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Abstract 

The gut microbiota has been found to interact with the brain through the microbiota–gut–brain axis, regulating various physiological 
processes. In recent years, the impacts of the gut microbiota on neurodevelopment through this axis have been increasingly appre-
ciated. The gut microbiota is commonly considered to regulate neurodevelopment through three pathways, the immune pathway, 
the neuronal pathway, and the endocrine/systemic pathway, with overlaps and crosstalks in between. Accumulating studies have 
identified the role of the microbiota–gut–brain axis in neurodevelopmental disorders including autism spectrum disorder, attention 
deficit hyperactivity disorder, and Rett Syndrome. Numerous researchers have examined the physiological and pathophysiological 
mechanisms influenced by the gut microbiota in neurodevelopmental disorders (NDDs). This review aims to provide a comprehen-
sive overview of advancements in research pertaining to the microbiota-gut-brain axis in NDDs. Furthermore, we analyzed both the 
current state of research progress and discuss future perspectives in this field.
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Introduction
A staggering amount of research has found that the gut interacts 
with the brain in a bidirectional manner, known as the gut–brain 
axis. Inside the gut, the resident microorganism communities 
acting as a key regulator of the gut–brain axis have attracted 
even more attention. These communities include bacteria, fungi, 
viruses, and other forms of life, collectively known as the micro-
biome (Davenport et al., 2017). On the one hand, diverse physi-
ological processes in the intestine, such as gastrointestinal (GI) 
motility, secretion, and digestive functions are modulated by the 
central nervous system (CNS) (Taché et al., 1980; Browning and 
Travagli, 2014). On the other hand, the gut microbiome influ-
ences brain function neurally, humorally, and immunologically 
(Dinan and Cryan, 2017; Maniscalco and Rinaman, 2018; Agustí 
et al., 2018). To be more specific, it is now widely accepted that 
this interaction is conducted through three major pathways, the 
immune pathway, the neuronal pathway, and the endocrine/sys-
temic pathway, with interactions and crosstalks between these 
three (Agirman and Hsiao, 2021).

According to the diagnostic and statistical manual of men-
tal disorders (DSM-5) (American Psychiatric Association, 2013), 
NDDs are a group of conditions which manifest during the 

developmental period and typically occurs in early development. 
NDDs are generally characterized by deficits in terms of personal, 
social, academic, and occupational functions. Typical NDDs 
include autism spectrum disorder (ASD), attention deficit hyper-
activity disorder (ADHD), as well as certain types of learning and 
motor disabilities.

As researchers look deeper into the overlapped area between 
microbiology and neuroscience, it is becoming more apparent 
that the gut microbiota has a strong correlation with NDDs (Table 
1). Numerous researchers have examined the physiological and 
pathophysiological mechanisms influenced by the gut microbiota 
in NDDs. This review aims to provide a comprehensive overview of 
advancements in research pertaining to the microbiota-gut-brain 
axis in NDDs. Furthermore, we will analyze both the current state 
of research progress and future perspectives in this field to pro-
vide a more thorough understanding of the topic.

NDDs and the immune pathway mediated 
by gut microbiome
The CNS is vulnerable to various perturbations during develop-
ment and altered immunological conditions may contribute to 
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pathological processes in NDDs (Rodier, 1994; Han et al., 2021). 
Specifically, the gut microbiota interacts with the immune sys-
tem by the residence itself, microbial-derived metabolites, such 
as short-chain fatty acids (SCFAs), secondary bile acids, and 
amino acid metabolites, and other bioactive molecules, such as 
microbe-associated molecular patterns (MAMPs) (Cryan et al., 
2019). Together, they modulate local immunity within the gut, 
affecting the CNS through systemic circulation, and also play a 
modulating role with microglia as a mediator (Fig. 1).

Gut microbiota act as important regulators of the enteric 
immunity locally. Bacteria, along with bacterial-derived metab-
olites, are required to traverse the intestinal barrier to enter the 
circulation. Consequently, the intestinal barrier assumes a signifi-
cant role in various physiological processes, as well as in the pres-
ervation of homeostasis within the CNS (Rothhammer et al. 2016; 
Fung et al. 2017; Pellegrini et al. 2018; Brescia and Rescigno 2021). 
For instance, one of the most explored microbial-derived metab-
olites, SCFAs, which are saturated fatty acids with fewer than six 

carbon atoms (Wong et al., 2006), have been found to alleviate 
gut epithelium injury (Chen et al., 2018; Li et al., 2022b) and reg-
ulate tight junctions (Zheng et al., 2017), therefore strengthen-
ing intestinal immunological barriers to reduce gut permeability 
and stopping pathogenic factors from invasion (Maslowski et al., 
2009; Chang et al., 2014; Corrêa-Oliveira et al., 2016; Rodrigues et 
al., 2016). In contrast, dysbiosis of the gut microbiota may lead to 
alterations in the gut barrier, resulting in a “leaky gut” (Fasano, 
2020) and making for the translocation of pathogens into the por-
tal and systemic circulation, which contributes to neuroinflam-
mation in CNS disorders such as ASD (Theoharides et al., 2013; 
Fasano, 2020). Apart from regulating the intestinal barrier, the gut 
microbiota also plays a role in the translocation of immune cells 
from the gut to the brain. In some cases, the term “translocation” 
stands for the process during which the gut microbiota interacts 
with immune cells locally and “trains” them to relocate to the 
CNS in order to perform certain functions. One example is that 
the gut microbiota activates a group of IFNγ+ NK cells that will 

Table 1.  Summary of gut microbiota changes in NDDs.

