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Abstract

Many United States (US) cities are experiencing urban heat islands (UHIs) and climate change-

driven temperature increases. Extreme heat increases cardiovascular disease (CVD) risk, yet 

little is known about how this association varies with UHI intensity (UHII) within and between 

cities. We aimed to identify the urban populations most at-risk of and burdened by heat-related 

CVD morbidity in UHI-affected areas compared to unaffected areas. ZIP code-level daily 

counts of CVD hospitalizations among Medicare enrollees, aged 65–114, were obtained for 120 

US metropolitan statistical areas (MSAs) between 2000 and 2017. Mean ambient temperature 

exposure was estimated by interpolating daily weather station observations. ZIP codes were 

classified as low and high UHII using the first and fourth quartiles of an existing surface UHII 

metric, weighted to each have 25% of all CVD hospitalizations. MSA-specific associations 
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between ambient temperature and CVD hospitalization were estimated using quasi-Poisson 

regression with distributed lag non-linear models and pooled via multivariate meta-analyses. 

Across the US, extreme heat (MSA-specific 99th percentile, on average 28.6 °C) increased 

the risk of CVD hospitalization by 1.5% (95% CI: 0.4%, 2.6%), with considerable variation 

among MSAs. Extreme heat-related CVD hospitalization risk in high UHII areas (2.4% [95% CI: 

0.4%, 4.3%]) exceeded that in low UHII areas (1.0% [95% CI: −0.8%, 2.8%]), with upwards 

of a 10% difference in some MSAs. During the 18-year study period, there were an estimated 

37,028 (95% CI: 35,741, 37,988) heat-attributable CVD admissions. High UHII areas accounted 

for 35% of the total heat-related CVD burden, while low UHII areas accounted for 4%. High 

UHII disproportionately impacted already heat-vulnerable populations; females, individuals aged 

75–114, and those with chronic conditions living in high UHII areas experienced the largest heat-

related CVD impacts. Overall, extreme heat increased cardiovascular morbidity risk and burden 

in older urban populations, with UHIs exacerbating these impacts among those with existing 

vulnerabilities.
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1. Introduction

Approximately 30% of the world’s population are exposed to deadly heat each year (Mora 

et al., 2017). Exposure to extreme heat events among urban populations has nearly tripled 

since the 1980s, impacting around 1.7 billion people (Tuholske et al., 2021). Urban areas are 

home to the majority of the population worldwide (United Nations Department of Economic 

and Social Affairs, 2018) and with climate change, increased urbanization, and population 

ageing, cities are expected to bear the brunt of rising temperatures (Tong et al., 2021). This 

is in part due to the higher temperatures experienced in heavily urbanized areas, known 

as urban heat islands (UHIs), a phenomenon largely caused by an increased presence of 

heat-retaining buildings and pavement and decreased greenspace (Mohajerani et al., 2017; 

Oke et al., 2017; Rizwan et al., 2008).

Exposure to high temperatures and heat waves are associated with increased all-cause and 

cause-specific morbidity and mortality (Green et al., 2019; Song et al., 2017). Specifically, 

a large body of epidemiologic evidence shows that short-term heat exposure elevates the 

risk of mortality from cardiovascular disease (CVD) (Song et al., 2017), especially among 

older adults (Åström et al., 2011; Bunker et al., 2016; Son et al., 2019). The biological 

mechanisms by which heat reduces cardiovascular function are well understood, with 

high temperatures altering blood pressure, heart rate, and blood viscosity (Gostimirovic 

et al., 2020). However, there is inconsistent evidence of the impact of heat exposure 

on cardiovascular morbidity (Cicci et al., 2022; Phung et al., 2016; Turner et al., 2012; 

Weilnhammer et al., 2021). Additionally, few epidemiologic studies have investigated the 

modification of heat-related cardiovascular morbidity risk by individual factors beyond age 

and sex, such as comorbidities (Bai et al., 2018, 2016; Lam et al., 2018) or race, both of 

which can impact heat vulnerability (Gronlund, 2014). In the US, urban areas are racially 
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diverse (Cromartie, 2018) and home to many people with chronic conditions (Boersma et al., 

2020), emphasizing the importance of understanding the effects of heat in these populations. 

Previous studies also provide limited evidence of the variation in this risk within and across 

different urban areas in the US. It remains unclear which cities and urban populations 

experience the highest cardiovascular morbidity impacts during extreme heat events.

The UHI phenomenon can exacerbate the adverse health effects of extreme heat (Goggins et 

al., 2012; Heaviside et al., 2017; Zhao et al., 2018a; Zhu et al., 2021). UHI-related increases 

in temperatures are estimated to have caused 30% or more of heat-related deaths in cities 

in Vietnam, England, and China (Dang et al., 2018; Heaviside et al., 2016; Huang et al., 

2020). This exacerbation is largely driven by UHIs increasing peak daytime temperatures 

and reducing overnight cooling, exposing populations in the urban core, who are often 

more vulnerable and socially disadvantaged (Hsu et al., 2021; Macintyre et al., 2018), 

to dangerously high temperatures (Heaviside et al., 2017). With urban expansion and 

global warming, UHIs will likely affect an increasing proportion of the urban population 

(Huang et al., 2019). However, the few studies that have explicitly investigated the health 

impacts of UHIs focused solely on mortality and produced mixed results (Dang et al., 

2018; Goggins et al., 2012; Ho et al., 2023; Hondula et al., 2012; Milojevic et al., 2016; 

Taylor et al., 2015). In the face of increasing ambient temperatures and intensifying UHIs, 

a clearer understanding of whether UHIs exacerbate heat-related cardiovascular morbidity, 

and identifying populations within UHI-affected areas that are the most vulnerable to and 

burdened by high temperatures, is essential.

We evaluated the heat-related risk and burden of cardiovascular morbidity among older 

urban populations and explored how the observed impacts varied with surface UHI intensity 

(UHII) within and between cities. Specifically, a time series approach was used to estimate 

the impact of extreme heat on CVD hospitalizations among the Medicare population living 

in areas affected by UHIs, compared to those living in unaffected areas, in 120 metropolitan 

areas within the contiguous US. We estimated both US-wide and metropolitan area-specific 

risks and burden and evaluated these impacts by vulnerabilities of the urban population. 

This is one of the first multi-city studies to investigate the cardiovascular morbidity risk and 

burden associated with elevated temperatures in UHIs and explore if the combined impacts 

of heat and UHIs vary geographically and demographically. By identifying the most heat-

vulnerable urban populations and clarifying the role of UHIs, our findings may be useful 

for identifying areas for intervention and informing localized, targeted, and context-specific 

mitigation and adaptation strategies.

