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Abstract 

With the gradual maturity of sequencing technology, many microbiome studies have published, driving the emergence and advance 
of related analysis tools. R language is the widely used platform for microbiome data analysis for powerful functions. However, tens 
of thousands of R packages and numerous similar analysis tools have brought major challenges for many researchers to explore 
microbiome data. How to choose suitable, efficient, convenient, and easy-to-learn tools from the numerous R packages has become 
a problem for many microbiome researchers. We have organized 324 common R packages for microbiome analysis and classified 
them according to application categories (diversity, difference, biomarker, correlation and network, functional prediction, and others), 
which could help researchers quickly find relevant R packages for microbiome analysis. Furthermore, we systematically sorted the 
integrated R packages (phyloseq, microbiome, MicrobiomeAnalystR, Animalcules, microeco, and amplicon) for microbiome analysis, 
and summarized the advantages and limitations, which will help researchers choose the appropriate tools. Finally, we thoroughly 
reviewed the R packages for microbiome analysis, summarized most of the common analysis content in the microbiome, and formed 
the most suitable pipeline for microbiome analysis. This paper is accompanied by hundreds of examples with 10,000 lines codes in 
GitHub, which can help beginners to learn, also help analysts compare and test different tools. This paper systematically sorts the 
application of R in microbiome, providing an important theoretical basis and practical reference for the development of better micro-
biome tools in the future. All the code is available at GitHub github.com/taowenmicro/EasyMicrobiomeR.
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Introduction
The metagenomic analysis is used to study microbial diversity, 
structure, and function by sequencing, quantifying, annotating, 
and analyzing DNA and/or RNA sequences of microbial com-
munities or microbiota. The commonly used high-throughput 
sequencing technology in microbiome research is mainly known 
as amplicon sequencing and shotgun metagenomic sequencing. 
Amplicon sequencing with the advantages of low cost, mature 
analysis system, and simple analysis process was widely used 
in microbiome research. Shotgun metagenomic sequencing pro-
vided the functional information of microbes and more accu-
rate information on the microbial composition with the higher 
sequencing cost and large amount of computational resources 
needed. The detailed pipeline for both sequencing methods have 
been systemically summarized in our previous review (Liu et 
al., 2021). As an important component of biodiversity, microbial 
communities play a vital role in biology, ecology, biotechnol-
ogy, agriculture, and medicine. Various bioinformatics methods 
are required for microbial community analysis, which mainly 
includes three parts: (i) data preprocessing, (ii) quantification and 

annotation, and (iii) statistics and visualization (Fig. 1A). In the 
preprocessing step, the raw data is filtered and quality controlled 
to ensure data quality. In the quantification and annotation step, 
tools, and databases are used to identify microbial representative 
sequences and annotate microbial taxonomy and function. The 
first two parts of microbial community analysis have been well 
discussed and could be well done according to our previous paper 
(Liu et al., 2023). Finally, in the statistics and visualization step, 
various statistical methods are used to explore microbial com-
munity diversity, structure, and potential functions.

With the development of high-throughput sequencing tech-
nology, plenty of studies were performed with amplicon-sequenc-
ing technology (Thompson et al., 2017; Proctor et al., 2019) and 
shotgun metagenomes sequencing (Carrión et al., 2019; Li et al., 
2022; Paoli et al., 2022), which led to the development of micro-
biome analysis methodologies, software, and pipelines, for exam-
ple, QIIME (Caporaso et al., 2010), Mothur (Schloss et al., 2009), 
USEARCH (Edgar, 2010), VSEARCH (Rognes et al., 2016), QIIME 
2 (Bolyen et al., 2019), Parallel-Meta Suite (Chen et al., 2022), 
EasyAmplicon (Liu et al., 2023), Kraken (Wood and Salzberg, 
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2014), MEGAN (Huson et al., 2007), MetaPhlAn2 (Truong et al., 
2015), HUMAnN2 (Franzosa et al., 2018), etc. As the most crucial 
and basic procedure for amplicon sequencing data analysis, OTU 
(Operational taxonomic unit) clustering method was popular 

before the year of 2015 while non-clustering methods were grad-
ually developed and widely used recently. Currently, the common 
non-clustering methods include DADA2 (Callahan et al., 2016), 
deblur (Amir et al., 2017), unoise3 (Edgar and Flyvbjerg, 2015). 
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Figure 1.  Microbial community data analysis workflow and related R packages. (A) Overview of microbial community data analysis workflow. Core 
files are feature table (OTU), Taxonomy, sample metadata (Metadata), phylogenetic tree (Tree), and representative sequences (Rep.fa). (B) Detail of 
microbial community analysis workflow. First, the raw data can be processed by using USEARCH/VSEARCH, QIIME 2, DADA2 packages. Then, the 
important files are saved and used for downstream analysis in R language and RStudio software. Many microbial analysis methods rely on numerous R 
packages developed with R language. The font size in the word cloud represents the number of citations of R packages. (C) Commonly used R packages 
for data-cleaning/manipulation and visualization. (D) Classification of R packages for six categories in microbial community analysis.
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One of the most representative non-clustering algorithms among 
them is DADA2, which was created with R language. It makes the R 
language (Ihaka and Gentleman, 1996) occupy an important posi-
tion in raw data processing for amplicon sequencing. Compared 
with many software that can be used in upstream steps of micro-
biota sequencing data analysis, the downstream analysis steps 
rely on the R language heavily with various packages. These anal-
yses mainly include: (i) Diversity analysis; (ii) Difference analysis; 
(iii) Correlation and network analysis; (iv) Biomarker identifica-
tion; (v) Functional predictions; (vi) Integrative analysis of micro-
bial communities with other indicators (including phylogenetic 
analysis, multi-omics integration, environmental factor analysis, 
etc.). In addition to the kinds of multivariate statistical analysis 
that can be done in R, there are diversified data-cleaning pack-
ages that allow data to be transformed among different analyses.

