which were 
not successfully identified by the algorithm for pc, dc and ie types. The identification of 
pc, dc and ie types depends on the change of magnitude for their pattern recognition, 
as seen in Fig. 14, which thus can be misidentified as non-asynchrony given too small 
change of magnitude. In addition, the lower sensitivity for P10 is because there are 9 out 
of 10 asynchronous breaths successfully identified, whilst only yielding a sensitivity of 
90% because of the small total asynchrony breath number.

Finally, Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 present the results for each patient over 
time (every 100 breaths or ~ 5–7  min), also showing how monitoring would capture 
trends over time and changes in patient condition over a clinically relevant period [33]. 
The seven types noted in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 include flow asynchrony 
(fa), reverse triggering (rt), premature cycling (pc), ineffective effort (ie), double trigger-
ing (dt), and delayed cycling (dc), and auto triggering (at).

Table 1  Identification performance compared to clinical inspection for each patient and overall 
without subdividing by asynchrony type, which is in Table 3

Patient Total breaths # Asynchronous # No asynchrony Sensitivity Specificity Accuracy

1 500 154 346 99.4% 99.4% 99.4%

2 500 22 478 95.5% 99.8% 99.6%

3 500 89 411 92.1% 99.3% 98.0%

4 500 496 4 99.0% N/A 98.6%

5 500 274 226 93.8% 99.6% 96.4%

6 500 231 269 94.8% 93.7% 94.2%

7 500 218 282 99.5% 96.1% 97.6%

8 500 433 67 94.9% 92.5% 94.6%

9 500 216 284 97.2% 97.5% 97.4%

10 500 10 490 90.0% 97.1% 97.0%

11 500 0 500 N/A 100.0% 100.0%

Overall 5500 2143 2857 96.6% 97.8% 97.3%

Table 2  Identification performance compared to clinical inspection by type of asynchrony and for 
non-asynchrony breaths

Asynchrony types TP FN TN FP Sensitivity (%) Specificity (%) Accuracy (%)

fa 68 8 4912 12 89.5 99.8 99.6

rt 595 13 4384 8 97.9 99.8 99.6

pc 383 22 4581 14 94.6 99.7 99.3

dt 241 5 4748 6 98.0 99.9 99.8

dc 202 15 4741 42 93.1 99.1 98.9

ie 133 9 4848 10 93.7 99.8 99.6

at 415 34 4543 8 92.4 99.8 99.2

Non-asynchrony breaths 2542 52 2328 78 98.0 96.8 97.4
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Note, P1, P2, and P3 underwent recruitment manoeuvre (RM) from breathing 
cycle (BC) BC282, BC325, and BC513, respectively, as shown in Figs. 1, 2 and 3. In 
Fig. 1, both identification in Fig. 1a and inspection in Fig. 1b clearly show the inten-
sity of asynchrony decreased from ~ 100% at 100 BCs to ~ 65% at 200 BCs, and finally 
dropped to ~ 0% at the 300 BCs due to the sedation administration, which is the 

Fig. 1  Statistical analysis of asynchrony for P1 over time (every 100 breaths) with comparison between a 
identification algorithm and b clinical inspection, where an RM begun at BC282, the 282nd breathing cycle

Fig. 2  Statistical analysis of asynchrony for P2 over time (every 100 breaths) with comparison between a 
identification algorithm and b clinical inspection, where an RM begun at BC325, the 325th breathing cycle

Fig. 3  Statistical analysis of asynchrony for P3 over time (every 100 breaths) with comparison between a 
identification and b inspection, where an RM begun at BC325, the 325th breathing cycle
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standard procedure for paralyzing a patient for an RM. This drop-off is thus expected 
and further validates the model and method’s capability. Similar results for P2 in 
Fig.  2 reinforce this result. However, sedation appears to cause a worse occurrence 
of asynchrony for P3 during the RM in Fig. 3. In this case, asynchrony increased near 
and after the RM. These results match observational trials showing sedation, particu-
larly if it is low, is not necessarily associated with reduced asynchrony and can lead, in 
some cases, to a higher asynchrony rate [16, 19, 46].