2. Methods

2.1. Study area

To examine the heat-cardiovascular morbidity associations in urban populations, we 

identified 120 metropolitan statistical areas (MSAs; defined by the US Office of 

Management and Budget [OMB]) in the contiguous US with a total 2010 population of 

500,000 or more (Fig. 1, Table S1). Following OMB definitions, MSAs that contained an 

urban area with a population greater than 2.5 million were subdivided into metropolitan 

divisions, which function as distinct areas with substantial populations, and considered as 
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separate MSAs. The analysis was restricted to ZIP codes that overlapped an urbanized area 

(an area with a total population of 50,000 or more, as defined by the US Census Bureau) 

within one of the 120 MSAs, hereafter referred to as an urban core.

2.2. Study population and cardiovascular outcome

We conducted a retrospective analysis of CVD hospitalizations among Medicare enrollees, 

aged 65 to 114, in the 120 MSAs between 2000 and 2017. ZIP code-level daily counts 

of CVD-related hospitalizations were obtained using Medicare billing claims from short-

stay, inpatient hospitalizations. CVD-related hospitalizations were identified using the 

International Classification of Diseases (ICD), Ninth Revision (ICD-9) and ICD, Tenth 

Revision (ICD-10) diagnosis codes (ICD-9: 390–438, ICD-10: I00-I69), which needed to be 

listed in one of the first three diagnosis codes on the billing claim. Hospitalizations were 

excluded if they occurred within four days of a previous hospitalization for CVD, as these 

hospitalizations were unlikely to be independent events.

To identify vulnerable population groups, we constructed subpopulation counts of CVD 

hospitalizations by age (65–74, 75–84, 85–114), sex (male, female), race (white, black), 

diabetes status (yes, no), and chronic kidney disease (CKD) status (yes, no). Diabetes 

and CKD were selected as comorbidities of interest because they are prevalent chronic 

conditions known to be heat-associated (Johnson et al., 2019; Vallianou et al., 2021). 

Hospitalization counts by chronic condition status were constructed to include all 

individuals diagnosed with the condition of interest prior to or during the study period. 

As such, these counts included enrollees at all stages of the chronic disease, capturing 

susceptibility prior to official diagnosis.

Finally, the size of the population at-risk was captured by using annual ZIP code-level 

counts of the number of Medicare beneficiaries, overall and for each subpopulation. The 

ZIP-code level daily counts of CVD hospitalizations and annual counts of beneficiaries 

were calculated using information on the current and end-of-year residence of an individual, 

respectively. The subpopulation hospitalization and beneficiary counts did not sum to the 

total counts due to groups not considered in the analyses (for example, those with race other 

than black or white) and the exclusion of a limited number of ZIP codes with an annual 

subpopulation beneficiary count of zero during the study period. For most subpopulations, 

less than 1% of ZIP codes were excluded due to insufficient beneficiary counts.

2.3. Ambient temperature data

We interpolated weather station observations of daily mean ambient temperature and relative 

humidity (RH), downloaded from the National Oceanic and Atmospheric Administration’s 

National Climatic Data Center’s Global Surface Summary of the Day database (National 

Oceanic and Atmospheric Administration, 2022), to census tract population centroids using 

thin-plate spline regressions for each day between 2000 and 2017. Daily mean ambient 

temperature, calculated using hourly observations, was selected as the exposure of interest 

because the 24-hour mean is often a better predictor of heat wave-related morbidity (Xu 

et al., 2018) and frequently used in epidemiologic analyses of non-optimal temperatures 

(Bunker et al., 2016). A 10-fold cross-validation of the interpolated data resulted in very 
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high R2 values for temperature and relatively high R2 values for RH. The census tract-level 

estimates were aggregated to the ZIP code level using population weighting:

TempZIPi, t = ∑
c ∈ ZIP i

Tempc, t *
Popc

PopZIPi
(1)

where TempZIPt, t is the population-weighted ambient temperature in ZIP code i on day t. 

Tempc,t is the mean ambient temperature on day t in census tract c with a population 

centroid located within ZIP code i, and Popc and PopZIPi are the total census tract and ZIP 

code population, respectively, obtained using census tract-level estimates from the 2010 

US Census. Population weighting gives proportionally greater weight to the temperatures 

experienced in more densely populated areas. ZIP code-level estimates of daily mean RH, 

used as a covariate in the epidemiologic model, were produced using the same approach 

described above. In total, temperature and RH measurements from 3,208 weather stations 

across the contiguous US were used (Fig. S1), with approximately 1,100–1,750 stations 

providing data for a given day.

2.4. Surface urban heat island intensity data

We used an existing measure of surface UHII to identify UHI and non-UHI ZIP codes. 

Specifically, we used estimates of census tract-level surface UHII in US urbanized areas 

averaged over 2013–2017 (Chakraborty et al., 2020). This UHII metric was calculated as the 

difference in daytime land surface temperature (LST; measured in °C) during June-August 

between urban and non-urban areas within each urbanized area (Chakraborty et al., 2020; 

Chakraborty and Lee, 2019). The June-August daytime estimates were selected to represent 

UHII during the hot weather season in the US and have been previously used to characterize 

UHIs (Hsu et al., 2021; Johnson, 2022; Romitti et al., 2022). Chakraborty et al. calculated 

the UHII metric using LSTs from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) on the Aqua satellite at an 8-day temporal resolution and 1,000-meter spatial 

resolution. Land cover data at a 300-meter spatial resolution from the European Space 

Agency’s Climate Change Initiative was used by Chakraborty et al. in the UHII calculation 

to identify the urban (built-up pixels) and non-urban (non-built-up, non-water pixels) areas 

in each urbanized area. We used the census tract-level estimates to generate population-

weighted estimates of UHII for each ZIP code included in the analysis, using the population 

weighting approach (Equation (1)). To identify the areas with the lowest and highest surface 

UHII across the 120 MSAs, ZIP codes were classified into UHII quartiles, which were 

weighted to each have approximately 25% of all CVD hospitalizations to account for the 

higher population density in heavily urbanized areas. While this classification approach 

meant that not all MSAs had ZIP codes in each UHII quartile, it ensured that the first and 

fourth quartiles identified the most and least UHI-affected urban areas.

2.5. Epidemiologic analyses

The first aim of the epidemiologic analyses was to use year-round daily ambient temperature 

and hospitalization data to estimate the CVD hospitalization risk for the Medicare 

population associated with short-term exposure to high temperatures in US urban cores. 
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This association was estimated in each MSA and across all 120 MSAs using a two-stage 

time series modeling approach, described below. This approach was applied to the entire 

study population and each subpopulation separately (by age, sex, race, diabetes status, and 

CKD status). The second aim was to evaluate heat-related risk in the areas with the highest 

and lowest UHII, defined using weighted quartiles (Burkart et al., 2016; Gronlund et al., 

2016; Heo et al., 2021). The two-stage modeling approach was applied to ZIP codes in 

the first and fourth quartiles of surface UHII (hereafter referred to as low and high UHII, 

respectively) to obtain UHII-specific associations in each MSA and across all MSAs. This 

low and high UHII analysis was conducted on the overall and subpopulation counts.