R is a free, open-source language and environment for data 
statistical analysis and visualization, which was created by Ross 
Ihaka and Robert Gentleman from the University of Auckland 
in New Zealand and now is responsible by the “R Development 
Core Team”. Compared with other analysis tools, such as SPSS, 
MINITAB, MATLAB, which are more suitable for the statistics of 
processed and standardized data, R language can handle pro-
cessed data as well as raw data. R can easily implement almost 
all analysis methods, many of the latest methods or algorithms 
were first exhibited in it. Furthermore, R shows excellent data 
visualization, particularly for complex data. The powerful and 
flexible interactive analysis is also an advantage of R, mean-
while enabling visual data exploration. The functionality of the 
R language relies heavily on thousands of R packages, which 
provide a wide variety of data processing and analysis strate-
gies, allowing almost any data analysis process to be done in R. 
The total number of R packages published on CRAN is 18,981, 
and Bioconductor is 2,183 (by January 31, 2023). These packages 
demonstrated the powerful data process and analysis perfor-
mance of R.

In recent years, numerous R packages have been developed 
on the R platform for the downstream analysis of microbiome, 
which have made important contributions to the associated-re-
search field. However, the increasing number of downstream 
analysis R packages has reached a dizzying level (Fig. 1B). In 
addition, integrated R packages containing a large amount of 
microbiome analysis content, such as phyloseq (McMurdie and 
Holmes, 2013), microeco (Liu et al., 2020), and amplicon (Liu et 
al., 2023), have gradually emerged. This abundance of R packages 
provides microbiome analysts with more choices, but also makes 
it difficult to identify the most suitable tools among many simi-
lar analysis tools. Furthermore, this plethora of R packages make 
it difficult for beginners to embark on a well-organized learning 
path for microbiome analysis. Therefore, it is urgent to compare 
similar analysis functions, and extract the similarities and differ-
ences functions, to select the best process for microbiome analy-
sis and help beginners learn more effectively.

This paper attempts to sort and run the 324 common R pack-
ages (Fig. S1), especially the integrated R packages for microbiome 
analysis, and complete the following three parts: (i) compare dif-
ferent R package analysis processes according to the functional 
categories of microbiome analysis, analyze the results, and sum-
marize example code; (ii) organize the content of six integrated 
R packages according to the functional categories of microbiome 
analysis, compare the analysis results, and generate example 
code; (iii) based on all R packages, select the optimal analysis 
approach using R language and provide example code for refer-
ence and learning to researchers.

Preparing microbiome data analysis
Downstream analysis of microbiome requires the preparation 
of five data files, including a feature table, a feature annotation 
file, a sample metadata file, a phylogenetic tree, and representa-
tive sequences. For beginners, it is important to understand the 
format and basic data structure of these files and learn how to 
import these files into R language. Furthermore, different analyt-
ical contents often have different requirements for data, and it 
is necessary to learn some data manipulation skills to meet the 
demands of various functions. Finally, it is necessary to learn the 
basics of R plotting to facilitate the presentation of results.

Data preparation and cleaning
After the process of sequence data preprocessing, quantifica-
tion, and annotation, we need to further analysis the output files, 
including importing these files, cleaning data, and converting for-
mat, which required for subsequent microbiome analysis in R. 
Before statistical analysis, we must master the basic procedure of 
R language to cope with the data input requirements of different 
packages. This section includes: importing, organizing, filtering, 
basic calculations, conversion, normalization, and modification 
of data. Five data forms are frequently used from raw data pro-
cessing, including feature tables (file formats are .csv/.txt/.xlsx/.
biom, typically used taxonomic and functional tables, includ-
ing OTU/ASV/taxonomy/gene/module/pathway tables), fea-
ture annotation (.csv/.txt/.xlsx/.biom), sample metadata (.csv/.
txt), evolutionary/phylogenetic trees (.nwk/.tree), representative 
sequences (.fasta/.fas/.fa). All the data cleaning-related packages 
show in Fig. 1C. Tabular data input for microbial community is 
primarily accomplished using functions such as read.table(), read.
delim(), and read.csv() in the utils package (Code 1A, script in 
GitHub github.com/taowenmicro/EasyMicrobiomeR). The reading 
of evolutionary tree files depends on functions like read.tree() in 
the ape/ggtree/treeio package, or read_tree() in the phyloseq pack-
age. For reading representative sequence files in microbiome, the 
readDNAStringSet() in the Biostrings package (Pages et al., 2016) is 
typically used. Currently, big data integration of microbiome has 
become a trend, and leading to the emergence of R packages for 
integrated data from multiple studies, likes curatedMetagenom-
icData (Pasolli et al., 2017). The package only needs to import the 
package and could re-analysis the curated data, rather than input 
in raw sequencing data.

The basic idea of data organization can be summarized as three 
steps: splitting the data, processing with functions, and combin-
ing the output results into the desired format. The functions of 
basic packages in R can be combined to meet most requirements 
of the microbiome data operations. For example, the “for loop” 
combined with the basic statistical functions [sum(), mean(), sd(), 
etc.] can be used to perform basic statistical analysis and data 
transformations for microbial relative abundance (Code 1B); the 
base package provides the apply family of functions, including 
apply(), sapply(), lapply(), tapply(), aggregate(), etc., which can be 
applied to quickly complete the three stages of data processing. 
The apply family of functions provides a framework that acts as 
an alternative to “for loop” and is much faster than the basic “for 
loop” function in R (Code 1B). A similar purr package can be used 
in place of “for loop” to perform efficient operations.