Diseases Reference Age Sample size Sample source Representative differential bacteria

ASD A systematic 
review;
Data before Mar. 
2018
(Liu et al., 2019)

NA ASD: 381
NT: 283

Gut biopsy
or
fecal samples

Bifidobacterium, Blautia, Dialister, 
Prevotella, Veillonella, Turicibacter
↓
Lactobacillus, Bacteroides, 
Desulfovibrio, Clostridium
↑

ASD Nov. 2021
(Yap et al., 2021)

ASD: 8.7 (SD = 3.8) years
NT: 8.0 (SD = 4.3) years

ASD: 99
NT: 51 + 97

Fecal samples Romboutsia timonensis
↓

ASD Dec. 2021
(Lou et al., 2021)

ASD: 16 months to 19 years
NT: 11 months to 15 years

ASD: 773
NT: 429

Fecal samples Veillonella, Enterobacteriaceae
↑

ASD May. 2022
(Wan et al., 2022)

ASD: 59.0 (51.0–66.0) months
NT: 56.0 (44.0–66.0) months

ASD: 72
NT: 74

Fecal samples Faecalibacterium
↓
Clostridium, Dialister, Coprobacillus
↑

ADHD Aug. 2017
(Aarts et al., 2017b)

ADHD: 19.5 (SD = 2.5) years
NT: 27.1 (SD = 14.3) years

ADHD: 19
NT: 77

Fecal samples Bifidobacterium
↑

ADHD Jul. 2018
(Prehn-Kristensen 
et al., 2018b)

ADHD: 11.9 (SD = 2.5) years
NT:13.1 (SD = 1.7) years

ASD: 14
NT: 17

Fecal samples Neisseria, Bacteroidaceae
↑

ADHD Jul. 2018
(Jiang et al., 2018)

6–10 years ASD: 51
NT: 32

Fecal samples Faecalibacterium
↓

ADHD Mar. 2020
(Wang et al., 2020)

ADHD: 8.4 (SD = 1.7) years
NT: 9.3 (SD = 2.2) years

ADHD: 30
NT: 30

Fecal samples Bacteroides coprocola, Bacteroides 
uniformis, Bacteroides ovatus, 
Sutterella stercoricanis
↑

ADHD Sep. 2022
(Li et al., 2022c)

ADHD: 9.4 (2.1) years (I-ADHD)
8.8 (SD = 1.9) years (C-ADHD)
NT: 8.9 (SD = 1.8) years

ADHD:
38 (I-ADHD)
+53 (C-ADHD)
NT: 109

Fecal samples C-ADHD: B. ovatus
↓

Rett Syndrome Feb. 2017
(Borgo et al., 2017)

RTT: 23 (SD = 8.7) years
NT: 24.5 (SD = 6.6) years

RTT: 8
NT: 10

Fecal samples Bacteroidaceae, Clostridium spp., 
Sutterella spp.
↑
Ruminococcaceae
↓

Down syndrome Nov. 2014
(Biagi et al., 2014)

DS: 19–35 years DS: 17 Fecal samples Parasporobacterium, Sutterella
↑

Bacteria with repetitive appearance are highlighted. Warm colors indicate the corresponding abundance change and cold colors show contradictory result. 
For example, Bifidobacterium was observed to have varying abundances across different studies, with some reporting higher and others lower levels, so 
Bifidobacterium was represented with blue color (i.e., cold colors). In contrast, Clostridium was consistently found to be more abundant across all studies and were 
highlighted with red color (i.e. ,warm colors).
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in turn migrate to the CNS and induce the production of a type 
of anti-inflammatory astrocytes. These astrocytes induce cellular 
apoptosis in T cells through Tumor necrosis factor-related apop-
tosis-inducing ligand-decoy receptor 5 (TRAIL-DR5) signals and 
inhibit neuroinflammation as a result (Sanmarco et al., 2021). In 
addition to IFNγ+ NK cells, meningeal IgA+ plasma cells that are 
missing or decreased in germ-free (GF) mice are also confirmed 
by B-cell receptor sequencing to be originated from the gut. This 
type of plasma cells can migrate from the gut to the CNS, espe-
cially the meninges. Once into the meninges, these IgA+ plasma 
cells will prevent pathogenic factors from entering by trapping 
them in the dural sinuses, thus guarding the developing brain 
against infection, which highlights the role of the gut microbiota 
in preventing infectious encephalitis caused by pathogenic bac-
teria through training B-cell immunity (Fitzpatrick et al., 2020). 
Interestingly, in the case of T helper 17 cells (Th17 cells), translo-
cation can produce inverse effects under certain circumstances. 
Th17 cells normally play a role in maintaining homeostasis in 
the gut and can exhibit proinflammatory effects when they 
migrate to the CNS, which is related to the tissue heterogeneity of 
these cells. In the experimental autoimmune encephalomyelitis 
(EAE) mouse models, there are both SLAMF6+ stem cell-like Th17 
cells, which are modulated by the gut microbiota, that maintain 

homeostasis, and CXCR6 Th17 cells may migrate to the CNS to 
cause neuroinflammation (Schnell et al., 2021).

Meanwhile, the gut microbiota modulates neurodevelop-
ment through its cell wall components as well as its regulation 
of cytokines via the systemic circulation. In terms of the circu-
lating cell wall components, an important molecule is peptido-
glycan. Peptidoglycan fragments are derived from bacterial cell 
walls and can cross the blood–brain barrier and activate pattern 
recognition receptors (PRRs) in the brain. These PRRs are widely 
expressed in the perinatal placenta and the brain at different 
neurodevelopmental stages (Gonzalez-Santana and Diaz Heijtz, 
2020). For example, the recognition of peptidoglycan in the devel-
oping prefrontal cortex, the striatum, and the cerebellum may 
act to regulate synaptogenesis (Arentsen et al., 2017). Through 
the modulation of neurodevelopmental processes, peptidoglycan 
can further affect social behavior, anxiety, and stress responses, 
which play a role in autism spectrum disorder (Gonzalez-
Santana and Diaz Heijtz, 2020). In addition to cell wall compo-
nents, cytokines can also be found in the circulation and when 
reaching the CNS, may have diverse impacts on various neu-
rodevelopmental processes, including neurogenesis, gliogenesis, 
and neuronal migration, etc. (Garlanda et al., 2013; Zengeler and 
Lukens, 2021). As such, the involvement of cytokines in NDDs 