Fig. 4  Statistical analysis of asynchrony for P4 over time (every 100 breaths) with comparison between a 
identification algorithm and b clinical inspection

Fig. 5  Statistical analysis of asynchrony for P5 over time (every 100 breaths) with comparison between a 
identification algorithm and b clinical inspection

Fig. 6  Statistical analysis of asynchrony for P6 over time (every 100 breaths) with comparison between a 
identification algorithm and b clinical inspection
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Significant inter- and intra-patient variation is evident for patients P4 to P11, as well, 
showing the significant variability, which requires automated continuous monitoring. In 
particular, Fig.  4 for P4 shows consistent reverse triggering and strong and persistent 
patient effort, over the 5 × 100 breath periods, which may be due to overuse of sedatives, 
where the increasing sedation is a common first response to reduce asynchrony [18]. 
Thus, the identification of reverse triggering, separate from other forms of asynchrony, 
is important to enable an appropriate clinical decision to decrease sedation and change 
respiratory rate and/or pressure to this specific type of asynchrony. This latter result 

Fig. 7  Statistical analysis of asynchrony for P7 over time (every 100 breaths) with comparison between a 
identification algorithm and b clinical inspection

Fig. 8  Statistical analysis of asynchrony for P8 over time (every 100 breaths) with comparison between a 
identification algorithm and b clinical inspection

Fig. 9  Statistical analysis of asynchrony for P9 over time (every 100 breaths) with comparison between a 
identification algorithm and b clinical inspection
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shows the clinical utility of identifying asynchrony by type in a continuous fashion, as 
enabled here.

Similarly, for P8 in Fig. 8, significant incidence of auto triggering was identified and 
observed. This behaviour is caused by airflow obstruction during expiration and is com-
monly seen in patients with chronic obstructive pulmonary disease or obstructive venti-
latory defect [1, 42]. This result matches the clinical diagnosis for P8 in Table 3 with mild 
obstructive ventilatory defect, and further supports the clinical utility of this model-
based monitoring approach.

Discussion
Visual inspection of both pressure and flow in real-time, breath-to-breath for human 
experts is not possible for any length of time. However, PV loops enable automated, 
simultaneous examination of both pressure and flow via nonlinear hysteresis analy-
sis. Thus, the hysteresis loop analysis was proposed to capture and identify patterns 
unique to the 7 most common asynchronies, as shown in Fig. 14. Electrical activity of 
the diaphragm (EAdi) or more advanced methods may provide more accurate asyn-
chrony evaluation. However, visual inspection is still one of the current major ways 
during bedside monitoring for MV adjustment. Validation against visual inspection 
of clinical patient data shows high sensitivity and specificity greater than 90% for the 

Fig. 10  Statistical analysis of asynchrony for P10 over time (every 100 breaths) with comparison between a 
identification algorithm and b clinical inspection

Fig. 11  Statistical analysis of asynchrony for P11 over time (every 100 breaths) with comparison between a 
identification algorithm and b clinical inspection
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proposed method across a range of MV modes, indicating its accuracy and robust-
ness. Monitoring detection over time showed the further, clinically important capa-
bility to accurately capture changes in patient state as asynchrony incidence rose or 
fell over relatively short times, allowing timely clinical recognition, diagnosis, and 
intervention.

In addition, statistical analysis can be conducted per Figs.  1, 2, 3, 4, 5, 6, 7, 8, 9, 
10 and 11 providing separated pie distributions for any given period. Equally, Fig. 12 
shows a further potential analysis offering consistent assessment over each breath 
(1–500) during the trial period [5, 52]. There is thus significant potential clinical mon-
itoring and clinical utility enabled by this readily automated algorithmic approach to 
identifying asynchrony incidence, where, as noted, treatment for different types can 
be very different.

