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Abstract

Aims: Inflammatory pathways and immune system dysregulation participate

in the onset and progression of cardiometabolic diseases. The dendritic cell

immunoreceptor 2 (DCIR2) is a C‐type lectin receptor mainly expressed by

conventional type 2 dendritic cells, involved in antigen recognition and in the

modulation of T cell response. Here, we investigated the effect of DCIR2

deficiency during the development of obesity.

Methods: DCIR2 KO mice and the WT counterpart were fed with high‐fat
diet (HFD) for 20 weeks. Weight gain, glucose and insulin tolerance were

assessed, parallel to immune cell subset profiling and histological analysis.

Results: After HFD feeding, DCIR2 KO mice presented altered conventional

dendritic cell distribution within the liver without affecting markers of hepatic

inflammation. These observations were liver restricted, since immune profile

of metabolic and lymphoid organs‐namely adipose tissue, spleen and

mesenteric lymph nodes‐did not show differences between the two groups.

This reflected in a similar metabolic profile of DCIR2 KO compared to WT

mice, characterized by comparable body weight gain as well as adipose tissues,

spleen, Peyer's patches and mesenteric lymph nodes weight at sacrifice. Also,

insulin response was similar in both groups.

Conclusion: Our data show that DCIR2 has a redundant role in the

progression of diet‐induced obesity and inflammation.
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Ectopic fat accumulation is the hallmark of obesity and
promotes moderate chronic inflammation, which accel-
erates the development of cardiovascular disease, diabe-
tes, and cancer.1 Lipid deposition triggers the activation

of an immune‐inflammatory response that prompts the
proinflammatory activation and migration of immune
cells in the adipose tissue and in the liver.2 In this setting,
the role of dendritic cells (DCs), which act as a bridge
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between innate and adaptive immunity,2 is still poorly
explored.

DCs are bone marrow‐derived cells, categorized into
classical or conventional DCs (cDCs), plasmacytoid DCs
(pDCs), monocyte‐derived DCs (MoDCs), and Langerhans
cells (LCs). They reside in different tissues where they
sense stimuli that impact to their activation, polarization,
and maturation.3 While it has been shown that adipose
tissue DCs are central players in the initiation and
progression of obesity‐induced inflammation and insulin
resistance,3 the contribution of DCs to metabolic failure of
other organs, such as the liver, is less clear. Here, DCs
mainly reside within the periportal and pericentral space4

and, although it is known that they contribute to tissue
homeostasis as well as obesity‐associated immune
response,3 their role is still controversial. The infiltration
of CX3CR1+ MoDCs in injured liver driven by increased
CX3CL1 expression, supports local inflammatory
response5 and, accordingly, blocking CX3CR1 was shown
to limit hepatic inflammation and damage.4 Instead,
recent publications have proposed different functions of
DCs according to their lipid content: while lipid‐enriched
liver‐derived DCs show a proinflammatory role that
supports the activation of the effector arm of the adaptive
immune response, lipid‐poor DCs promote T‐cell
mediated tolerance.6 In addition, DCs also contribute to
liver fibrosis7 and, particularly, liver type 2 conventional
DCs (cDC2) positively correlate with the progression of
metabolic steatohepatitis.4

A peculiar characteristic of murine cDC2 is the
expression of the dendritic cell immunoreceptor 2 (DCIR2),
whose role—beyond being a cDC2 marker—has not been
fully elucidated. Indeed, DCIR2 has been involved in the
induction of the tolerogenic CD4+ T‐cell response in NOD
mice,8 while its deficiency enhanced cytokine production
and T‐cell priming following Toll‐like receptor (TLR)‐
mediated activation in vivo9 but was shown to limit
atherogenesis in hypercholesterolemic mice.10

Thus, this work aimed to investigate the impact of
DCIR2 deficiency during obesity and metabolic syn-
drome development in high‐fat diet (HFD)‐fed mice.

First, we evaluated the impact of DCIR2 deficiency on
immune cell distribution after 20 weeks of HFD feeding.
Total DCs and cDC2 cells were decreased in the liver of
DCIR2 KO mice, while the levels of cDC1 and MoDCs
remained unchanged compared to matched controls
(Figure 1A–F). Although the number of cDC2 was
reduced, the expression of costimulatory molecules such
as CD40, CD80, CD86, and the chemokine receptor
CX3CR1, which contribute to the activation and recruit-
ment of DCs, was similar in the two groups (Figure 1G),
thus excluding differences in the activation status of
immune cells in the liver. In line with these results,

similar levels of CD3+ T lymphocytes within the liver,
both CD4+ and CD8+ cells, as well as the percentage of T
regulatory cells (Figure 1H–K) were reported. Further
characterization of T lymphocyte polarization was
performed through the profiling of transcriptional factors
Tbet, RORγT, and GATA3, which are master regulators of
T helper (Th)1, Th17, and Th2 response, respectively.
This analysis showed decreased GATA3 expression
(Figure 1L), supporting the observation that cDC2 are
mainly involved in the maintenance of Th2 immunity.
Together, these results indicate that DCIR2 deficiency
impacts cDC2 resulting in reduced Th2 cell polarization
within the liver, without directly affecting the gene
expression of IL6, IL17, IL1β, TNF‐α, TGFβ, and IL23 as
parameters of hepatic inflammation (Figure 1M).

These differences were however restricted to the liver
since visceral adipose tissue (Supporting Information:
Figure S2A), and lymphoid organs, such as spleen,
mesenteric lymph nodes (mLNs), and Peyer's patches
showed a similar distribution of DCs between DCIR2 KO
and WT mice (Supporting Information: Figure S2B–D),
thus suggesting that the impact of DCIR2 deficiency is
mainly affecting the liver.