Figure 1.  The immune pathway. Along the immune pathway, the gut microbiota regulates the brain by the bacteria themselves, microbial-derived 
metabolites (e.g., SCFAs, secondary bile acids, and amino acid metabolites), bacterial cell wall components (e.g., peptidoglycan, LPS), as well as microbial-
intrigued immune cells and their secretory factors. The gut microbiota modulates enteric immunity in terms of the intestinal barrier, peripheral immune 
cells, and cytokines. For example, SCFAs derived by the gut microbiota seem to maintain a symbiotic relationship with the host by suppressing immune 
responses and protecting commensal bacteria from elimination, while also enhancing enteric barriers and reduce gut permeability to prevent invasion 
by harmful microorganisms. Proofs are that SCFAs have restrictive effects on neutrophil chemotaxis and mononuclear phagocyte system, promoting 
effect on regulatory T cells (Treg cells) and SCFAs can alleviate gut epithelium injury and regulate tight junctions. Meanwhile, in the CNS, microglia act 
as an important agent in neurodevelopment through their functions of synaptic pruning, neural progenitor cells (NPCs) pool supervision, neurogenesis 
regulation, etc. The gut microbiota affects microglia from different ways, exerting considerable effects on the neurodevelopmental process.
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proves a promising subject, and in recent years, this has been 
supported by studies on maternal immune activation (MIA). 
Various inflammatory factors in the maternal generation are 
associated with an increased risk of NDDs in the fetuses, which 
is possibly related to an underdeveloped blood–brain barrier 
(Han et al., 2021; Lu et al., 2023). Since retinoic acid receptor-re-
lated orphan nuclear receptor gamma t (RORγt)-dependent effec-
tor T lymphocytes are reported to be necessary for MIA-induced 
behavioral abnormalities (Choi et al., 2016), and Th17 cells not 
only fit into the RORγt-dependent effector T cell family but also 
experience a significant upregulation in MIA offspring, it can be 
inferred that interleukin-17 (IL-17) is one of the indispensable 
cytokines in MIA (Choi et al., 2016; Hoogenraad and Riol-Blanco, 
2020). The gut microbiota is able to affect IL-17a levels and 
mucosal immunity as a whole by regulating the balance between 
Th17 cells and Treg cells (Pandiyan et al., 2019). For example, the 
administration of microbial-derived secondary bile acids, such 
as 3-oxoLCA and isoalloLCA, inhibits the differentiation of Th17 
cells and promotes the differentiation of Treg cells by binding to 
RORγt and inducing the production of reactive oxygen species 
(ROS), respectively (Hang et al., 2019). SCFAs are another metab-
olite that has also been found to regulate Th17 and Treg cells. 
In the case of SCFAs, this is mainly achieved through histone 
deacetylase (HDAC) inhibition and G-protein coupled receptor 
(GPR) activation (Dalile et al., 2019). Interestingly, an overproduc-
tion of SCFAs increases Th17 cells and leads to the dysfunction 
of Treg cells during inflammation, suggesting that their functions 
could be paradoxical or concentration-dependent (Pandiyan et 
al., 2019). Aside from the microbial regulation of the balance 

between Treg and Th17 cells, the production of IL-17a is also 
stimulated by the other interleukins. For example, the secre-
tion of IL-6 by the dendritic cells in the small intestine has been 
found to promote IL-17a production in pregnant females during 
inflammation, which indicates its role in MIA (Kim et al., 2017). 
Based on evidence from animal models, interleukin-17 receptor A 
(IL17RA) has been detected predominantly in the primary soma-
tosensory cortex dysgranular zone(S1DZ), and elevated IL-17a 
levels lead to overactivation in the neurons of this area, which 
then induces  abnormalities in terms of social behaviors in MIA 
offspring (Hoogenraad and Riol-Blanco, 2020). However, S1DZ is 
just a tiny part of a potentially extensive network that regulates 
MIA-related behavior, and more brain regions remain to be fur-
ther appreciated (Shin Yim et al., 2017). Another cytokine that 
plays a role in MIA is interleukin-6 (IL-6). As mentioned above, 
IL-6 may affect the activation of Th17 cells and in turn, impact 
IL-17 concentrations. Besides this indirect function, IL-6 also acts 
directly on neurons to induce transcriptional synaptogenesis 
through STAT3-dependent production of the regulator of G pro-
tein signaling 4 gene (RGS4) downstream, and increased prenatal 
IL-6 levels promote the density of glutamatergic synapses and 
disrupt hippocampal connectivity (Mirabella et al., 2021). Still, it 
should also be noted that the correlation between abnormalities 
in the gut microbiota, cytokines, and neurodevelopment makes 
it possible to target NDDs by managing microbial compositions. 
In a recent study, the supplementation of Lactobacillus reuteri is 
found to improve the β-diversity of the gut microbiota in the off-
springs and promote the metabolic functions of their brain (Lu 
et  al., 2023) (Fig. 2).