The first stage of the modeling approach applied a time-series quasi-Poisson regression with 

a distributed lag non-linear model (DLNM), which can concurrently represent both a non-

linear exposure–response association and a non-linear lag-response association (Gasparrini, 

2014). The DLNM was used to estimate the relative risk (RR) of hospitalization in response 

to heat exposure within each MSA. The DLNM evaluated the cumulative effect over 21-days 

to investigate the hypothesis that CVD hospitalizations may occur in the days and weeks 

following exposure and identify which days pose the greatest risk. A 21-day interval has 

been used in prior analyses examining the impact of year-round ambient temperature on 

cardiovascular outcomes (Iñiguez et al., 2021; Martinez-Solanas and Basagana, 2019; Wang 

et al., 2021). The DLNM can be described as follows:

Log E Y i, t = ∞ + cb Tempi, t, n(lag) = 21 × β + ns RHi, t, df = 3
+ ns Time, df = 7/year +  DOW t +  Holidayt +  UHIIi
+ offset log NumBeneficiariesi, y

(2)

where E(Yi,t) is the expected count of CVD hospitalizations on day t in ZIP code i within 

a given MSA, ∝ is the intercept, cb(Tempi,t, n(lag) = 21) is the cross-basis matrix of 

population-weighted ambient temperature in ZIP code i on day t with 21 lag days, and β 
is the vector of coefficients for the cross-basis. The exposure–response association in the 

cross-basis was defined using a natural cubic spline with three internal knots placed at 

the 10th, 75th, and 90th percentiles of the MSA-specific temperature distributions (Iñiguez 

et al., 2021; Scovronick et al., 2018; Yang et al., 2015). The lag-response association in 

the cross-basis was defined using a natural cubic spline with three internal knots spaced 

equally on the log scale (Iñiguez et al., 2021; Martinez-Solanas and Basagana, 2019; Wang 

et al., 2021). The DLNM also controlled for: RH, where ns(RHi,t, df = 3) is a natural cubic 

spline of population-weighted RH in ZIP code i on day t with three degrees of freedom 

(df) (Cui et al., 2019; Guo et al., 2017; Lu et al., 2020); seasonal and long-term trends, 

where ns(Time, df = 7/year) is a natural cubic spline of time with seven df per year (Bai 

et al., 2018; Cui et al., 2019; Wang et al., 2021); day of the week, where DOWt is a 

categorical variable for day t (1, 2, … 7), with 1 (Monday) as the reference (Guo et al., 

2017; Martinez-Solanas and Basagana, 2019; Wang et al., 2021); holidays, where Holidayt 

is a categorical variable indicating whether day t is a US Federal holiday or not (1 or 0) 

(Cui et al., 2019; Guo et al., 2017; Martinez-Solanas and Basagana, 2019); and UHII, where 

UHIIi is a categorical variable indicating the UHII quartile for ZIP code i, with the first 

quartile (low UHII) as the reference. Finally, offset(log(NumBeneficiariesi,y)) is an offset 
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for the number of beneficiaries in ZIP code i in year y, adjusting for spatial and temporal 

differences in Medicare population size.

The second stage used a multivariate meta-analysis to generate a pooled estimate of RR 

across all MSAs, using the MSA-specific average ambient temperature and temperature 

range as predictors (Gasparrini et al., 2015; Scovronick et al., 2018). The pooled association 

was used to identify the ambient temperature percentile with the lowest risk of CVD 

hospitalization, the minimum hospitalization percentile (MHP), which may be considered 

an optimum temperature percentile. A 95% confidence interval (CI) for the MHP was 

calculated using an approximate parametric bootstrap estimator (Tobías et al., 2017). Once 

the MHP was identified, the pooled association was re-centered at this value. The meta-

analytical model was also used to derive a best linear unbiased prediction of the RR for 

each MSA. The best linear unbiased prediction allows MSAs with less data to borrow 

information from MSAs with more hospitalizations and similar average temperatures and 

temperature ranges, providing more informed estimates of the MSA-specific associations 

(Gasparrini et al., 2015, 2012). These updated MSA-specific associations were centered 

at the MHP identified in the pooled association (Iñiguez et al., 2021; Lu et al., 2020; 

Martinez-Solanas and Basagana, 2019), meaning each MSA had the same MHP, but a 

different minimum hospitalization temperature (MHT) given each MSA’s unique ambient 

temperature distribution.

The primary results reported are: the cumulative exposure–response associations across 21 

days (lags 0–20); the RR of hospitalization at the 99th ambient temperature percentile 

compared to the MHP, obtained from the cumulative associations; and the lag-response 

associations at the 99th ambient temperature percentile. The 99th percentile of MSA-specific 

ambient temperature distributions (hereafter referred to as extreme heat) was used as a proxy 

for extreme heat exposure (Hurtado-Díaz et al., 2019; Martinez-Solanas and Basagana, 

2019; Wang et al., 2021). We reported both the pooled and the MSA-specific results 

overall and for low and high UHII areas and solely the pooled results for the subpopulation 

analyses. While we did not test for significant differences in RRs between groups, we did 

report qualitative comparisons.

Multiple sensitivity analyses were run to assess the robustness of the results to the modeling 

choices, including the maximum number of lag days (7, 10, 14, or 28 instead of 21), the 

knot placement for the exposure–response association (10th–50th–90th, 25th–50th–75th, 

or 10th–25th–75th–90th percentiles instead of 10th–75th–90th), the df used to control for 

seasonal and long-term trends (10 or 8 df instead of 7), and the number of knots used in the 

lag-response association (4 or 5 knots instead of 3). Additionally, daily maximum ambient 

temperature and daily mean apparent temperature, calculated using the RH data and the US 

National Weather Service’s function (US National Weather Service, 2022), were considered 

as the exposure of interest instead of daily mean ambient temperature.