The plyr (Wickham, 2011b) package was upgraded from pack-
age of base with a variety of data sorting processes for kinds of 
data frames, lists, etc. The plyr package provides three data pro-
cessing stages “Split–Apply–Combine” in one function, and the 
plyr package implements grouping transformations between 

https://academic.oup.com/proteincell/article-lookup/doi/10.1093/procel/pwad024#supplementary-data
https://github.com/taowenmicro/EasyMicrobiomeR
https://github.com/taowenmicro/EasyMicrobiomeR
https://github.com/taowenmicro/EasyMicrobiomeR


716  |  Wen et al.

Pr
ot

ei
n

 &
 C

el
l

R types (vector, list, and data frame) and basically replaces the 
apply family of functions in the base package. It can easily han-
dle grouping calculations, for example, microbial abundance at 
different taxonomy levels (Code 1C). The reshape2 (Wickham, 
2007) package provides the long-wide format transformation dur-
ing data processing, and since ggplot2 (Wickham, 2011a) plotting 
functions and most modeling functions, such as lm(), glm(), gam(), 
often use long data, microbiome data are general showed as wide 
form, so the transformation of microbiome data for plotting can 
be done using reshape2 (Code 1D), which provides the long-wide 
format transformation during data processing.

The dplyr package is a member of the tidyverse family, inno-
vatively abandoning the common form of data preservation in 
R rather than using the tibble format (more powerful than data.
frame format) for data processing, which can more efficiently 
complete the data frame selection, merging and statistics within 
row and column, and data frame length and width format 
changes, the “%>%” pipeline symbol can be used to complete 
more complex data processing. The tibble format can store data 
during the analysis and modeling process, which is important for 
data analysis. For example, we demonstrated the use of dplyr and 
pipeline to run random forest modeling and the selection process 
of important variables (Code 1E).

Visualization in R language
In most cases, we are used to plotting standard graphs in microbi-
ome data display such as alpha/beta diversity, taxonomic compo-
sition. All the visualization-related packages show in Fig. 1C. Due 
to the widespread use of ggplot2 (Code 2A), many extension pack-
ages have emerged to extend based on ggplot2 with a high capac-
ity of plotting styles, colors, and themes. These packages mainly 
include ggtern plotting ternary graphs in Code 2B (Hamilton and 
Ferry, 2018), ggraph plotting network graphs in Code 2C (Si et al., 
2022), ggtree plotting evolutionary tree or cladogram in Code 2D 
(Xu et al., 2022), the ggalluvial package, the ggVennDiagram pack-
age (Code 2E), the ggstatsplot package plotting pie chart, and the 
ggpubr package providing many various themes and colors of 
output. In addition, the pheatmap and ComplexHeatmap pack-
age (Gu, 2022) based on the grid mapping system plots the rel-
ative abundance of features in different samples (Code 2F), the 
VennDiagram package (Chen and Boutros, 2011) could show the 
number of features in different samples. The UpSetR package 
(Conway et al., 2017), which draws Upset view is a new form plot-
ting similar to Venn diagram. The base-based plotting system is 
complex and difficult to learn, while it is a good choice for com-
plex graph drawing, such as the circlize (Gu et al., 2014) package 
(Code 2G), which draws chord diagrams composed of microbiota.

Additionally, there is often a lot of microbiome mapping work 
that involves a combination of graphics. At present, many tools in 
R can combine graphics, such as cowplot, patchwork, and aplot. 
The patchwork package has the most powerful functions and 
supports modular splicing graphics (Code 2H).

Microbial community analysis
We have categorized the analysis of microbiome data into the 
following six major types in Fig. 1D: diversity analysis, differ-
ence analysis, biomarkers identification, correlation and network 
analysis, functional prediction, and other microbiome analyses 
(including source tracking analysis, community assembly pro-
cesses, and analysis of associations between microbiota and envi-
ronmental factors). Then, we would have organized, compared, 
and summarized all relevant R packages.

Diversity analysis
Microbial community diversity mainly includes alpha diversity 
(Richness, Shannon, Simpson, Chao1, ACE, etc.), rarefaction curve, 
beta diversity (ordination and clustering analysis), taxonomic or 
functional composition. Here must introduce the package vegan 
(Oksanen et al., 2007), an abbreviation for Vegetation Analysis, 
written by nine quantitative ecologists, including Oksanen from 
Finland, which is initially used for specifical dealing with data 
on community ecology. The package provides a variety of meth-
ods for data standardization and transformation. For example, 
data used for alpha diversity analysis can be normalized at the 
same sequencing depth with rrarefy(), and data for ordination 
analysis can be normalized with the decostant() (Code 3A). After 
the sequencing data are sampling normalization, diversity calcu-
lation can be more reasonable. In addition, alpha diversity met-
rics calculation can also be carried out with the ade4 (Dray and 
Dufour, 2007), adespatial (Dray et al., 2018), and picante packages 
(Kembel et al., 2010). For example, phylogenetic diversity can be 
calculated using the pd() in the picante package (Code 3A). Vegan 
not only allows for alpha diversity analysis, but also provides 
functions such as rda() for conducting principal components 
analysis (PCA) and redundancy analysis (RDA), cca() for conduct-
ing correspondence analysis (CA) and canonical correspondence 
analysis (CCA), decorana() for conducting decision curve analysis 
(DCA), and metaMDS() for conducting non-metric multidimen-
sional scaling (NMDS) for microbiome ordination analysis (Code 
3B). The prcom() in stats package can be used for principal com-
ponent analysis (PCA), which is a kind of dimension reduction 
analysis. The mca() provided by the MASS package and the MCA() 
provided by the FactoMineR package can be used for multiple CA 
(Code 3B); the ape package provides the pcoa() function for prin-
cipal coordinate analysis (PCoA); the MASS package provides lda() 
for linear discriminant analysis (LDA, Code 3C). Before running 
many ordination operations, it is often necessary for commu-
nity clustering. The vegdist() in the vegan package can calculate 
Euclidean, Manhattan, Bray, Canberra, and other distances (Code 
3B). In addition, distance calculation can also be done using 
dist() of stats package. The distance matrix can be used for clus-
tering analysis in addition to ordination analysis. The hclust() in 
the stats package can be used for clustering analysis, a similar 
function can be achieved with the facteoextra, kmeans packages 
(Code 3D). Microbial composition analysis mainly used to display 
the abundance of microbes, and the dplyr package is needed to 
organize the data then display with ggplot2 subsequently.