Figure 2.  Maternal immune activation. MIA is associated with an increased risk of NDDs in the fetuses. One of the important cytokines for MIA is IL-17, 
which is produced mainly by Th17 cells. The gut microbiota is able to affect IL-17a levels and mucosal immunity as a whole by regulating the balance 
between Th17 cells and Treg cells. Besides, the production of IL-17 is also stimulated by elevated IL-6 levels during inflammation in pregnant females. 
Based on evidence from animal models, inside the CNS, IL17RA is located predominantly in the cortical neurons of S1DZ and elevated IL-17a levels lead 
to overactivation in these neurons, which then induces abnormalities in terms of social behaviors in MIA offsprings. Another important cytokine is IL-6. 
IL-6 not only affects the activation of Th17 cells, as is discussed above, but also affects neurons themselves by inducing transcriptional synaptogenesis 
through STAT3-dependent production of RGS4, which increase glutamatergic synapse density and disrupt hippocampal connectivity.
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Aside from regulating local immune players to impact the CNS 
indirectly and modulating the developing brain systemically, the 
gut microbiota also affects neurodevelopment with microglia as 
the mediator. This deserves our attention because microglia have 
been identified to be closely involved in neurodevelopment, and 
abnormalities in their morphology, as well as functions, may play 
a role in NDDs [reviewed by (Zengeler and Lukens, 2021)]. As the 
professional phagocytes of the brain, these cells serve the func-
tion of clearing debris during the proliferation of nerve cells as 
well as engulfing various live cells, known as “phagoptosis” (Harry, 
2013; Brown and Neher, 2014). In the developing CNS, microglia 
perform the critical function of monitoring the pool of neural 
progenitor cells (NPCs) and regulating the process of neurogen-
esis. This regulatory role is achieved through the engulfment of 
oligodendrocyte progenitor cells (OPCs) and the modulation of 
neural precursor cell size in the cerebral cortex (Cunningham 
et al., 2013; Nemes-Baran et al., 2020). Additionally, microglia 
selectively eliminate excess myelin sheaths, thereby modify-
ing myelination during neurodevelopment (Hughes and Appel, 
2020). Microglia can also prune synapses, and once this ability 
is compromised, there will be an excess of dendritic spines and 
immature synapses, which may lead to immature brain circuitry 
(Paolicelli et al., 2011). This process possibly occurs through the 
complement system, especially the complement component 3 
(C3) and complement component 3 receptor (CR3) signaling, since 
mice without CR3, C3, and the C-X3-C motif chemokine receptor 
1 gene (CX3CR1) undergo a decrease in microglial synaptic prun-
ing in the developing visual system as well as the hippocampus 
(Paolicelli et al., 2011; Schafer et al., 2012). The gut microbiota 
plays a part in diverse events of the microglia, including their mat-
uration and aging, as well as their functions, and microbial-de-
rived metabolites promote microglia restoration in GF mice (Erny 
et al., 2021; Mossad et al., 2022). Indeed, an intact microbiota is 
not only indispensable for the localization of forebrain microglia 
during neurodevelopment but is also important in modulating 
the microglial expression of the complement signaling pathway 
and the synaptic remodeling factor complement C1q. This allows 
it to restrain neurite complexity and regulate forebrain neu-
rons to have a promotive function in social behaviors (Bruckner 
et al., 2022). Meanwhile, GF mice are found to exhibit a different 
landscape of genes that are related to the complement system 
(Matcovitch-Natan et al., 2016), since microbial-derived metab-
olites such as SCFAs, have been found to regulate the C3 signal-
ing within the CNS and may play a role in the C3/CR3-dependent 
microglial elimination of synapses (Lai et al., 2021). Other than 
SCFAs, aryl hydrocarbon receptor (AHR) agonists such as indole, 
indoxyl 3-sulfate, indole-3-propionic acid, and indole-3-aldehyde 
(Rothhammer et al., 2016), which are metabolized from dietary 
tryptophan by the gut microbiota (Quintana and Sherr, 2013), also 
modulate the production of transforming growth factor α (TGFα) 
and vascular endothelial growth factor B (VEGF-B) by the micro-
glia, controlling the inflammation in the CNS as a consequence 
(Rothhammer et al., 2018).

The endocrine/systemic pathway in 
neurodevelopment regulated by gut 
microbiome
The gut microbiota releases diverse metabolites and pro-
duces neurotransmitters and neuromodulators (Cussotto et al., 
2018; Agirman and Hsiao, 2021), both of which can modulate 
neurodevelopment. These metabolites or products include 

gamma-aminobutyric acid (GABA), serotonin, dopamine, norep-
inephrine, acetylcholine, histamine, secondary bile acid, 4-eth-
ylphenyl sulfate (4EPS), SCFAs, and so on (Agirman and Hsiao, 
2021; Lh et al., 2021; Needham et al., 2022). Increasing evidence 
showed that bacterial-derived metabolites can promote neu-
rodevelopment; however, some bacteria may also play a causal 
role in NDDs. An example of microbial-derived metabolites with 
the former function would be taurine, which is a neuroactive 
amino acid metabolite of the gut microbiota that is deficient in 
the dams of ASD mouse models. Indeed, the oral administration 
of taurine to the ASD dams during pregnancy has been found to 
reduce repetitive behaviors in their offspring. Similarly, 5-ami-
novaleric acid (5AV), another amino acid metabolite of the gut 
microbiota, also leads to a decrease in repetitive behaviors and 
an improvement in social interactions. This indicates their posi-
tive role in neurodevelopment (Sharon et al., 2019). Additionally, 
it has been found that tetrahydrobiopterin (BH4), a metabolite 
induced by L. reuteri, can improve social deficits in mouse models 
of ASD, which may be explained by a BH4-induced promotion in 
synaptic transmission mediated by the social reward mechanism 
in the brain (Buffington et al., 2021). In contrast, 4-ethylphenyl 
(sulfate), or 4EP(S), which is produced by certain members of the 
Firmicutes phylum, such as Bacteroides ovatus, has emerged to be 
negatively related to neurodevelopment (Hsiao et al., 2013; Lh 
et al., 2021; Needham et al., 2022) since elevated levels of 4EP(S) 
are detected in ASD patients and the CNTNAP2 (contactin asso-
ciated protein 2) mouse models of ASD (Needham et al., 2021). A 
positive correlation has been found between 4EP(S) and repeti-
tive behaviors whereas a negative correlation exists between this 
metabolite and communication, which suggests that 4EP(S) plays 
a role in the demonstrated manifestations of ASD (Hsiao et al., 
2013). Mechanisms have been elucidated by some studies that, 
once inside the CNS, 4EP(S) can inversely impact myelination, an 
important process in the development of the brain, and thus will 
influence ASD-related behaviors as a consequence (Berer et al., 
2011; Hoban et al., 2016; Bonnefil et al., 2019; Pan et al., 2020) 
(Fig. 3B).