2.6. Health burden analyses

We estimated the number of heat-related CVD hospitalizations that occurred in US urban 

cores, overall, in low and high UHII areas, and within subpopulations, between 2000 and 

2017. Using an attributable risk calculation that is an extension of the DLNM approach, and 
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relying on the backwards approach (Gasparrini and Leone, 2014; Guo et al., 2017; Liu et al., 

2018), attributable burden was calculated as:

ANi, t = 1 − exp − ∑
l = 0

L
βxt − l, l * ni, t (3)

where ANi,t is the number of attributable CVD hospitalizations and ni,t is the total number 

of CVD hospitalizations in ZIP code i on day t. βxt − l, l, estimated in Equation (2), is the 

MSA-specific risk, which ZIP code i belongs to, associated with ambient temperature xt-l 

at lag l. L is equal to 21 days, the maximum lag interval. To restrict the burden estimates 

to high temperatures, xt-l ∈ r, where r is a range of ambient temperature. The temperature 

range, r, was set to the MHP and above to calculate the heat-attributable CVD burden (Bai et 

al., 2018; Gasparrini et al., 2015; Scovronick et al., 2018; Wang et al., 2021). Empirical 95% 

CIs for the burden estimates were obtained through Monte Carlo simulations, using 1,000 

iterations and assuming a multivariate normal distribution of the MSA-specific coefficients 

(Martínez-Solanas et al., 2021; Mistry et al., 2022). The total heat-related CVD burden and 

associated 95% CI were calculated by summing ANi,t and the Monte Carlo simulations 

across all days and ZIP codes.

The number of heat-attributable CVD hospitalizations was estimated by applying Equation 

(3) to the subpopulation- and UHII-specific counts and associations. The primary results 

reported are: the heat-attributable number (AN), the number of CVD hospitalizations 

attributable to temperatures above the MHP; and the annual heat-attributable rate (AR), the 

average annual AN per 100,000 beneficiaries. We report the total and MSA-specific burden 

for the entire study population, overall and in low and high UHII areas, and solely the total 

burden for the subpopulations. The AN can be used to compare the absolute burden for each 

MSA, subpopulation, and UHII level, while the AR can be used to compare the relative 

burden, accounting for differences in population size. The subpopulation- and UHII-specific 

ANs did not sum to the overall AN because each estimate relied on their unique RRs.

Both the epidemiologic and health burden analyses were conducted in R (version 4.0.3; 

R Development Core Team), using the packages ‘dlnm’ (Gasparrini, 2011) and ‘mvmeta’ 

(Gasparrini et al., 2012) and the functions ‘attrdl.R’ (Gasparrini and Leone, 2014) and 

‘findmin.R’ (Tobías et al., 2017).

3. Results

3.1. Study population & exposure data

A total of 48.6 million CVD hospitalizations over 2000–2017 were identified among 

approximately 21.6 million total beneficiaries in 9,917 ZIP codes (Table 1). ZIP codes 

classified as low UHII areas had a surface UHII between −9.3 °C and 0.5 °C. ZIP codes 

classified as high UHII areas had a surface UHII between 3.9 °C and 10.3 °C. On average, 

high UHII areas had an UHII of 5.6 °C, meaning summer daytime LSTs were approximately 

5.6 °C warmer in these areas compared to their non-urban reference areas. Most ZIP codes 

with high UHII were centrally located in the urban cores of the MSAs, while ZIP codes 
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with low UHII were located near the edges (Fig. 1). Low and high UHII areas had an equal 

number of CVD hospitalizations, but high UHII areas had fewer enrollees located in less ZIP 

codes (Table 1), indicating a denser and more frequently hospitalized Medicare population 

in high UHII areas. The proportion of hospitalizations indicates that the Medicare population 

in high UHII areas is generally older, more female, more non-white, and with more chronic 

conditions.

Across the 120 MSAs and 18-year study period, the average daily mean ambient 

temperature was 14.8 °C (Interquartile range [IQR]: 14.1 °C) and the 99th percentile of 

daily mean ambient temperature was 28.6 °C. While low and high UHII areas had different 

surface UHIIs, they had the same average daily mean ambient temperature of 14.4 °C (IQR: 

14.1 °C for both). The two areas also had similar 99th percentiles of daily mean ambient 

temperature, with 28.4 °C for low and 28.3 °C for high UHII areas. Details on the region, 

climate, temperature, and study population of the 120 MSAs can be found in Table S1. 

Additional maps of ZIP code-level hospitalization counts, temperature, and UHII can be 

viewed in Fig. S2–4 or online at: https://shiny.stat.ncsu.edu/Heat-CVD-UHI-Dashboard/.

3.2. Overall risk and burden

Pooled across the 120 MSAs, extreme heat (MSA-specific 99th temperature percentile, on 

average 28.6 °C) increased the 21-day cumulative RR of CVD hospitalization by 1.5% (95% 

CI: 0.4%, 2.6%) (Fig. 2A–B, Table S2). A U-shaped association was observed, with the 

MHP located at the 92nd percentile (95% CI: 90, 95; on average 25.7 °C [95% CI: 25.2 °C, 

26.5 °C]) (Fig. 3). The lag-response association for extreme heat revealed an initial risk at 

lag 0, followed by a slightly delayed association, with risk peaking at lag 5 and continuing 

until lag 12. While many MSAs exhibited a similar U or J-shaped association (Fig. S5), 

there was considerable variation in the MSA-level MHTs and RRs (Fig. 4, S6, S7, Table S3), 

with MHTs ranging from 18.9 °C to 35.3 °C and extreme heat-related RRs ranging from a 

10.4% decrease to a 16.5% increase in CVD hospitalization risk. Approximately two-thirds 

of MSAs had increased risk of CVD hospitalizations, with 20% having a significant increase 

(Fig. S8).

The estimated 37,028 (95% CI: 35,741, 37,988) CVD hospitalizations attributable to heat 

exposure over the 18-year study period accounted for an average of 9.52 (95% CI: 9.19, 

9.76) heat-attributable CVD admissions per 100,000 beneficiaries each year (Fig. 2C–D, 

Table S2). The MSAs that experienced the highest total burden were those with high RRs, 

steep risk curves (that is, a sharper increase in risk per degree change in temperature), 

and a high number of total CVD hospitalizations (Figs. S5–7; Table S3). There was no 

apparent spatial, regional, or climactic patterns in the MSA-level heat-attributable CVD risk 

and burden (Figs. S9, S10). The heat-related CVD hospitalization risk and burden, overall 

and for each MSA, can also be viewed online at: https://shiny.stat.ncsu.edu/Heat-CVD-UHI-

Dashboard/.