Difference analysis
Difference analysis is divided into community-level analysis and 
feature-level (any hierarchy of taxonomy and function) analysis. 
Community-level difference analysis is mainly performed with 
functions including adonis(), anosim(), and mrpp() in vegan pack-
age, and mantel.test() in ape package (Code 4A). The R package for 
compositional data difference analysis in the feature level can 
utilize the wilcox.test() (Code 4B) and t.test() (Code 4C) in the stats 
package. Subsequently, data correction algorithms were devel-
oped specifically for sequencing data, such as the upper quartile 
(UQ), trimmed mean of M-values (TMM) (Code 4C), and relative log 
expression (RLE) harbored in the edgeR package (Robinson et al., 
2009) (Code 4D). Median of ratios method (MED) in DESeq2 pack-
age (Love et al., 2014) (Code 4E), and cumulative-sum scaling (CSS) 
algorithm in metagenomeSeq package (Code 4F). Furthermore, 
the ALDEx2 package provides polynomial models which can be 
used to infer feature abundance and calculate feature differences 
with non-parametric tests, t-tests, or generalized linear models 
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(Code 4G). The ANCOM-BC package attempts to address sam-
ple heterogeneity by correcting bias with a log-linear model. In 
addition, other R packages for microbiome data correction and 
difference tests include limma (Code 4H), DR, ANCOM (Lin and 
Peddada, 2020) (Code 4I), corncob (Code 4J), Maaslin2 (Code 4K), 
etc. Nearing et al. (2022) showed that they compared these differ-
ence analysis methods and proposed that ALDEx2 and ANCOM-II 
(anchom_v2.1.R, Code 4L) were the best performers in the differ-
ence analysis of microbial communities. As for the significance 
test, different packages use different methods for significance 
testing. For example, Fisher test was used in edgeR package; Wald 
test was used in DESeq2 and corncob package; t-test was used in 
limma package. There were other methods for significance test, 
likes Wilcoxon rank-sum test (ALDEx2 and ANCOM-II), ANOVA 
(Maaslin2) etc.

Biomarker identification
Characteristic microbial consortia were explored to explain cer-
tain questions, such as the biomarkers of the gut in obese or 
hypertensive populations, or of soil in Fusarium wilt develops, 
etc. Microbes selected through difference analysis are often una-
ble to determine whether they represent the main differences of 
concern. Therefore, weight analysis or machine learning methods 
are used to further distinguish the feature microbes.

The main ones commonly used for weighted analysis are linear 
discriminant analysis effect size (LEfSe), PCA, etc (Code 5A). LEfSe 
is developed specifically for microbiome data, and the core func-
tionality is implemented using the packages LDA (Fisher, 1936) 
and MASS (Ripley et al., 2013). By extracting the loading matrix of 
PCA ordination, the microbiome with the greatest impact on the 
sample variation are found as biomarkers (Code 5B).

In terms of machine learning, the random forest model, which 
is widely used in microbiome analysis, is implemented by using 
the randomforest package (Liaw and Wiener, 2002) (Code 5C). 
There are many other decision tree-based machine learning 
models, such as the mboost (Hofner et al., 2014) package pro-
vides boosting-based algorithms, the e1071 (Dimitriadou et al., 
2008) package provides support vector machines svm() in Code 
5D, and plain Bayes naiveBayes(). The xgboost package can inte-
grate many tree models together to form a strong classifier, which 
can prevent overfitting via many strategies, including regulariza-
tion terms, shrinkage, and column subsampling, etc. In addition, 
the pROC (Robin et al., 2011) package is used to plot the oper-
ating characteristic curve (ROC, Code 5D) to evaluate the effi-
ciency of machine learning models. The Caret package provides 
cross-validation to determine the number of features (Kuhn, 
2008). Currently, Wirbel et al. (2021) developed an open-source 
R package SIAMCAT, a powerful yet user-friendly computational 
machine learning toolkit tailored to the characteristics of micro-
biome data.

Correlation and network analysis
Microbial co-occurrence network analysis is used to find microbial 
modules that may have mutualistic relationships. Co-occurrence 
network analysis mainly includes the calculation of correlations, 
network visualization, and the calculation of network properties. 
The common R packages for calculation of correlations are psych 
(Revelle and Revelle, 2015) (Code 6A), WGCNA (Langfelder and 
Horvath, 2008) (Code 6B), Hmisc (Harrell Jr and Harrell Jr, 2019) 
(Code 6C), and SpiecEasi (Kurtz et al., 2015) (Code 6D). Among 
these R packages, WGCNA has the highest calculation speed, 
while requiring additional P-value correction; psych can calculate 
correlation with correct P-value, but the speed is very low; the 

SpiecEasi package can use the sparcc method to perform a more 
suitable method for microbiome data to calculate the correlation 
matrix, and can call multiple-threads to accelerate the calcula-
tion. R packages for network visualization and attribute calcu-
lation can use igraph (Code 6E), network, and ggraph packages 
(Code 6F). These R packages contain many layout algorithms for 
network visualization. In addition, network packages combined 
with ggplot2 to visualize the network are easier to modify. Sna and 
ggraph packages have many visualization layout algorithms to 
increase the styles of network visualization. With the increasing 
use of network analysis in the microbiome analysis, more atten-
tion is paid to network modularity and the key groups through 
network modules. The WGCNA package provides a complete 
framework to quickly complete the correlation calculation, net-
work module calculation, module feature vector calculation, and 
other network properties exploration. The recent development of 
the ggClusterNet (Wen et al., 2022) package (Code 6G) provides a 
unified framework for microbiome networks and designs a vari-
ety of unique module-based visualization algorithms to visualize 
the module relationships in the network.