Apart from producing the above metabolites that are able to 
regulate neurodevelopment as well as other neurotransmitters 
and neuromodulators themselves, the gut microbiota also inter-
acts with the enteroendocrine system to regulate neurodevel-
opment. The enteroendocrine system is composed of various 
enteroendocrine cells (EECs) which are capable of producing 
glucagon-like peptide 1 (GLP-1), peptide YY (PYY), cholecysto-
kinin (CCK), substance P, and 5-HT (Gribble and Reimann, 2016). 
EECs can sense various microbial signals and also synapse with 
the vagal neurons to communicate with the CNS (Gribble and 
Reimann, 2016; Bellono et al., 2017). Specifically, certain bacte-
ria strains act through deoxycholic acid, SCFAs, as well as other 
metabolites, to upregulate the levels of the rate-limiting enzyme 
in 5-HT biosynthesis, tryptophan hydroxylase 1 (TPH1), which can 
increase 5-HT levels in a subtype of EECs called the enterochro-
maffin cells (ECCs) (Alemi et al., 2013; Reigstad et al., 2015; Yano et 
al., 2015). Besides, LPS has also been found to play a part through 
toll-like receptor 4 (TLR4) despite that supporting evidence is lim-
ited (kidd et al., 2009). 5-HT concentration is suggested to affect 
social behaviors in ASD, which implies its potential role in the 
modulation of NDDs (de Theije et al., 2014). However, peripheral 
5-HT is not able to pass through the blood–brain barrier (Donovan 
and Tecott, 2013). In recent years, an interconnected communi-
cation system between the gut microbiota, ECCs, and the vagus 
nerve has been discovered to explain the impact of peripheral 
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5-HT on neurodevelopment (Margolis et al., 2021). 5-HT3 and 
5-HT4 receptors have been found on the vagus nerve, indicating 
that 5-HT may indirectly impact the CNS by acting through the 
vagus nerve (Bonaz et al., 2018; Bhattarai et al., 2018). Meanwhile, 
emerging studies have provided new clues to the direct connec-
tion between the EECs and the vagus nerve, suggesting that there 
is a specific cell type named the neuropods which form synapses 
with the vagus nerve. This allows for the fast transmission of sig-
nals from the gut to the brain (Kaelberer et al., 2020).

In terms of neuroendocrine signaling, hormones such as oxy-
tocin, vasopressin, and glucocorticoid have been reported to be 
regulated by the gut microbiota and, in turn, affect neurode-
velopment (Cussotto et al., 2018; Lh et al., 2021). It should also 
be noted that the gut microbiota can decompose and produce 
hormones as well. For example, Klebsiella aerogenes are shown 
to degrade estradiol because of the expression of the 3β-HSD 
(3β-hydroxysteroid dehydrogenase) gene(Li et al., 2023). Two of 
the related axes in this process are the hypothalamic–neuro-
hypophyseal (HN) axis and the hypothalamic–pituitary–adrenal 
(HPA) axis (Dayanithi et al., 1987; Stephens and Wand, 2012). 
First, as an important component of the HN axis, the neuropep-
tide oxytocin modulates the interplay within the serotonergic 
system in the nucleus accumbens and the marginal activity in 
the amygdala, thus regulating attachment, aggression, social 
fear, social learning, as well as other complex social functions 
(Heinrichs et al., 2009; Dölen et al., 2013; Neumann and Slattery, 
2016; Fineberg and Ross, 2017). A critical etiological factor in 

social defects related to the crosstalk between the gut microbi-
ota and oxytocin is the maternal high-fat diet (MHFD) since in 
MHDF offspring, there is a decrease in both synaptic improve-
ments of the ventral tegmental area (VTA) during social inter-
action and the number of oxytocin immunoreactive neurons in 
the hypothalamus (Buffington et al., 2016). In mouse models, 
the administration of L. reuteri, a bacterial strain that can be 
downregulated by MHFD, reserves oxytocin decrease, synap-
tic deficits, and the plasticity of VTA, thereby improving social 
behaviors and consequently relieving ASD (Buffington et al., 
2016; Francis and Dominguez-Bello, 2019). This function is pos-
sibly associated with the afferent vagus nerve as well because 
L. reuteri-derived metabolites can act on the vagus nerve and 
monitor the oxytocin–dopamine reward system in the brain 
(Sgritta et al., 2019a). Second, along the HPA axis, peripheral 
cortisol levels have been found to be significantly higher in 
patients with ASD, indicating that the HPA axis plays a role in 
ASD (Gao et al., 2022a). In 2021, Wu et al. identified a decrease 
in social activities and an increase in neuronal activity after 
social stress that are both related to abnormal corticosterone 
levels, suggesting that the crosstalk between the gut microbiota 
and the HPA axis may play a role in social behaviors (Wu et al., 
2021). Bacterial species, such as Enterococcus faecalis, inhibit the 
elevated glucocorticoid levels after social stress and promote 
social behaviors in mice (Wu et al., 2021). Altered mRNA expres-
sion can be detected in both NMDA and 5-HT1A receptors in GF 
mice, suggesting that this is related to the regulation of the gut 

Figure 3.  The endocrine (systemic) pathway and the neuronal pathway. (A) The HN axis and the HPA axis play an important role in the endocrine 
(systemic) pathway. The neuropeptide oxytocin acts as an important component of the HN axis, modulates the interplay within the serotonergic system 
in the nucleus accumbens and the marginal activity in the amygdala, thus regulating social functions. Along the HPA axis, peripheral cortisol levels 
have been found to be significantly higher in patients with ASD and bacterial species, such as Enterococcus faecalis, inhibit the elevated glucocorticoid 
levels after social stress and promote social behaviors in mice, indicating that the gut microbiota is capable of influencing HPA axis. (B) The gut 
microbiota can produce neuroactive molecules (e.g., 5AV, taurine, and 4EPS) directly and these molecules have diverse effects on neurodevelopment 
processes (i.e., myelination, oligodendrocytes maturation). The gut microbiota also regulates the production of 5-HT in ECCs. However, metabolites 
like 5-HT cannot across the blood–brain barrier without the vagus nerve. Microbial-derived metabolites and other substances not only interact with 
the vagus nerve but also impact the ENS and the intestinal mechanosensory. The vagus nerve is an important agent between the endocrine (systemic) 
pathway and the neuronal pathway.
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microbiota on the expressions of the receptors. Once NMDA and 
5-HT1A receptors are regulated, corticotropin-releasing factors 
(CRFs) released from the hypothalamus will be affected as a 
result (Neufeld et al., 2011) (Fig. 3A).