3.3. Overall risk and burden in subpopulations

While extreme heat increased the risk of CVD hospitalizations across most subpopulations, 

older (age 85–114), black, and female enrollees, those with CKD, and those with diabetes 
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generally had slightly lower MHPs, steeper risk curves, and higher extreme heat-related RR 

(Fig. 2A–B, S11–15, Table S2). For example, extreme heat increased the 21-day cumulative 

RR by 2.4% (95% CI: 1.3%, 3.5%) for those with CKD, compared to 0.7% (95% CI: −0.3%, 

1.7%) for those without. Similarly, the extreme heat-related RRs were moderately higher for 

females (2.1% [95% CI: 0.8%, 3.5%]) than males (0.7% [95% CI: −0.3%, 1.7%]); for older 

(age 85–114) enrollees (2.8% [95% CI: 1.3%, 4.2%]) than younger (age 65–74) enrollees 

(0.1% [95% CI: −1.0%, 1.3%]); and for black enrollees (2.4% [95% CI: 0.7%, 4.1%]) than 

white enrollees (1.3% [95% CI: 0.2%, 2.5%]). The extreme heat lag-response associations 

also varied by subpopulation, with a slightly quicker response in the populations at higher 

risk (Figs. S11–15).

The heat-attributable CVD burden was also larger in more vulnerable subpopulations. For 

example, enrollees with CKD accounted for almost 79% (AN: 29,113 [95% CI: 28,279, 

29,678]) of the total heat-related burden, leading to 6 times more heat-attributable CVD 

admissions per 100,000 beneficiaries each year than those without CKD (AR: 23.56 [95% 

CI: 22.89, 24.02] for CKD vs. 3.87 [95% CI: 3.71, 3.97] for non-CKD). Similarly, females 

and those with diabetes accounted for approximately 73% (AN: 27,200 [95% CI: 26,205, 

27,910]) and 78% (AN: 25,249 [95% CI: 24,450, 25,801]) of the total heat-related CVD 

burden, respectively, with higher ARs than males and those without diabetes. The heat-

attributable burden also increased with age, with enrollees aged 85–114 having the highest 

AR (34.76 [95% CI: 33.50, 35.61]) and accounting for approximately 41% (AN: 15,381 

[95% CI: 14,822, 15,757]) of the total heat-related CVD burden. While white enrollees 

had a higher AN (approximately 63% of total burden; 23,438 [95% CI: 22,435, 24,167]), 

reflecting the larger number of white enrollees, black enrollees had a higher AR, with more 

than double the number of heat-attributable CVD admissions per 100,000 beneficiaries each 

year (AR: 17.46 [95% CI: 16.63, 18.09] for black vs. 7.51 [95% CI: 7.19, 7.74] for white). 

The subpopulation-specific heat-related risk and burden can also be viewed online at: https://

shiny.stat.ncsu.edu/Heat-CVD-UHI-Dashboard/.

3.4. Risk and burden difference by urban heat island intensity

Pooled across all MSAs, high UHII areas, compared to low UHII areas, had a moderately 

lower MHP, steeper risk curve, higher extreme heat-related RR, and more immediate 

extreme heat lag-response association (Fig. 2A–B, Fig. 3, Table S2). Specifically, extreme 

heat increased the 21-day cumulative RR of CVD hospitalization by 2.4% (95% CI: 0.4%, 

4.3%) in high UHII areas, compared to 1.0% (95% CI: −0.8%, 2.8%) in low UHII areas. 

There were substantial differences in UHII-level extreme heat-related CVD risk between 

MSAs, with no clear spatial, regional, or climactic trends (Figs. S10, S16). Approximately 

half of MSAs had at least a 1% higher, and up to a 10% higher, extreme heat-related CVD 

hospitalization RR in high UHII areas (Fig. 4, S7, Table S3). For high UHII areas, 78% of 

MSAs had an increase in CVD hospitalization RR associated with extreme heat, compared 

to 60% for low UHII.

There was a notably higher heat-related CVD burden in high UHII areas in comparison to 

low UHII areas (Fig. 2C–D), with over 11,000 more heat-attributable CVD admissions (AN: 

12,834 [95% CI: 12,012, 13,452] in high vs 1,423 [95%: 480, 2,111] in low) and 11 times 
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more heat-related CVD admissions per 100,000 beneficiaries each year (AR: 14.86 [95% 

CI: 13.91, 15.58] in high vs. 1.34 [95% CI: 0.45, 1.98] in low). While high and low UHII 

areas each accounted for 25% of all CVD hospitalizations, high UHII areas accounted for 

approximately 35% of the total heat-related CVD burden while low UHII areas accounted 

for 4%.

Vulnerable subpopulations generally had a more pronounced extreme heat-related CVD 

risk in high UHII areas, compared to a minimal difference in UHII-level risk for low-risk 

subpopulations (Fig. 2A–B, S11–15, Table S2). The largest difference in extreme heat-

related CVD risk by UHII level was observed for female enrollees, who had a 3.6% (95% 

CI: 1.3%, 5.8%) increase CVD hospitalization RR in high UHII areas, compared to 0.5% 

(95% CI: −1.2%, 2.2%) in low UHII areas. In contrast, male enrollees had a 0.9% (95% 

CI: −1.0%, 2.8%) increase in high UHII areas and a 1.1% (95% CI: −1.0%, 3.3%) increase 

in low UHII areas. Similar differences in extreme heat-related CVD hospitalization RR by 

UHII level was also observed among enrollees with CKD and enrollees with diabetes, 

compared to no discernable differences among those without. Across the age groups, 

enrollees aged 75–84 had the largest difference in UHII-specific risk, with an elevated 

extreme heat-related CVD hospitalization risk in high UHII areas (RR: 2.8% [95% CI: 0.1%, 

5.5%] in high vs. −0.1% [95% CI: −0.8%, 0.7%] in low). There were no notable differences 

in risk between low and high UHII areas by Medicare enrollee race.

High-risk groups also had a notably elevated heat-related CVD burden in high UHII areas 

(Fig. 2C–D). Enrollees with diabetes in high UHII areas accounted for 40% (AN: 9,999 

[95% CI: 9,432, 10,443]) of the total diabetes-specific heat-related CVD burden, with 6 

times more heat-attributable CVD admissions per 100,000 beneficiaries each year than those 

in low UHII areas (AR: 29.56 [95% CI: 27.88, 30.87] in high vs. 4.71 [95% CI: 3.16, 5.72] 

in low). In comparison, those without diabetes in high UHII areas accounted for 25% (AN: 

2,773 [95% CI: 2,426, 3,002]) of the non-diabetes-specific heat-related CVD burden. These 

marked discrepancies in UHII-specific burden also occurred in female enrollees and those 

with CKD. Enrollees aged 75–84 in high UHII areas had the highest AN across all age 

groups and UHII levels, with high UHII accounting for 53% (AN: 5,863 [95% CI: 5,357, 

6,251]) of the total age 75–84-specific heat-related CVD burden. Enrollees aged 85–114 

in high UHII areas had the highest AR (45.85 [95% CI: 43.82, 47.37]). While black and 

white enrollees had similar differences in AN and AR in high versus low UHII areas, high 

UHII areas accounted for approximately 56% (3,813 [95%: 3,594, 3,982]) of the total black-

specific AN and only 32% (7,436 [95% CI: 6,752, 7,950]) of the total white-specific AN, 

reflecting the higher percentage of black enrollees in high UHII areas. Results for the heat-

related CVD risk and burden by UHII level, overall and for each MSA and subpopulation, 

can also be viewed online at: https://shiny.stat.ncsu.edu/Heat-CVD-UHI-Dashboard/.