Functional prediction
The Tax4Fun (Aßhauer et al., 2015) R package (Code 7A) for 
functional prediction of 16S rDNA has been developed to more 
accurately predict changes in microbial community func-
tion using amplicon data. The package has been updated to 
Tax4Fun2 (Wemheuer et al., 2020). Microeco can implement 
FAPROTAX (Louca et al., 2016) prediction for bacteria/archaea 
and FUNGuild (Nguyen et al., 2016) prediction for fungi, which is 
based on the database of taxonomic functional description from 
curated published papers. Functional prediction enables the 
prediction of microbial community function and subsequent 
statistical analysis. Additionally, vegan can be used for diversity 
analysis, while edgeR, DEseq2, and limma packages can be used 
for difference analysis. For functional enrichment, the cluster-
Profiler (Code 7B) package can perform GO, KEGG, GSEA and 
GSVA enrichment, which considers gene/pathway abundance 
and is recommended. Furthermore, the clusterProfiler package 
provides plot functions based on the ggplot syntax, allowing to 
plot appealing graphics in a simple manner. Gene/Pathway net-
work analysis can be performed using WGCNA for calculation, 
and ggClusterNet for network parameter calculation and visual-
ization. However, the reliability of functional prediction results, 
particularly for environmental samples, is currently disputed, 
and therefore, further verification of analysis results is often 
required.

Other microbiome analysis
Analysis for microbial community formation process commonly 
used in the framework proposed by Stegen et al. (2013) to calculate 
βNTI and RC-Bray indices with R packages minpack.lm, picante, 
Hmisc, eulerr, FSA, ape, stats4, and others (Code 8A). Ning et al. 
(2020) used a phylogenetic binning-based null model analysis to 
infer quantitative mechanisms underlying community assembly, 
and developed the R package iCAMP (Code 8B). It allows for the 
quantitative assessment of the relative importance of different 
ecological processes (e.g., homogenizing selection, heterogeniz-
ing selection, dispersal, and drift) on both the entire community 
and each phylogenetic bin (which is usually composed of taxa 
from a single family or order with distinct ecological characteris-
tics). In addition, the package also provides neutral theory mod-
els, phylogenetic and taxonomic null model analyses at both the 
community and clade levels, calculation of niche differences and 
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phylogenetic distances between clades, and tests for phylogenetic 
signals within individual phylogenetic bins.

Microbial communities were often used to analyze the corre-
lation with environment indicators, for example, mantel.test() pro-
vided by the vegan package was used to examine the correlation 
between microbial communities and environment indicators, 
and using wascores(), mantel.correlog() to detect the phylogenetic 
signal between microbial communities and environmental fac-
tors (Code 8C). In addition, the ggClusterNet package can be used 
to calculate the co-occurrence relationships between microbes/
microbiome and environmental factors, and generated pub-
lish-ready figures (Code 8D).

Knights et al. (2011) proposed the microbiome traceability tool 
source tracker in R language. Metcalf et al. (2016) predicted the 
time of death and tracked the source microbes of real cadavers on 
microbial communities, then microbial traceability analysis grad-
ually popular. Shenhav et al. (2019) proposed a new algorithm in 
R, FEAST (Code 8E), which makes microbial traceability analysis 
more efficient, faster, and with low false positives.

Integrated R packages for microbiome
As microbiome sequencing becomes more popular, R packages 
dedicated to microbiome data processing are gradually emerg-
ing (Fig. 2). McMurdie and Holmes (2013) developed the phyloseq 
package: a comprehensive tool for microbiome data (including 

feature tables, phylogenetic trees, and feature annotation) clus-
tering, integrating data import, storage, analysis, and output. 
The package utilizes many tools in R for ecological and phyloge-
netic analyses (vegan, ade4, ape, and picante) and uses ggplot2 
to output high-standard figures. The data storage structure uses 
a S4-like storage system to store all relevant data as a single 
experiment-level object, thus making it easier to share data and 
reproduce the analysis. Subsequently, the packages microbiome, 
the MicrobiomeAnalystR (Chong et al., 2020), microViz (Barnett et 
al., 2021), and micreobiomeSeq emerged under this framework. 
Subsequently, the microeco package according to the R6 frame-
work, which provides more analysis functions. With the need for 
data interactive analysis, Animalcules (Zhao et al., 2021) emerged. 
EasyMicroPlot also uses an interactive interface for microbiome 
data exploration, allowing for rapid downstream analysis of the 
microbiome (Fig. 3; Table 1).

Microbiome data analysis using phyloseq
Phyloseq, using the S4 class object, is more suitable for object-ori-
ented programming and has had a great impact on microbiome 
data analysis (Figs. 2, 3 and S2A–G, Pipeline 1. phyloseq.Rmd). 
Through the S4 class object, phyloseq allows the five parts of data 
(the feature table, feature annotation, metadata, representative 
sequences, and evolutionary tree) to maintain correspondence 
under the same framework, and provides a variety of multiple 
filtering functions on microbial features and samples, allowing 

phyloseq microbiome Microbiome
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Animalcules EasyAmplicon

ordinate ()

plot_ordination ()

plot_net ()

prune_taxa ()

plot_tree ()

cal_manova ()

cal_ordination ()

cal_predict ()

cal_spe_func_perc ()

show_prok_func ()

plot_lefse_
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plot_landscape ()

quiet () dimred_pca ()

dimred_pcoa ()
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MultiAssay
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trans_network$
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rarity ()
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transform () relabu_barplot ()

relabu_heatmap ()

alpha_div_boxplot ()

do_alpha_div_test ()

diversity_beta_test ()