Neuronal pathways of bidirectional gut–
brain communications
Neuronal pathways of bidirectional gut–brain communica-
tions are intuitive. Unique among visceral organs, the GI tract has 
its own intrinsic nervous system—the enteric nervous system 
(ENS) (Uesaka et al., 2016; Marklund, 2022). The extrinsic nervous 
system plays a significant role in GI physiology, among which the 
vagus nerve has been a key focus in recent research. The vagus 
nerve is the tenth cranial nerve, of which the hepatic and celiac 
branches innervate the gut. Sensory/afferent and motor/efferent 
fibers are intermingled in the vagus nerve. The sensory fibers orig-
inate from neurons of the nodose ganglion, whereas the motor 
fibers come from neurons of the dorsal motor nucleus of the 
vagus (DMV) and the nucleus ambiguous. Vagal afferents treat 
chemical signals as important gut inputs. As previously men-
tioned, EECs release neurohormones including CCK, GLP-1, PYY, 
serotonin, etc. (Chambers et al., 2013). These hormones spread 
to adjacent afferent terminals and bind vagal sensory neurons’ 
receptors. Such chemoreceptors include CCKAR (for CCK), GLP1R 
(for GLP-1), and HTR3A (for serotonin) (Williams et al., 2016). CCK 
(Li et al., 2022a), GLP-1 (Müller et al., 2019; Borgmann et al., 2021), 
and PYY (Steinert et al., 2017) function mainly as the regulators of 
food intake and digestion either directly on the brain through the 
circulatory system, or indirectly via the vagal-brain pathway. In 
addition, CCK can cause some direct central nervous responses. 
By practicing the bilateral injection into the nodose ganglia of 
CCK-SAP to decrease CCKAR expression, a study proves that such 
CCK block up causes GI vagal afferents inhibition and results in 
attenuated anxiogenic effects of refeeding (Krieger et al., 2022). 
Importantly, by performing vagotomy, studies have found pep-
tides or neurotransmitters like serotonin, oxytocin (Sgritta et 
al., 2019b), GABA (Bravo et al., 2011a), and brain-derived neuro-
trophic factor (BDNF) (Bercik et al., 2011) which are derived from 
microbes-derived metabolites or microbe-triggered host secretion 
are not able to have the supposed effect on the brain without 
the vagus nerve. For instance, Lactobacillus rhamnosus (JB-1) has 
a direct effect on neurotransmitter receptors that it can induce 
region-dependent alterations in GABAB1b mRNA in the brain. The 
process is mediated by the vagus nerve because such rescue can-
not be achieved in mice operated with a bilateral subdiaphrag-
matic vagotomy (Fig. 3B).

Apart from the molecules mentioned above, some immune 
factors produced by the stimuli of the microbiome may also have 
the capability of activating the vagal afferents to prepare for the 
immune response. For example, in an early study, gut inocula-
tion of Campylobacter jejuni in mice has been reported to result 
in direct activation of the vagal sensory ganglia and the nucleus 
tractus solitarius (NTS) in the medulla oblongata (Goehler et 
al., 2005). Campylobacter jejuni is the leading cause of bacterial 
diarrhoeal disease in many areas of the world (Burnham and 
Hendrixson, 2018; Malik et al., 2022) and its administration has 
been reported to induce anxiety-related behaviors (Lyte et al., 
2002). Campylobacter jejuni is also causally linked with the devel-
opment of the autoimmune peripheral neuropathy Guillain Barré 
Syndrome (GBS) (Malik et al., 2022). Such responses caused by C. 
jejuni may be mediated by the vagal afferents. It is noteworthy 

to mention that vagus nerve stimulation (VNS) may potentially 
serve as a therapeutic intervention for NDDs owing to its potent 
anti-inflammatory effects. Apart from the vagus nerve, the ENS, 
also acts as an essential mediator along the microbiota–gut–brain 
axis. Both animal experiments and cross-sectional studies have 
indicated that the ENS is involved in CNS disorders, especially 
in ASD, where GI comorbidities are frequently present (Rao and 
Gershon, 2016). Current evidence suggests that microbes-de-
rived metabolites are capable of regulating enteric neuron func-
tions, such as the excitability of enteric nerve endings, affecting 
the endocrine as well as immune pathways in an indirect man-
ner and consequently interacting with the CNS (Vickers, 2017; 
Agirman and Hsiao, 2021). This type of overlap and crosstalk is 
also discussed in other sections of the review.

The GI tract is insensitive to cutting, crushing, or burning (Gray 
et al., 2021). However, mechanical signals (i.e., distension, con-
traction, flow (shear)) are significant to the gut since nearly all gut 
functions require the sense of forces emanating from the diges-
tion of intraluminal contents and organ activity (Mercado-Perez 
and Beyder, 2022). In addition, organoid evidence continues to 
emerge in support of the important role mechanical signals have 
played in the morphogenesis of the GI tract (Poling et al., 2018; 
Yavitt et al., 2023). The term “mechanosensor” refers to mechan-
ical signal receivers, proteins that convert mechanical stimulus 
into an intracellular electrochemical signal. The landscape of 
molecular mechanosensors of the vagus nerve of the GI tract 
is currently unclear. Nevertheless, two comprehensive reviews 
covering this topic have given the readers an overview of mech-
anosensing in the GI tract (Kim et al., 2022; Mercado-Perez and 
Beyder, 2022). Mechanosensors sense mechanical stimulus by dif-
ferent ion channels (such as TRP, ASICs, PIEZO, etc.), and signals 
are transported to the brain partly by the vagus nerve, and even-
tually different mechanosensory circuits form. Other than chem-
ical signals and mechanical signals, there are some other signals 
vagal afferents detect from the gut. In 2015, Bohórquez et al. 
discovered a direct connection between a special subset of EECs 
and vagal neurons by making synapses (Bohórquez et al., 2015). 
Such EECs are named neuropods and following research found 
that they use glutamate as a neurotransmitter to transmit excit-
atory signals to vagal neurons. Glutamate is a fast-passing neu-
rotransmitter, while neuropeptides such as CCK are slow-passing 
neurotransmitters (paracrine communication) (Kaelberer et al., 
2018). The formed synapses enable ultrafast millisecond trans-
mission from EECs to vagal sensory neurons. Further studies of 
neuropods have found out that neuropods resemble sensory cells 
of the nervous system. They influence the preference for sugar 
over sweeteners by sensing the difference between these two 
and releasing different neurotransmitters to different cells in the 
vagus nerve (Buchanan et al., 2022). Another new vagal sensory 
modality has been identified that sensory neurons can detect vis-
ceral osmolality changes and translate them into hormonal sig-
nals to regulate thirst circuit activity through the HPA pathway 
(Ichiki et al., 2022). Notably, as can be inferred from above, the gut 
microbiota mainly interacts with the mechanosensors indirectly 
to regulate neurodevelopment, but direct evidence remains to be 
explored (Fig. 3B).