3.5. Sensitivity analyses

Multiple sensitivity analyses were run to evaluate the robustness of the cardiovascular risk 

and burden analyses (Table S4, Fig. S17). Overall, the results were generally insensitive 

to the model specification and parameters. When different df were used to control for 

seasonal and long-term time trends, the extreme heat-related RR, as well as the AN and 
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AR, remained consistent with the primary findings, except for a small decrease in the 

steepness of the exposure–response risk curve (Fig. S18). Similarly, when the maximum 

lag was changed in the model or when more knots were used to define the lag-response 

association, the results were largely the same (Figs. S19, S20). The most notable change 

for both sensitivity analyses was observed in the lag-response associations, with a slight 

change in the day-to-day variability in risk across the lag interval. When defining the cubic 

spline for the exposure–response association, once knots were placed at both the 75th 

and 90th percentiles, the results were insensitive to knot placement (Fig. S21). However, 

if knots at the 75th or 90th percentile were removed, there was an attenuation of the 

effect measures, demonstrating the importance of knot placement. Finally, when daily mean 

apparent temperature or daily maximum ambient temperature was used as the exposure of 

interest instead of daily mean ambient temperature, there was no notable change in the 

exposure-lag-response associations (Fig. S22).

4. Discussion

Across the 120 MSAs, extreme heat significantly increased the risk of CVD hospitalization 

among older urban populations by approximately 1.5%. The observed risk was driven by 

associations 3–10 days prior to CVD hospitalization, indicating that extreme heat may 

pose a delayed threat to cardiovascular morbidity. This increased risk led to a notable heat-

attributable burden of over 37,000 CVD hospitalizations during the 18-year study period. 

Using the average payment due to provider (approximately $8,910), we can estimate that the 

heat-related economic burden of CVD hospitalizations for Medicare enrollees between 2000 

and 2017 was $329.9 million. There were also differences by subpopulation, where black, 

female, and older individuals, those with CKD, and those with diabetes had a moderately 

higher extreme heat-related risk, resulting in 10,000–19,000 more heat-attributable CVD 

admissions than their counterparts. These groups also tended to have slightly lower MHPs, 

steeper risk curves, and more immediate responses at high temperatures, indicating a 

potentially lower heat tolerance.

When considering the role of UHIs, we observed a notably higher heat-related CVD burden 

in areas with higher surface UHII, attributed to moderately higher extreme heat-related 

risk. More specifically, high UHII areas, compared with low UHII areas, had a 1.4% 

higher CVD hospitalization risk associated with extreme heat and upwards of 11,000 more 

heat-attributable CVD admissions, accounting for over one-third of the total heat-attributable 

CVD burden. In terms of the billing costs, the estimated heat-related CVD economic burden 

in high UHII areas was $114.4 million (approximately $132,400 per 100,000 beneficiaries 

annually), compared to $12.7 million in low UHII areas (approximately $11,900 per 100,000 

beneficiaries annually).

High UHII also had a disproportionate impact on already heat-vulnerable populations. 

Among the most heat-vulnerable enrollees (those who were black, female, older, had CKD, 

or had diabetes), the extreme heat-related CVD hospitalization risk in high UHII areas 

exceeded that in low UHII areas by 1.1–3.1%, with 8–33 more heat-attributable CVD 

admissions per 100,000 beneficiaries each year. In the less vulnerable subpopulations, the 

RR and AR were only 0.0–1.0% and 4–12 admissions higher. Across all the analyses, the 
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populations most at-risk of and burdened by extreme heat were females, individuals aged 

75–114, those with CKD, and those with diabetes living in high UHII areas.

The observed differences in the heat-related CVD impacts between high and low UHII 

areas are likely due to several factors, including differences in exposure, vulnerability, and 

susceptibility. First, the interpolated weather station data used in this study likely does not 

capture the fine-scale spatial gradients in temperature associated with localized UHIs. This 

could, in part, be due to weather stations being located outside the urban cores and may 

explain why high and low UHII areas on average had similar ambient temperatures (Table 

1). Because the UHII metric was based on fine-resolution satellite data, it may be able 

to better distinguish temperature changes over shorter distances. Though surface UHII is 

not a direct measure of heat exposure, the larger impacts observed in UHI-affected areas 

may be due to the high UHII category identifying areas that are on average exposed to 

higher air temperatures. Air temperatures and LSTs are often correlated (Schwarz et al., 

2012) and urban cores with higher surface UHII are expected to also have higher air 

temperatures (Chakraborty et al., 2020). Additionally, air temperatures in high UHII areas 

may be experienced differently, as heavily urbanized areas often have less greenspace, 

limited shade, and absorb more solar radiation, all of which can decrease thermal comfort 

(Jamei et al., 2016).

Further, communities with high coverage of air conditioning (AC), trees, or well-insulated 

homes, and those more willing or able to change behavior during warm weather, may be 

less vulnerable to heat (Lane et al., 2014; Samuelson et al., 2020). UHI-affected areas tend 

to have lower access to AC (Romitti et al., 2022) and other adaptation resources (Palinkas 

et al., 2022) and are often home to already disadvantaged, heat-vulnerable groups, such 

low-income communities or people of color (Benz and Burney, 2021; Hsu et al., 2021; 

Johnson, 2022; Manware et al., 2022). Individuals in low-income communities are also more 

likely work outdoors or in facilities lacking AC (Gubernot et al., 2014). In this study, high 

UHII areas were generally of lower socioeconomic status, more racially diverse, and had 

less greenspace (Table S5, Fig. S23). These social and economic disadvantages combined 

may limit UHI-affected communities’ ability to mitigate heat exposure, putting them at an 

elevated risk during extreme heat events (O’Lenick et al., 2020). Further, the reliability of a 

city’s infrastructure and utilities during extreme weather may also play a role. For example, 

if part of a metropolitan area experiences electrical grid failures during a heat wave, this 

could increase the vulnerability of that specific population (Sailor et al., 2019; Stone et al., 

2021). Taken together, the above factors may explain why people living in areas with UHIs 

likely experience greater heat-related CVD impacts.