More specifically, Fig. 12 provides an example of P1 with the continuous monitor-
ing of asynchronous rate over breaths and time. The fa and rt asynchronies show 15% 
and 36% (51% in total) fraction of total breaths, respectively, at BC 300, whilst the 
non-asynchrony rate is only 33% with smaller grey area or range than the non-grey 
(red and blue) areas. However, the non-asynchrony grey area increased to 65% with 
the asynchronous red and blue areas dropping down to 31% at BC500 due to sedation 
administration. Compared to the commonly used asynchrony index defined as the 

Table 3  Patient demographics

PSV pressure support ventilation, VC-AC volume control-assist control, PC-AC pressure control-assist control, PC-SIMV 
pressure control-synchronized intermittent mandatory ventilation

Patient Sex Age Length of MV at 
data collection

MV mode Diagnosis

1 Male 62 1 h PSV Cardiac cancer surgery

2 Female 70 N/A VC-AC ARDS, PF ratio (151)

3 Male 50 N/A VC-AC ARDS, PF ratio (194)

4 Male 51 5 h VC-AC Right lung space-occupying surgery

5 Male 54 1 day PC-AC Intestinal obstruction; digestive tract perforation; 
septic toxic shock

6 Male 54 1 day PC-SIMV Severe pneumonia; acute coronary syndrome

7 Female 74 4 days VC-AC Severe pneumonia; acute coronary syndrome

8 Female 72 1 day PC-SIMV Stomach cancer; mild obstructive ventilatory defect

9 Male 89 4 days VC-AC Digestive tract perforation; Septic shock

10 Male 74 6 days PC-AC Septic shock

11 Female 57 44 h VC-AC Left pneumonectomy surgery

Fig. 12  Statistical analysis of asynchrony for P1 over each breath showing declining incidence of asynchrony
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number of asynchronous breaths divided by the total number of breaths [27], Fig. 12 
thus offers quantified changes and qualified visualization of different types of asyn-
chrony and non-asynchrony phenomena over breath and time for a long-term bed-
side monitoring metric.

Although the variability in the data includes recruitment manoeuver, different types 
of asynchronies, change of asynchrony for the same patient over time, different patient 
diagnosis, and different ventilator modes, the patient variability for broad cohort can be 
much more significant than the current data cohort. It should be noted patient condi-
tion changes regardless of the duration of time period, whilst the significance of changes 
depends on patient conditions and applied treatment. Therefore, the validation data of 
30–40 min represent a comparable duration to clinical bedside visual inspection for MV 
adjustment, which was mainly used to validate the potential utility of the method in clin-
ical practice.

Compared to popular machine learning methods for asynchrony detection of one or 
a few types of asynchrony due to its limitation of requiring a very high number of unbi-
ased test breaths [39], this method was validated against a wider range of asynchrony 
covering all 7 types reported as the most common asynchrony types with similar or bet-
ter accuracy. In addition, machine learning methods tend to only use similar pressure 
and/or flow waveform for training feature extraction, whilst this study offers a differ-
ent approach and insight from using coupled hysteresis response as a potential train-
ing feature. The use of hysteresis loops and behaviour for training a predictive model 
has already proven its efficacy [57]. Therefore, the proposed method could be integrated 
with machine learning approaches if the data density was high enough for effective train-
ing, or used directly as presented, where Eqs. (5)–(11) define the key PV loop features 
necessary to discriminate asynchrony types.

A further advantage of the explicit model-based method over black-box methods is its 
ability to provide waveform reconstruction, thus enabling estimations of lung mechanics 
critical for clinical interpretation of MV settings [13, 31]. Reconstruction of unaffected 
PV loops has been demonstrated for reverse triggering [61], and the method is general-
izable to those asynchrony types presented here. In all cases, information theory holds, 
and severely altering PV loops with asynchronous, patient-driven inputs can result in 
inadequate information for accurate reconstruction.