The gut microbiota and NDDs
ASD is an early-onset NDD that is defined by impaired social inter-
action, deficits in communication, and the presence of repetitive, 
stereotyped behaviors (American Psychiatric Association, 2013). 
The etiology of ASD is a hot issue that has not been completely 
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elucidated while two main factors are regarded as the attributions 
for ASD—the genetic and the environmental factors. Some large-
scale sequencing studies have identified more than a hundred 
ASD highly relatable genes and SNVs/indels, SVs, tandem repeats, 
etc. (Satterstrom et al., 2020; Willsey et al., 2022; Trost et al., 2022; 
Yuan et al., 2023). Environmental factors include pathogen expo-
sure, nutritional deficiencies or overload, toxic exposure, aller-
gies, etc. (Hisle-Gorman et al., 2018). As mentioned above, MIA is 
a representative example of how environmental factors increase 
the risk of developing ASD. Individuals with ASD often experi-
ence co-occurring GI symptoms, including constipation, diarrhea, 
and abdominal pain (Jolanta Wasilewska and Klukowski, 2015), 
and patients with GI symptoms are inclined to be more irrita-
ble, withdrawn, or hyperactive (Leader et al., 2022). The existence 
of such GI symptoms has raised interest in studying the possi-
ble influence of gut microbiota on the pathogenesis of autism. 
A number of studies report the significant difference in the gut 
microbiome composition between patients with ASD and healthy 
controls (see Table 1). As can be observed in several studies, there 
is an increase in the abundance of the Clostridioides genus (Liu 
et al., 2019; Wan et al., 2022). In fact, the Clostridioides genus is 
one of the most frequently detected dysregulated bacteria in 
patients with ASD despite unpreventable bias from the hetero-
geneity (Zheng et al., 2021). Interestingly, two specific metabolites 
derived from microbiota, especially from the Clostridioides genus, 
have been well studied for their effects on microglial cells and 
processes like neuroinflammation and microglial phagocytosis. 
One is 4-EP(S), which has been previously reviewed at the endo-
crine/systemic pathway section and the other is p-Cresol sulfate 
(pCS) which originates from bacterially produced p-Cresol. Both 
pCS and 4EPS are products of microbial degradation of aromatic 
amino acids (AAAs) and some other AAAs and their intermediate 
or final products such as phenylalanine, tryptophan, and tyrosine 
are also important metabolites in ASD studies. The most classical 
example is serotonin, of which tryptophan is its precursor. Since 
the 1970s, it has been widely reported that inside autistic patients' 
blood, the concentration of serotonin is abnormally high (Hanley, 
1977) while contradictorily, the concentration inside the brain is 
rather low (Chugani et al., 1999). Nevertheless, the specific mech-
anism behind this phenotype has not been explained clearly and 
the application of selective serotonin reuptake inhibitors (SSRIs) 
has not been proven effective (Fattorusso et al., 2019). Recently, 
the metabolism of another product of tryptophan—kynurenine, 
has been reported as abnormal in ASD murine models (Lavelle 
and Sokol, 2020). Brain samples obtained from the frontal cor-
tex showed higher concentrations of 3-hydroxy kynurenine and 
3-hydroxy anthranilic acid which are neurotoxic and often con-
verted into quinolinic acid in reactive microglial cells and there-
fore very likely to cause neuroinflammatory outcomes (Parrott 
et al., 2016; Murakami et al., 2019). Additionally, an 'inflamma-
tion hypothesis' was raised to explain the GI symptoms in autis-
tic children. There is increasing evidence that GI symptoms in 
autistic children may be due to the inflammatory state in the gut 
and the microbiota has played a potential role in promoting this 
process (Puricelli et al., 2022). Autistic children are more likely to 
have a 'leaky gut' and owing to this higher permeability, the CNS 
is highly exposed to proinflammatory cytokines (Ashwood et al., 
2011). As stated above, under the dominance of genetic factors, 
the investigation of the mechanistic relationship between the gut 
microbiota, as an environmental factor within the host, and the 
host in regulating the occurrence and development of ASD, rep-
resents a highly worthy scientific inquiry. In 2019, our research 
team demonstrated in Drosophila melanogaster that mutations 

in autism-associated gene KDM5 can alter intestinal immu-
nity, thereby affecting the behavior of the fruit fly through the 
influence of the gut microbiota (Chen et al., 2019). Similarly, as a 
recent publication in ASD omics research suggested, long-chain 
polyunsaturated fatty acids may causally contribute to sleep dis-
turbances mediated by the FADS gene cluster and with potential 
mediation by the microbiota, sleep disturbances and unhealthy 
diet have a convergent lipidome profile (Yap et al., 2023).