To next explore whether these changes might have
resulted in a different metabolic response of DCIR2 KO
mice under high caloric intake, we investigated the effect
of HFD feeding on metabolic phenotype. Body weight
(Supporting Information: Figure S3A) and weight gain
(Figure 2A) were similar in DCIR2 KO and WT mice,
and the same was true for plasma lipid levels
(Figure 2B,C). Moreover, the percentage of liver, pancreas,
visceral adipose tissue (VAT), subcutaneous adipose
tissue (SCAT), and brown adipose tissue (BAT) weight
on body weight was similar among the animal models
(Figure 2D,E). Also, the weight of the lymphoid
tissues—thymus and spleen—was not different
(Figure 2F). Interestingly, glycemia after overnight fasting
was slightly elevated in DCIR2 KO compared to WT mice
(Figure 2G), and DCIR2 KOmice were less glucose tolerant
compared to WT mice (Figure 2H and Supporting
Information: Figure S3B), showing a preserved insulin
tolerance (Supporting Information: Figure S3C). Despite
this result would be possibly explained by a decreased trend
of circulating insulin levels of KO mice compared to WT
observed at two timepoints of GTT (Supporting Informa-
tion: Figure S3D), lipid deposition in the liver parenchyma
was similar between WT and KO mouse (Figure 2I,J and
Supporting Information: Figure S4A), casting for a redun-
dant role of DCIR2 in the metabolic response.

This extended also to adipose tissue, where adipocyte
area was similar in both visceral and subcutaneous
adipose tissue (VAT and SCAT, respectively)
(Figure 2I,K,L). Similarly, the expression of markers of
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FIGURE 1 DCIR2 deficiency impacts hepatic dendritic cell distribution without affecting tissue inflammation. (A) Representative flow
cytometry plots showing dendritic cells (DCs), identified as CD11c+ CD26+ cells in the liver. (B) Representative flow cytometry plots showing
conventional DC subsets identified within CD11c+ CD26+ and XCR1+ (conventional type 1 dendritic cells, cDC1) or CD172a+ (conventional type 2
dendritic cells, cDC2). (C–F) Flow cytometry analysis of DCs, cDC2, cDC1, MoDCs cell count per gram of liver. (G) Hepatic gene expression of CD40,
CD80, CD86, and CX3CR1. (H–I) Representative flow cytometry plots showing CD4+ and CD8+ T lymphocytes and T regulatory cells (Treg). (J) Flow
cytometry analysis of CD3+, CD4+, and CD8+ T lymphocytes in the liver of WT and DCIR2 KO after 20 weeks of high‐fat diet (HFD); data are
presented as cell count per gram of liver. (K) T regulatory cell percentage on CD4+ T lymphocytes. (L) Gene expression analysis of T lymphocytes
transcription factors, Tbet, RORγT, and GATA3. (M) Gene expression analysis of inflammation‐related molecules IL6, IL17, IL1β, TNF‐α, TGFβ, IL23.
Results are expressed as mean±SEM. n=7–4 per group. Statistical analyses were performed with unpaired t‐tests or multiple unpaired t‐test.
*p< .05.
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FIGURE 2 The lack of DCIR2 does not impact obesity development. (A) Body weight gain during 20 weeks of high‐fat diet (HFD) feeding of
WT and DCIR2 KOmice. (B, C) Plasma cholesterol and triglyceride levels of WT and DCIR2 KO mice after 20 weeks of HFD after overnight fasting.
(D–F) Liver, pancreas, VAT, SCAT, BAT, thymus, and spleen weight in WT and DCIR2 KOmice. (G) Plasma glucose levels after overnight fasting in
WT and DCIR2 KO mice. (H) Plasma glucose levels in WT and KOmice following intraperitoneal glucose tolerance test (0, 20, 40, 60, and 120min).
(I) Representative images of the liver, VAT, and SCAT sections after H&E staining at ×10 magnification. (J) Percentage of hepatic steatosis. (K, L)
Adipocyte area in VAT and SCAT. Results are expressed as mean±SEM. n=7 per group. Statistical analyses were performed with unpaired t‐test.
*p< .05.
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adipose tissue biology, such as PPARγ, and adiponectin
(Supporting Information: Figure 4B) was similar in WT
and KO adipose tissue. We then considered the expres-
sion of dipeptidyl peptidase‐4 (CD26), an amino pepti-
dase that reduces the activity of incretin peptides
(glucagon‐like peptide 1 and glucose‐dependent insuli-
notropic polypeptide) resulting in reduced insulin secre-
tion and, even, insulin resistance.11 However, although
our flow cytometry analysis showed a similar expression
of CD26 in visceral DCs of WT and DCIR2 KO
(Supporting Information: Figure 4C), we cannot exclude
that DCIR2 deficiency could have been compensated by
other mechanisms, thus masking its contribution to
obesity‐associated inflammation. Indeed, given its role in
the maintenance of immune tolerance, it is plausible that
its function is redundant with other similar pathways.

In conclusion, the profiling of DCIR2 KO fed on HFD
for 20 weeks indicates that DCIR2 has a redundant role
in obesity and obese‐related inflammation. Indeed,
despite the absence of DCIR2 impacted DC distribution
and Th2 polarization within the liver, this did not affect
liver steatosis or adipose tissue inflammation and lipid
accumulation.

Details on material and methods are presented as
supplemental material.
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