Human inspection is a common standard method for asynchrony examination, but 
requires more time than the identification algorithm presented, even for skilled doctors. 
Human input is thus not feasible for breath-to-breath, real-time continuous monitor-
ing. However, combining intermittent clinician evaluation with breath-to-breath estima-
tion from the identification algorithms presented could provide greater confidence in 
the resulting clinical decisions. Although the identification method can be implemented 
automatically and provide a detailed statistical analysis on asynchrony incidence and 
type, as shown in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11, the resulting adjustment of MV 
settings will still likely be conducted by clinicians, in particular because the association 
between asynchrony type and its therapeutic response(s) remains unclear [35].

It is noted that the measurement of heterogeneous air distribution may provide a more 
detailed regional lung responses to ventilator for more accurate evaluation [44]. How-
ever, current ventilators can only provide global pressure and flow measurements, which 
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may not reflect the regional or heterogeneous distribution of lung volume and condi-
tion variations. CT scans could measure heterogeneous distribution, whilst unrealistic 
for bedside monitoring. Electrical impedance tomography (EIT) is a promising and non-
invasive tool for regional lung volume assessment, but its accuracy and maturity remain 
to be validated [15, 23], unable to provide the long-term consistent monitoring. There-
fore, the global data measurement directly obtained from the ventilator is the most com-
monly available data for bedside evaluation at any time during the MV treatment, which 
is the focus of this study to characterize the pattern of the global hysteresis mechanics 
for asynchrony identification.

In terms of limitations, asynchrony patterns vary across MV modes and patient lung 
mechanics for the same asynchrony type. The patient numbers for validation is 11, 
which includes limited scenarios and MV modes. In addition, more patient data whilst 
undergoing RMs and associated increased paralysis and sedation could clearly show the 
difference between asynchrony and non-asynchrony breaths for each patient, enabling a 
more confident ground truth for validation.

Human inspection can be subjective with classification performance limited to the 
pre-defined patterns or thresholds of different asynchrony types, without considering 
their significance or relevance for clinical changes in MV care. A large retrospective 
observational study on MV mode selection for 559,734 cases demonstrated significant 
heterogeneity between individual ICU units, hospitals and over periods [25]. Thus, the 
classification made in this proof-of-concept study might be different from other units or 
doctors. For example, minor ineffective efforts identified as asynchrony in this trial may 
be considered as non-asynchrony in others due to clinically insignificant differences. 
The criterion difference thus yields different incidence rates in the identified statistical 
analysis, leading to variable changes of settings per clinical standard. Therefore, there is a 
need for future study in the field to consider more detailed classifications of asynchrony 
magnitude, in addition to incidence and type, relevant to specific clinical standard needs 
to be further studied to improve the clinical utility of this type of algorithm- and model-
based monitoring.

Equally, it is worth noting visual inspection has been and is currently still one of the 
major clinical means for bedside asynchrony assessment. In particular, a jury of experi-
enced, well-trained clinicians can provide accurate assessment of asynchrony via visual 
inspection given sufficient jury time [17], even whilst noting this level of time and expe-
rience is not expandable to regular monitoring by all clinical staff, so this method is not 
realistic for bedside monitoring and thus clinically problematic. Hence, the proposed 
method aims to automate the current clinical process in a real-time fashion with com-
petitive efficacy to doctors to enable an equity monitoring of each of the MV patients in 
the same ICU per consistently, whilst its validation against EAdi is limited in this study.

Conclusions
This study proposed a readily automated, algorithm-based asynchrony identifica-
tion method based on a hysteretic lung mechanics model and hysteresis loop analy-
sis method to detect the incidence and type of asynchrony for the 7 most common 
type of patient–ventilator asynchrony. Validation using 5500 breaths of data from 11 
ICU patients over several different mechanical ventilation modes demonstrates very 
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good accuracy compared to clinical visual inspection by three ICU clinicians. The 
results show the potential clinical advantage of breath-to-breath, real-time model-
based monitoring of asynchrony by type, and provide the foundation for model-based 
reconstruction of unaltered PV loops to assess asynchrony magnitude. Overall, the 
identification method could assist particularly less-experienced clinicians to achieve 
more efficient and accurate bedside monitoring of asynchrony and MV care in 
general.