Although heat increased the risk and burden of CVD hospitalizations across the contiguous 

US and in high UHII areas, there was considerable variation at the MSA level. While two-

thirds of MSAs had an overall increased CVD risk or burden associated with extreme heat, 

only about half had larger heat-related CVD impacts in high UHII areas compared to low 

UHII areas. This city-to-city variation is likely due to many of the same factors discussed 

above. It may also be due to spatiotemporal changes in heat vulnerability and adaptation 

(Sheridan and Dixon, 2017), differences in heat acclimatization due to a combination 

of physiological, behavioral, and environmental factors (Hanna and Tait, 2015), variation 
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in the associations between heat and mortality (Phung et al., 2016), or differences in 

the demographic composition across cities. The lack of striking geographic, regional, or 

climactic trends in the MSAs at highest risk, overall and by UHII level, indicate that regional 

climate may not be the most important factor when determining vulnerability. Geographic 

variability in heat-related morbidity is consistent with previous findings (Gasparrini et al., 

2015; Gronlund et al., 2014; Scovronick et al., 2018; Yang et al., 2015) and may suggest that 

city-specific mitigation and adaptation strategies are needed to address intensifying UHIs 

and rising temperatures.

Across all analyses, the oldest enrollees had the highest risk of heat-related CVD 

hospitalization. Older adults are likely more heat-vulnerable because ageing can impair 

the physiological response to heat (Meade et al., 2020). However, given the distribution of 

CVD hospitalizations across age groups within other subpopulations (Table S6), age was 

likely not the primary driver of the observed differences in risk by sex, race, and chronic 

conditions. For example, individuals with diabetes and CKD are often more susceptible in 

warm weather because they have poorer thermoregulation (Petrofsky, 2011) and increased 

dehydration risk (Lee et al., 2019), respectively. Individuals with chronic conditions also 

frequently use medications that can increase heat sensitivity (Layton et al., 2020). Females 

likely have an increased risk of heat-related cardiovascular morbidity due to a combination 

of biological factors, such as a lower capacity for vasodilatation and perspiration, and social 

factors, including being more likely to live alone (van Steen et al., 2019). The elevated 

risk among black enrollees is probably due in part to social factors, including having lower 

income, limited AC access, and higher rates of pre-existing conditions, that result from 

structural racism and discriminatory policies (Bailey et al., 2017; Hoffman et al., 2020). 

UHIs further elevating the CVD risk and burden among these already vulnerable populations 

is likely caused by the combination of these socioeconomic, biological, and environmental 

factors which make certain areas and populations more vulnerable and susceptible to heat. 

This compounding risk emphasizes the differential impact of extreme heat and UHIs 

and is important to account for when identifying the most heat-vulnerable communities 

and developing context-specific heat preparation and response plans. Additionally, future 

work evaluating how heat-related CVD risk and burden varies by other demographic 

characteristics within each subpopulation may be valuable for further pinpointing who is 

most heat vulnerable.

Existing literature can provide additional context for the findings presented. First, many 

previous epidemiologic studies have also observed an increased risk of CVD hospitalization 

following exposure to high temperatures or a heat wave (Chen et al., 2019; Lam et al., 2018; 

Li et al., 2019; Lin et al., 2009; Liu et al., 2018; Son et al., 2014; Wang et al., 2022, 2021; 

Zhao et al., 2018b). Some similarly found the MHP or MHT to be located at or above 

the 90th temperature percentile (Bai et al., 2018; Lam et al., 2018) or around 25 °C (Lu 

et al., 2020). Others likewise observed a slightly delayed response, with the greatest risk 

between 2 and 6 days after exposure (Li et al., 2019; Lin et al., 2009; Wang et al., 2022; 

Zhao et al., 2018b). Further, previous work has similarly identified an increased heat-related 

morbidity and mortality risk in older adults (Cui et al., 2019; Lin et al., 2009; Wang et 

al., 2021), females (Bai et al., 2018; Cui et al., 2019; Li et al., 2019; Song et al., 2017; 

Wang et al., 2022), black individuals (Gronlund, 2014), and those with diabetes (Chen et 
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al., 2019; Lam et al., 2018). Of the few studies that have considered the health impact of 

UHIs, many have identified a higher mortality risk (Goggins et al., 2012; Taylor et al., 2015) 

and burden (Dang et al., 2018; Heaviside et al., 2016; Huang et al., 2020) in these areas. 

Others found that areas with lower greenspace, which can be used as a proxy for UHIs, have 

an increased risk of heat-related morbidity and mortality (Choi et al., 2022; Gronlund et 

al., 2015; Henderson et al., 2022; Madrigano et al., 2013; Morais et al., 2021; Zhang et al., 

2021). However, greenspace is not always a reliable indicator of UHIs in more arid climates, 

such as the southwestern US (Fig. S24), highlighting the necessity of UHI-specific analyses.

This study has several strengths that distinguish it from previous works. First, the size of 

the dataset, totaling to over 48 million CVD hospitalizations across 18 years in 120 different 

urban areas, is much larger than those previously used in epidemiologic studies on heat-

related cardiovascular morbidity, many of which relied on data from only a single city (Cui 

et al., 2019; Guo et al., 2017; Wang et al., 2021, 2022). Second, this larger dataset allowed 

for the consideration of risk modification by comorbidities and race, subpopulations which 

have been historically overlooked due to insufficient data. We also analyzed associations 

across multiple US cities, providing valuable insight into the city-to-city variation in 

heat-related cardiovascular morbidity risk and burden. Third, ZIP code-level exposure and 

outcome data were used, which is a smaller spatial resolution than the city-level data used 

in many prior studies (Cui et al., 2019; Guo et al., 2017; Iñiguez et al., 2021; Martinez-

Solanas and Basagana, 2019; Wang et al., 2021) and allowed for an investigation into how 

associations differed between areas with and without UHIs within each metropolitan area. 

These ZIP code-level data, in combination with the population weighting approach, likely 

provided more informed estimates of population-level exposure. Finally, this study used a 

direct measure of UHII to characterize UHIs, instead of relying on measures like greenspace 

as a proxy. This measure of UHII has been shown to be relatively accurate (Chakraborty 

and Lee, 2019) and allowed for identification of differences in heat-related cardiovascular 

morbidity impacts between areas affected and unaffected by UHIs.