PlotTaxaAundanceBar ()

PlotTaxaAbundance
BarSamGrp ()

PlotAlphaData ()

PlotAlphaBoxData ()

PlotPhylogeneticTree ()

cal_NTI ()

cal_rcbray ()
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alpha_boxplot ()

alpha_barplot ()

alpha_rare_curve ()

beta_pcoa ()

beta_cpcoa ()

tax_stackplot ()

tax_circlize ()
tax_maptree ()
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campare ()

campare_volcano ()

plot_heatmap ()

plot_group_
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plot_diff_bar ()

plot_diff_abund ()

cal_network ()

save_network ()
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set_trainControl ()

cal_ROC ()

cal_autocor ()

plot_diff_
cladogram ()

*
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Community building
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Analysis of other index 

OTU

Taxonomy

Metadata

Tree
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Figure 2.  Introduction to the functions of integrated microbial analysis R packages. Microbial community analysis can be divided into diversity 
analysis, difference analysis, biomarker identification, correlation and network analysis, functional prediction, and other microbial community analysis 
(community building/construction process, association analysis with other indicators).
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the five parts of data to be filtered consistently without consid-
ering different among data. It also provides microbiome analysis 
through microbial data filtering and normalization, diversity cal-
culation (Fig. S2A and S2B), microbial composition visualization 
(Fig. S2C and S2D), evolutionary tree visualization, and network 
analysis (Fig. S2E). The beta diversity function provides more than 
30 distance algorithms, far more than those provided by pack-
ages such as vegan. Secondly, the phyloseq package uses ggplot 
for graphical visualization (Fig. S2F), which is easier to gener-
ate and modify figures. Additionally, phyloseq can integrate the 

evolutionary tree and feature taxonomic and abundance on tree 
branches and leaves (Fig. S2G), which makes the tree informative 
and beautiful.

Microbiome data analysis using microbiome
The microbiome package also uses S4 class objects, like phyloseq, 
and can also perform most of the analysis of microbiomes (Figs. 
2, 3 and S3A–G, Pipeline 2. Microbiome.Rmd). It includes micro-
bial diversity analysis (Fig. S3A–E), and difference analysis (Fig. 
S3F and S3G). Compared with phyloseq, the microbiome package 
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Figure 3.  Typical results of integrated microbial community analysis R packages and comparison of similar results. Group the analysis results of 
multiple integrated R packages according to the major categories of microbial community analysis functions. Each main branch in the tree diagram 
represents a type of microbial community analysis, and there are a total of 10 main branches: feature diversity analysis including (i) alpha diversity 
analysis, (ii) beta diversity analysis, (iii) features (community taxonomic or functional) composition analysis, (iv) evolutionary or taxonomic tree 
analysis; (v) difference analysis; (vi) biomarker identification; (vii) correlation and network analysis; (viii) functional prediction; (ix) community building/
construction process analysis; (x) other analysis, such as association analysis with other indicators. Each leaf (circle) represents a style of the result 
displayed in the analysis, and the circle number around the outside of leaf represents the package number of the integrated R package that the analysis 
result comes from.
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is richer in alpha diversity indicators, which provides more than 
30 alpha diversity indicators. Secondly, it provides core microbial 
calculation and visualization functions. In general, it can be used 
as a complement to phyloseq or in conjunction with it.

Microbiome data analysis using 
MicrobiomeAnalystR
MicrobiomeAnalystR is an R package version according to the 
MicrobiomeAnalyst webserver (Figs. 2, 3 and S4A–J, Pipeline 3. 
MicrobiomeAnalystR.Rmd). These functions include diversity 
analysis (Fig. S4A–F), difference analysis (Fig. S4G), biomarker 
identification (Fig. S4H and S4I), sample sequencing library size 
overview (Fig. S4J), which are more powerful than the previous 
two packages. The visualization combines basic packages, ggplot 
plotting, and interactive plotting. In terms of network analysis, 
it provides the process of calculating and plotting SparCC net-
works that are more suitable for microbiome data. However, the 
package depends on many R packages from CRAN, Bioconductor, 

and GitHub, so a complete installation of MicrobiomeAnalystR 
requires a lot of effort.

Microbiome data analysis using Animalcules
The Animalcules package is an alternative way to analysis in an 
interactive platform (Figs. 2, 3 and S5A–J, Pipeline 4. Animalcules.
Rmd). It is possible to calculate and plot sample statistics in bar 
plot (Fig. S5A) or interactive pie charts (Fig. S5B), calculate, and 
visualize alpha diversity dot plot (Fig. S5C), group microbial tax-
onomic or functional composition heatmap and stack plot (Fig. 
S5D and S5E), feature abundance in boxplot (Fig. S5F), genus bray 
distance heatmap (Fig. S5G), ordination analysis (Fig. S5H and 
S5I), using randomforest, logistic regression to select biomark-
ers (Fig. S5J), and other analyses. The results of these analyses 
can often be reanalyzed by interactively modifying parameters, 
and the images can be interactively zoomed in and out, clicked 
to see details, and other operations performed by the mouse for 
better pattern discovery. However, the results cannot be exported 

Table 1.  Comparison of the advantages and limitations of the six integrated R packages.