Methods and materials
Hysteresis loop analysis and piecewise regression models

Hysteresis observed in various dynamic systems plays a crucial role in system per-
formance analysis, and captures nonlinearities and energy dissipation associated with 
changes of mechanics and response [2, 45, 56, 58, 59]. In particular, this hysteretic 
behaviour for mechanical ventilated ICU patients is captured by the PV loop, a read-
ily measured set of signals. In general, the PV loop can be divided into inspiratory 
and expiratory half-cycles using the turning point at maximum volume. A piecewise 
regression model can then be used to approximate the nonlinear hysteresis behav-
iour of each half-cycle [62]. For example, the inspiratory half-cycle of a ventilated PV 
loop without asynchrony can be approximated by a two-segment model, as seen in 
Fig. 13a, whilst a PV loop with asynchrony requires more segments for an accurate 
approximation, as shown in Fig. 13b. Similar plots can be created for expiratory asyn-
chrony, or asynchrony across both breathing cycle phases.

In particular, a r-segments piecewise regression model can be written:

Fig. 13  Example of segmentation of a PV loop breathing cycle during inspiration for: a no asynchrony, and b 
a case with asynchrony
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Fig. 14  Hysteretic characteristic for asynchrony
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where P and V are the measured MV pressure and volume; ks1, ks2, …, ksr are the local 
elastance for divided breathing phase during inspiration and expiration; Pb1, Pb2, …, Pbr 
are the interception in pressure axis of PV loop; e is random error between the measured 
airway pressure and the fitted pressure due to measurement noise and/or model uncer-
tainty; N0 = 1 is the first point of the breath and Nr = N is the number of total observa-
tions for a single breath; V(N1), …, V(Nr−1) are the volume breakpoints dividing the PV 
loop cycle into r-segments of breathing phase.

Importantly, the number of segments, r, breakpoints, and elastance values for each 
segment can correspondingly define a unique pattern. Thus, the identification of asyn-
chrony type can be converted for the identification of the number of segments and their 
model parameter values. This approach holds whether asynchrony occurs during inspi-
ration, expiration, or across both breathing cycle phases.

To determine the number of segments “r”, a hypothesis test based on F-distribution [3] 
is proposed between a null hypothesis of r segments and the alternative hypothesis of 
r + 1 segments, which requires the calculations of two F-ratios F(3|2) and F(4|3):

where RSSE is the residual sum of squared errors for regression analysis and σ the model 
variance estimated from the mean RSSE under the assumption of non-asynchrony. Note, 
normal inspiration and expiration half-cycles are assumed to comprise two segments 
divided by the lower inflection point and upper inflection point, respectively [43]. Thus, 
a non-asynchrony breath is also assumed to be a two-segment piecewise regression 
model in the work for each of these phases. in specific, RSSE for an r-segment regression 
is defined:

(1)
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where j1, ji and jr are the data points in the 1st, ith and rth segment of the piecewise 
regression model, respectively. To find the minimum value of RSSE(V(N0), …, V(Ni−1),…, 
V(Nr)), a grid search method of testing all possible combinations of breakpoints V(N1), 
…, V(Nr−1) [62] are implemented with associated model parameters ks and Pb calculated 
via Eq. (4).

If the calculated F ratios in Eqs. (2) and (3) are smaller than the critical value, the null 
hypothesis test is then accepted. Otherwise, the alternative hypothesis test is accepted 
to consider using more segments to better approximate the half-cycle. Note the identifi-
cation of the proposed piecewise linear model and model parameters are automatically 
implemented without requiring human input.