There are also important limitations that must be considered. First, because measurements 

of individual-level exposure to ambient temperature and surface UHII were unavailable, 

there is the possibility of exposure misclassification. However, any misclassification would 

likely be nondifferential, attenuating the results towards the null. Additionally, the weather 

station data may have not been finely resolved enough to capture ambient temperature 

differences across an urban core. It may be valuable to investigate these associations 

using temperature data at a finer spatial scale. Second, because the UHII metric was 

only available for a single, averaged time period, we were unable to account for changes 

in UHIs over time. Additionally, there may be limitations with the UHII metric itself, 

given that it is a clear sky estimate for 2013–2017, with cloudy days excluded, and not 

necessarily representative of the average state during the entire 18-year study period. Given 

increasing urbanization in the US (Bounoua et al., 2018), future research should evaluate 

if the expansion and intensification of UHIs over time influence their role in heat-related 

cardiovascular morbidity. Further, the US-wide categorization of UHII meant that some 

MSAs did not have any ZIP codes categorized as high UHII. It may be valuable for future 

work to investigate the impacts of UHIs using a relative measure with an MSA-specific 

categorization of UHII. Third, the subpopulation counts by race only included black and 
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white enrollees due to insufficient hospitalization counts in other categories. Future studies 

with larger datasets might provide assessments for other groups. This analysis also did 

not consider specific CVD subtypes, which should be considered in future work. Fourth, 

it was not possible to account for all potentially relevant ZIP code-level factors, such as 

AC coverage or precipitation, due to lack of data or limited spatial detail in the data 

available. Because housing and environment characteristics likely play an important role in 

the observed associations, this should be considered in future research. Fifth, the MHP was 

defined using the pooled association to maximize information and minimize bias. However, 

it may not always correspond with the minimum point on an MSA-specific curve and may 

be worth-while to investigate if the MHP varies geographically. Sixth, the 95% CIs around 

the burden estimates may be artificially small given that they did not account for uncertainty 

in the temperature estimates (Cleland et al., 2021). Additionally, the burden estimates likely 

underestimate the total heat-attributable burden as they only accounted for CVD impacts 

in the urban Medicare population that resulted in hospitalization. Finally, we did not test 

for significant differences in RR between low and high UHII areas and subpopulations. 

Therefore, the observed differences may not be statistically significant but are indicative of 

potential differences that warrant further investigation.

To identify opportunities for intervention and ensure the most at-risk communities can 

be protected during extreme heat events moving forward, future work should aim to 

identify the socioeconomic and environmental drivers of the observed differences between 

MSAs, subpopulations, and low and high UHII areas. Additionally, the vulnerability of 

UHI-affected communities and the heat-attributable CVD burden in US cities are likely 

to increase with increasing temperatures. As such, estimates of the future burden of heat-

related cardiovascular morbidity, both inside and outside of UHI-affected areas, should 

take into consideration climate change, urbanization, and an ageing, growing population. 

To do this, it would be valuable to evaluate if the UHII- and subpopulation-specific risk 

has changed over time, especially given evidence of recent decreases in heat vulnerability 

(Sheridan and Allen, 2018). Research into the cardiovascular impacts of other extreme heat 

metrics, such as prolonged periods of high temperatures, may also be informative given the 

expected increase in the frequency, intensity, and duration of heat waves. Finally, additional 

research considering the combined impact of heat and UHIs on different health outcomes, 

among multiple subpopulations, and in different parts of the world is needed to corroborate 

our results and further explore how the health and wellbeing of urban populations will be 

impacted by climate change.

5. Conclusions

This study illuminates the impact of extreme heat exposure on cardiovascular morbidity 

among older adults living in areas experiencing UHIs across the US. This is the first multi-

city analysis to suggest that surface UHIs may elevate the risk and burden of heat-related 

CVD hospitalizations and demonstrate that not all cities are equally impacted by heat 

nor UHIs. It is also the first to identify a more pronounced impact of UHIs in already 

heat-vulnerable populations, revealing a disproportionate heat vulnerability for females, 

individuals over 75, those with diabetes, and those with CKD living in UHI-affected 

communities.
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UHII Urban Heat Island Intensity
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CI Confidence Interval

UHI Urban Heat Island
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DLNM Distributed Lag Non-linear Model

OMB Office of Management and Budget

ICD-9 International Classification of Diseases, Ninth Revision

ICD-10 International Classification of Diseases, Tenth Revision

CKD Chronic Kidney Disease

RR Relative Risk

AN Attributable Number
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AF Attributable Fraction

AR Attributable Rate

LST Land Surface Temperature

MODIS Moderate Resolution Imaging Spectroradiometer

MHP Minimum Hospitalization Percentile

MHT Minimum Hospitalization Temperature

IQR Interquartile Range

AC Air Conditioning

df Degrees of Freedom
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Fig. 1. 
The 120 metropolitan statistical areas (MSAs) in the contiguous US, with 9,917 ZIP codes 

located in their urban cores. ZIP codes are shown with their associated surface urban heat 

island intensity (UHII) level, defined using UHII quartiles (Q1 = Quartile 1), weighted to 

each have 25% of all cardiovascular disease hospitalizations. Dark grey outlines indicate the 

MSA boundaries; red and blue areas indicate the ZIP codes that overlapped an urban core 

of an MSA and were included in the analysis; light grey areas within the MSA boundaries 

indicate areas that did not overlap an urban core and were excluded from analysis. The inset 

is centered on the New York-Jersey City-White Plains, NY-NJ MSA and displays ZIP codes 

across 10 different MSAs.
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Fig. 2. 
The (A) minimum hospitalization percentile (MHP), (B) 21-day cumulative relative risk 

at extreme heat (99th ambient temperature percentile compared to the MHP), and (C) 

number and (D) annual rate per 100,000 Medicare beneficiaries of heat-attributable (ambient 

temperatures above the MHP) cardiovascular disease hospitalizations across the urban cores 

of 120 metropolitan statistical areas in the contiguous US, 2000–2017. Results are shown for 

the entire study population and by age, sex, race, and diabetes and chronic kidney disease 

(CKD) status, overall and in low and high urban heat island intensity (UHII) areas. The 

associated numeric results can be found in Table S2.
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Fig. 3. 
The 21-day cumulative exposure–response [left] and extreme heat (99th ambient 

temperature percentile) lag-response [right] associations between daily mean ambient 

temperature and daily hospitalizations for cardiovascular disease, overall and in low and 

high urban heat island intensity (UHII) areas. Results are shown for the entire study 

population across the urban cores of 120 metropolitan statistical areas in the contiguous US, 

2000–2017. The vertical dashed lines indicate the location of the minimum hospitalization 

percentile.
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Fig. 4. 
The (A) 21-day cumulative relative risk (RR) at extreme heat (99th ambient temperature 

percentile compared to the MHP) and (B) number and (C) annual rate per 100,000 Medicare 

beneficiaries of heat-attributable (ambient temperatures above the MHP) cardiovascular 

disease (CVD) hospitalizations in the urban cores of 10 metropolitan statistical areas 

(MSAs), 2000–2017. Results are shown overall and in low and high urban heat island 

intensity (UHII) areas. The 10 MSAs displayed were selected to demonstrate the variability 

in the overall and UHII-specific heat-related CVD risk and burden and are arranged in 

descending order by overall extreme heat RR. The results for all 120 MSAs can be found in 

Fig. S7 and Table S3.
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