R package Function Advantages Limitations

Phyloseq 1. Diversity analysis 
including alpha/beta 
diversity, community 
composition, and 
phylogenetic tree analysis
2. Network analysis

1. Firstly utilize S4 class objects
2. Possess lots of analysis functions based on phyloseq 
objects
3. The network analysis process is simplified (Fig. S2E)
4. Ordinate analysis can be applied to arrange the 
order of samples and microbes on heatmap rows and 
columns (Fig. S2F)
5. Combine evolutionary trees with microbial 
abundance to display species richness (Fig. S2G)
6. Offer over 30 distance algorithms

1. Introduction to phyloseq objects can be 
challenging for beginners
2. Statistical tests, including diversity tests 
and community/feature-level microbial 
difference analysis, are not well integrated 
into community analysis
3. Network analysis lacks test, attribute 
calculation

Microbiome 1. Diversity analysis only 
including alpha/beta 
diversity, community 
composition

1. The alpha diversity index is abundance
2. The t-SNE and CAP ordination algorithms
3. The stacked bar chart for community composition 
analysis can be sorted by specified microbial features 
(Fig. S3C)
4. Visualization of individual microbes (Fig. S3D)

1. The t-SNE and CAP ordination analyses 
frequently encounter errors
2. The statistical tests, including diversity 
tests, community and feature-level 
differences tests is not ideal

Microbiome
AnalystR

1. Diversity analysis 
including alpha/beta 
diversity, community 
composition, and 
phylogenetic tree analysis
2. Difference analysis
3. Biomarker identification

1. Various functions ranging from data-cleaning to 
visualization
2. Multiple algorithms to correct sequencing errors, 
leading more accurate evaluation of abundance
3. Machine learning can be utilized to extract feature 
variables (Fig. S4H)
4. Difference analysis using multiple methods, such as 
LEfSe or metagenomeSeq

1. Difficulties in installing R packages with 
dependencies
2. Some functions may not work, including 
network analysis and difference analysis of 
relative abundance
3. Insufficient explanation of parameters 
and examples

Animalcules 1. Diversity analysis
2. Difference analysis and 
biomarker identification

1. SummarizedExperiment package supported
2. Interactively executed in R (Fig. S5A–J)
3. A 3D clustering plot can be generated

1. Unable to save vector graphics and 
completed tables
2. Insufficient functionality

Microeco 1. Diversity analysis
2. Difference analysis
3. Biomarker identification
4. Network, correlation 
analysis with other 
indicators
5. Functional prediction

1. R6 class more expansibility than phyloseq objects
2. Simple function calling
3. Rich plots of diversity and difference analysis (Fig. 
S6A–H)
4. Unique correlation analysis of other indicators
5. Network analysis functionality (Fig. S6K)
6. FAPROTAX and FUNGuild function prediction

1. New data structures increase the cost of 
learning time

2. So many functions and dependency 
caused frequent some malfunctioning

EasyAmplicon 1. Diversity analysis
2. Provide script for 
preparing STAMP, LEfSe, 
PICRUSt 1&2, BugBase, 
FAPROTAX, iTOL
3. Provide slide tutorial for 
many analyses, such as 
QIIIME 2

1. It can be used in both command-line mode and 
interactive mode within RStudio
2. It offers multiple visualization styles, allowing for 
easy generation of publication-quality figures (Fig. S7)
3. Its open-source code facilitates reproducible analysis 
and allows for personalized modifications

1. Need using the most popular tools, 
STAMP, LEfSe, PICRUSt 1&2, BugBase, 
FAPROTAX, and iTOL
2. Some functions need to be development
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as vector format, which do not meet the requirements for publi-
cation. Secondly, the analysis content is too little, especially the 
microbiome network analysis, the correlation analysis between 
the microbiome and other indicators.

Microbiome data analysis using microeco
The microeco package is very powerful, using R6 class data struc-
ture (Figs. 2, 3 and S6A–L, Pipeline 5. microeco.Rmd). It includes 
microbial diversity (Fig. S6A and S6B) taxonomic composition 
(Fig. S6C–E), difference (Fig. S6F–H), biomarker (Fig. S6I and S6J), 
network (Fig. S6K), integrated community structure with environ-
mental factor (Fig. S6L), and phylogenetic diversity analysis. It can 
complete almost all the current microbiome analysis contents. 
However, it is not suitable for novices because there is a certain 
threshold for using R6 class objects. In addition, due to too many 
functions, the requirements for input data are different, causing 
some functions are hard to use.

Microbiome data analysis using amplicon
The package amplicon is an analysis and plotting tool (Figs. 2, 
3 and S7A–I, Pipeline 6. Amplicon.Rmd) within the microbiome 
analysis toolkit EasyMicrobiome (Liu et al., 2023). It enables var-
ious diversity analyses, including alpha diversity (Fig. S7A), rar-
efaction curve (Fig. S7B), clustering distance heatmap (Fig. S7C) 
and PCoA (Fig. S7D), NMDS, LDA and PCA, taxonomic composition 
(Fig. S7E and S7F), difference analysis (Fig. S7G and S7H). Then, it 
can easily generate high-quality figures such as boxplots, scatter 
plots for diversity analysis, stacked bar plots, circlize plots, and 
map trees for taxonomic or functional composition. One of its 
notable features is its ability to finely adjust the presentation of 
figures, resulting in published-ready figures. Additionally, several 
tools within the amplicon package are available for microbiome 
data transformation, facilitating subsequent analysis using tools 
such as LEfSe and STAMP. However, at the current version, the 
amplicon package does not provide some functions for network 
analysis, analysis of microbiome–environment interactions, and 
analysis of community formation processes. The authors provide 
some scripts in EasyAmplicon pipeline to do this, mentioned in 
the published paper plan to finish these functions in the future.

The best practice for microbiome data 
analysis in R
The abundance of R packages can hinder microbiome research-
ers from efficiently selecting appropriate R packages for micro-
biome-related analyses. Therefore, we organized and selected 
efficient, commonly used, and user-friendly functions for micro-
biome data analysis in six categories (Fig. S8): (i) diversity analysis 
(Figs. S9A–I and S10A–E), (ii) difference analysis (Figs. S10F–I, S11A 
and S11B), (iii) biomarker identification (Fig. S11C and S11D), (iv) 
correlation and network analysis (Figs. S11E–I), (v) functional pre-
diction, 6 other microbiome analyses (Fig. S12A–I). All the script 
can be found in the file Pipeline.BestPractice.Rmd. This led to 
develop a better microbiome data analysis pipeline.