Asynchrony patterns in lung hysteretic responses

Measured, patient-specific PV loops are approximated using the identified piecewise lin-
ear model with calculated breakpoints and regression parameters. Different numbers, r, 
of segments and parameter values/ranges determine a specific shape and model char-
acteristics of the PV loop. Thus, the specific pattern created by different types of asyn-
chronies can be explicitly interpreted by the change of hysteresis mechanics identified 
from PV loop analysis. Figure 14 shows the typical PV curves of the seven types of asyn-
chronies using the real patient data collected from the clinical trial. In particular, iden-
tification of the seven most common types of asynchronies [14, 20, 21, 24, 38] based on 
the shape of the approximated PV loop and the calculated model parameters are imple-
mented as follows:

Type 1: Flow asynchrony (fa)

Flow asynchrony occurs when patients’ flow demand exceeds the setting inspiration flow 
rate, typically creating a pressure drop in the beginning of inspiration without distort-
ing the flow waveform. The appearance of flow asynchrony is shown in Fig. 14(a), cor-
responding to a 4-segment model defined:

Type 2: Reverse triggering (rt)

Reverse triggering is a type of asynchrony due to a reflexive neural response triggered by 
the passive ventilator insufflation. The occurrence of reverse triggering is delayed from 
ventilator-triggered (not patient-triggered) inspiration, and thus can lead patient effort 
to persist through the inspiration phase and into expiration, as shown in Fig. 14b. This 
type of asynchrony can be identified:

Type 3: Premature cycling (pc)

For both patient triggering and ventilator triggering with late patient effort (reverse trig-
gering), patient effort can be longer than ventilator set inspiration time, causing prema-
ture cycling. Due to continued patient inspiratory effort during expiration, premature 

(5)r = 4, ks1 > 0, ks2 < 0, ks3 > 0, ks4 > 0.

(6)r = 4, ks1 > 0, ks2 > 0, ks3 < 0, ks4 > 0.
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cycling is normally observed in the beginning of the expiratory phase with a pressure 
depression and a jump of flow. The flow jump would thus create a slower decrease of vol-
ume. Therefore, the depressed pressure and the slow decline of volume cause a negative-
slope segment ks2 in the early stage of expiration, as seen in Fig. 14c.

In addition, the breakpoint VN1 for the premature cycling segment is not left enough 
to create a second breath, which should be identified near the beginning of expiration. 
Therefore, using all these aspects, premature can be determined using

where VT is the tidal volume of the breath.

Type 4: Double triggering (dt)

Double triggering is defined by two consecutive ventilated breaths, wherein expiration of 
the first breath is not complete before the second. Similar to premature cycling, double 
triggering occurs when patient inspiration time is longer than the ventilator set inspira-
tion time. However, the occurrence of double triggering requires much greater patient 
effort to overcome the set ventilation threshold, which leads to the extra 2–3 PV loop 
segments, as shown in Fig. 14d. Therefore, detection of double triggering can be con-
verted into the identification of inspiration segments r > 4 regardless of the elastance val-
ues for each segment, yielding

Type 5: Delayed cycling (dc)

In contrast to premature cycling and double triggering, if patient inspiratory time is 
shorter than ventilator set inspiration time, delayed cycling asynchrony appears with air 
trapping and a sudden rise of pressure at the end of inspiration. Thus, a sudden change 
of slope should be observed at the end of inspiration in the PV loop, leading to a separate 
segment with elastance value ks4 much higher than the previous segment ks3, as shown in 
Fig. 14e. Therefore, delayed cycling is defined:

Type 6: Ineffective effort (ie)

Ineffective effort is one of the most common asynchrony types and can occur during 
both inspiration and expiration, although it is more common (78%) during expiration 
[52]. Ineffective effort results from patient effort not strong enough to trigger a venti-
lated breath, and thus normally appears as relatively small changes in pressure and flow. 
Similar to premature cycling, ineffective effort leads to a pressure drop and flow jump, 
whilst tending to be seen near the end of expiration, which is different from prema-
ture cycling. Thus, the negative-slope segment is expected to occur for ks3, as shown in 
Fig. 14f. Therefore, the detection of ineffective triggering is defined using

(7)r = 4, ks1 > 0, ks2 < 0, ks3 > 0, ks4 > 0,VN0 − VN1 < VT /2,

(8)
r = 5, ks1 > 0, ks1 > ks2, ks3 > ks2, ks4 > ks5,PN3 < PEEP,PN2 > PN3,PN4 > PN3.