In this pipeline, we used the amplicon package for alpha diver-
sity rarefaction curve (Figs. 4A and S9A) and PCoA analysis (Figs. 
4B and S9B), ggplot2 package for visualization of microbial com-
munity composition, ggClusterNet for constructing Venn net-
work (Chen et al., 2021) (Fig. 4C), ggtree and ggtrextre for building 
evolutionary trees (Fig. 4D), and LEfSe for generating cladograms 
(Fig. 4E). We employed the stst4, ggplot2, and cowplot packages 
for difference analysis and generated STAMP plots (Fig. 4F), used 
edgeR for difference analysis and visualized in Manhattan plots 

(Fig. 4G), and applied DESeq2 for difference analysis and gener-
ated multi-group volcano plots (Fig. 4H). We also used the el071, 
caret, randomforest, ROC packages for various machine learn-
ing analyses and generated microbiome weighted plots (Fig. 4I). 
Furthermore, we used ggClusterNet for microbiome network 
analysis (Fig. 4J), constructed network graphs and combined plots 
to explore the associations between environmental factors and 
microbiome communities (Fig. 4K). Finally, we used the FEAST 
package to perform community source tracking analysis and con-
structed pie charts (Fig. 4L). Other analyses included stacked bar 
charts of microbial community composition (Figs. S9E and S9H), 
chord diagrams (Fig. S10A), Venn diagrams (Fig. S10C), Upset dia-
grams (Fig. S10D), difference analysis volcano plots (Fig. S10F), 
functional prediction etc.

Perspective and conclusions
In the past 10 years, the R language and numerous R packages 
have played an important role in the microbiome data analysis. 
R language is easy to use and get started. It has attracted many 
researchers to learn about it. However, there are still some con-
tradictions between supply and demand in the microbiome data 
analysis. For example, it is often difficult to support multi-thread-
ing under the Windows system; second, the speed of many R 
packages running is relatively slow, although some R packages 
are written in other languages as supplements; third, the applica-
tion in microbiome still needs further development. For instance, 
there is a shortage of packages that allow for the exploration of 
time-series-based microbial compositions, as well as more robust 
interactive packages for analyzing complex microbial data. 
Furthermore, ggplot2 lacks the capability to create complex and 
combined figures, which fails to meet the visualization require-
ments for relationships between multiple intricate indicators 
with microbial community data. Therefore, developing new R 
packages that are more suitable for drawing complex figures and 
composite figures would be necessary for microbiome data.

With the development of sequencing technology, data analysis 
methods have advanced along with the development of R pack-
ages contributed to the field of microbiome. These R packages 
range from classic R packages such as vegan, which has been 
cited more than 10,000 times, to integrated R packages such as 
phyloseq, which contain many functions in one package and set 
a unified data processing framework. These R packages have been 
able to implement most of the functions of microbiome analysis, 
from microbial diversity, difference, biomarker identification, cor-
relation and network, phylogenetic analysis, etc. However, these 
R packages have some redundant functions; for example, phy-
loseq, microbiome, and others can do microbial diversity analysis. 
The difference is only in the visualization method and scheme. 
A similar situation has always existed in microbiome analysis R 
packages, so we hope that in future developments we will try to 
de-redundantly use the same part of the content or similar con-
tent to highlight the advantages of R packages.

Although these R packages can conduct a lot of functions, 
they don’t well enough in some specific analyses, for exam-
ple, alpha and beta diversity analysis, and the outgoing graphs 
often not add difference detection results to visualize the 
differences from the figures. In addition, there are still some 
contents that can continue to be developed, such as applying 
more machine learning methods to microbiome data and its 
learning method, model, and important variable evaluation. 
Secondly, metagenomes are becoming more widely used, and 
the support of species and functional annotation results based 
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on Kraken (Wood and Salzberg, 2014), MEGAN (Huson et al., 
2007), MetaPhlAn2 (Truong et al., 2015), HUMAnN2 (Franzosa 
et al., 2018), eggNOG-mapper (Huerta-Cepas et al., 2017), etc. 
is becoming more and more important, and these make the 

data processed by R rise from megabyte (M) to gigabyte (G). 
Therefore, faster data processing R packages should be used to 
the microbiome data analysis process, such as data.table, fst, 
tidyfst, etc.

Figure 4.  Examples of the best practice results of microbial community analysis in R language. The selected results include rarefaction curve (A), 
principal coordinate analysis scatter plot (B), Venn network graph (C), evolutionary tree (D), LEfSe cladogram (E), difference analysis extended error bar 
plot in STAMP style (F), difference analysis Manhattan plot (G), difference analysis multi-group volcano plot (H), biomarker selection ring-column chart 
(I), network graph (J), correlation connection combination graph (K), source tracing analysis pie chart (L).
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The use of appropriate data structures can accelerate the 
microbiome data processing. At first, we used S4 class objects 
for microbiome data encapsulation, which can complete 
a variety of analyses comprehensively and efficiently. The 
emergence of R6 class objects and other objects has greatly 
impacted microbiome data processing and largely facilitates it. 
With the development of the tidy family of R languages, tidy-
based data structures have recently emerged for microbiome 
data mining. For example, the MicrobiotaProcess package (Xu 
et al., 2023). This structure is more suitable for microbiome 
data mining, machine learning modeling, and other analyses, 
which can more easily extract the influence of experimental 
design, time, space, and other factors on microbiome data in 
analysis, to discover the deep-seated patterns. We expect the 
R language to make microbiome analysis more efficient and 
help everyone discover more about its role in humans, animals, 
plants, and the environment, and use it for our benefit to make 
the world a better place.

Supplementary information
The online version contains supplementary material available at 
https://doi.org/10.1093/procel/pwad024.
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