(9)r = 4, ks1 > 0, ks2 < 0, ks3 > 0, ks4 > 0, ks4 > 2ks3.

(10)r = 4, ks1 > 0, ks2 > 0, ks3 < 0, ks4 > 0,VN0 − VN2 > VT /2.
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Type 7: Auto triggering (at)

Auto triggering is a type of asynchrony causing an unexpected breath delivery, which 
does not match the set respiratory frequency and is not triggered by patient effort. It is 
normally an outcome of air leaking in the ventilator circuit or air trapping due to chronic 
obstructive pulmonary disease or obstructive ventilatory defect [1, 42]. No abrupt drop 
of pressure would be expected for auto triggering asynchrony. In addition, air leakage 
creates a leak of volume during expiration, leading to a gap between the baseline volume 
and the end expiratory volume, as shown in Fig. 14g. Thus, auto triggering is detected 
via the volume gap in PV loop, as defined using

It should be noted Fig.  14 is not representative of all possible appearance forms of 
patient asynchrony in clinical practice. For example, the number of segments for flow 
asynchrony during inspiration was identified as 4 segments in Fig. 14a, whilst it could 
still be identified as flow asynchrony with 3 segments for cases with a clear pressure 
drop in the beginning of the inspiration. However, these 7 types of asynchronies cover 
the most typical asynchronies reported in other research [14, 20, 21, 24, 38].

Clinical data

Clinical patient data were collected from eleven patients in ICU of the Fourth Hospital 
of Hebei Medical University in China. Ethics approval for data collection was granted by 
the local hospital ethics committee with number 2021KY131. Patients were ventilated 
using a Draeger Evita V300 ventilator. Pressure and flow data were recorded using res-
piratory mechanics monitoring tool CURESoft connected to the ventilator [51]. All data 
were recorded at a sampling rate of 100 Hz.

Asynchrony incidence and type were identified for 500 breaths (30–40min) for each 
patient. Per prior observational trials [5, 52], these breaths were inspected by three 
ICU doctors from the Key National Clinical Specialist in the Fourth Hospital of Hebei 
Medical University, China for each patient. In particular, the individual breath was first 
divided in CURESoft [51], and presented to the doctors with both pressure, flow and PV 
loop waveforms for asynchrony evaluation. The screening of both pressure and flow data 
can be adjusted over a variable period of time window per clinician request. Asynchro-
nies were evaluated and voted independently by the jury of 3 experienced and trained 
doctors. The baseline label type for comparing with the proposed identification method 
was determined with more than two votes. Patient demographics are presented in 
Table 3 showing a wide range of ages, condition, and ventilation modes. Of the 11 adults, 
4 are female, which is a typical ratio, with age ranging from 50 to 89 years old.

Analyses

The identification algorithms for asynchrony incidence and types are implemented auto-
matically via computer program software Matlab R2019b. Identification sensitivity and 
specificity were validated against the clinical inspection results from three ICU doctors, 
where sensitivity assesses the ability to accurate detect and classify asynchrony, whilst 

(11)r = 2, ks1 > 0, ks2 > 0,VNr − V (0) > ε.
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specificity assesses the ability to accurately assess normal breaths as having no asyn-
chrony. Sensitivity and specificity are calculated:

where TP is the true positive defined as the match of agreement for the specified type 
between the algorithm identification and clinical inspection, whilst TN is the true nega-
tive defined as the match of disagreement for the specified type between the algorithm 
identification and clinical inspection. FN is the false negative indicating the algorithm 
failed to identify the breath as the asynchrony type specified by clinical inspection. FP is 
the false positive representing the algorithm identified the breath as the specified type, 
but it was classified as asynchronous by clinical inspection.

Therefore, overall accuracy can be defined using these elements from Eqs. (12)–(13) 
as the number of accurate assessments divided by the total:

Identification accuracy was evaluated for each patient separately to test robust-
ness across different patient conditions and MV settings. It was also calculated over 
all patients to evaluate the overall performance of the identification method in this 
proof-of-concept cohort.
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