Various treatments that target the microbiota–gut–brain axis 
have been put forward in recent years, with the aim of restoring 
the balance of the gut microbiota. Probiotics are one of the most 
explored therapeutic methods and have already produced posi-
tive outcomes in NDDs (George Kerry et al., 2018). Several studies 
addressed the effects of the administration of probiotics in ASD. 
For example, in ASD murine models, the supplementation of the 
probiotic L. reuteri proved effective in improving social behaviors, 
although clinical evidence remains limited (Kong et al., 2020). 
Another commensal bacterium, Bacteroides fragilis, is also believed 
to act as a probiotic and can fix the permeability of the gut and, in 
turn, alleviate ASD symptoms (Gilbert et al., 2013). Furthermore, 
a recent study revealed that Chd8+/− mouse models of ASD exhibit 
elevated serum glutamine levels due to a high expression of 
amino acid transporters in the intestine as well as increased glu-
tamine levels in the brain, which is associated with the manifes-
tation of ASD symptoms. The supplementation of Bifidobacterium 
longum has been found to downregulate intestinal amino acid 
transporter expression and thus ameliorate ASD-like behaviors in 
mouse models, which also demonstrates its therapeutic potential 
in ASD (Yu et al., 2022). Apart from probiotics, prebiotics is also 
under exploration. Accompanied by the exclusion diet, a 6-week 
administration of the prebiotic, Bimuno® galactooligosaccharide 
(B-GOS®) in 30 autistic children showed positive results, indi-
cating that the supplementation of prebiotics is also potentially 
beneficial (Grimaldi et al., 2018). Additionally, studies on fecal 
microbiota transplantation (FMT), or microbiota transfer therapy 
(MTT), have also identified its efficacy in ASD treatment. A clin-
ical trial that followed up 18 ASD participants found that FMT 
restored bacterial diversity and richness in both Bifidobacteria and 
Prevotella. Besides, an improvement in both GI symptoms as well 
as the core symptoms of ASD that were maintained throughout 2 
years of time was also observed (Kang et al., 2019). In favor of this 
result, in 2021, Li et al. also observed a long-lasting benefit in GI 
and behavioral symptoms, which was associated with Eubacterium 
coprostanoligene (Li et al., 2021). It should be noted that the effect 
of FMT is not only affected by the gut microbiota composition of 
the donor but also that of the recipient. Other factors, such as the 
methods of administration and the choice of preservation of the 
FMT sample, also play a role in the effects of FMT (Ng et al., 2020). 
Therefore, FMT is not a one-size-fits-all solution in the treatment 
of ASD.Notably, Centers for Disease Control and Prevention esti-
mates that about 26% of people with ASD suffer from depression, 
and people with ASD are three times more likely to suffer from 
depression than the general population. Moreover, there are also 
considerable studies emphasizing the role of the gut microbi-
ota in depression (Chang et al., 2022; Liu et al., 2023). Therefore, 
potential relations and mechanism between depression and ASD, 
are worth further studying.

ADHD is another commonly occurred NDD with an estimated 
prevalence of ~5% worldwide (Sayal et al., 2018). As shown in Table 1, 
alterations in the composition of the gut microbiota are found to be 
presented in people with ADHD. For example, decreased abundance 
of actinobacteria reduces the ADHD-RS-IV scores, and an increase 
in the genus Bifidobacterium and the family Bacteroidaceae has also 
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been observed in adolescents with ADHD (Aarts et al., 2017a;  
Prehn-Kristensen et al., 2018a; Stevens et al., 2019). Additionally, low 
B. ovatus is also associated with cognitive deficits in ADHD (Li et al.). 
In terms of alpha and beta diversity, however, the results have been 
contradictory possibly due to the differences in the methodologies 
between studies. Meanwhile, the transplantation of the gut micro-
biota from people with ADHD generates ADHD-like behaviors in GF 
C57BL/6JOlaHsd mice, suggesting that altered gut microbiota com-
position plays a role in ADHD pathogenesis (Tengeler et al., 2020). 
Indeed, an altered microbiota–gut–brain axis contributes to the 
presence of the core symptoms of ADHD as well as the comorbid-
ities, such as sleep disorders [reviewed by (Checa-Ros et al., 2021)]. 
In terms of treatment, probiotics, prebiotics, and synbiotics have 
all been demonstrated to be beneficial in the therapeutic interven-
tions of ADHD, both directly and indirectly [reviewed by (Kalenik 
et al., 2021)]. For one thing, a double-blind randomized controlled 
trial has revealed that the application of synbiotics, which are 
a combination of pre-and probiotics, has been found effective in 
enhancing the emotional regulation of ADHD adults (Skott et al., 
2020). For another, there have been accumulating studies prov-
ing that L. rhamnosus might improve the stability of the intestinal 
barrier locally and regulate GABA and GABA receptors in the CNS 
through the vagus nerve in the meantime. Both of them have an 
alleviating effect on ADHD development and symptoms (Isolauri 
et al., 2008; Enticott et al., 2010; Bravo et al., 2011b; Pärtty et al., 
2015). In addition, diet also proves a possible solution. For instance, 
once metabolized by the gut microbiota, omega-3 (n-3) polyunsatu-
rated fatty acids (PUFAs) will reduce ADHD-like behaviors by acting 
through the reinforcement-insensitive mechanism (Dervola et al., 
2012). Along the immune pathway, omega-3 PUFAs also inhibit the 
activation of the NOD-, LRR-, and pyrin domain-containing protein 
3 (NLRP3) inflammasome, which further decreases the secretion of 
IL-1β (Yan et al., 2013). In a meta-analysis, the administration of 
PUFAs is found to be favorable in ameliorating ADHD symptoms 
as well, although the credibility is not strong enough (Gao et al., 
2022b). Still, PUFA supplementation is potentially promising in alle-
viating ADHD.

Besides ASD and ADHD, Rett Syndrome (RTT) is also a severe 
NDD. RTT is observed in girls and is characterized by progres-
sive mental decline, motor dysfunction, and ASD-like behaviors. 
Dysbiosis in the gut has been observed in patients with RTT, sug-
gesting that the gut microbiota plays a role in this NDD (Neier et 
al., 2021). Specifically, reduced richness in certain microbial taxa 
in Bifidobacterium, Anaerostipes, Clostridium XIVa, Clostridium XIVb, 
Erysipelotrichaceae, Actinomyces, Lactobacillus, Enterococcus, as well as 
Eggerthella, has been identified in RTT patients (Strati et al., 2016), 
while an enrichment was found in Bacteroidaceae, Clostridium spp., 
and Sutterella spp. (Borghi et al., 2017). It should be noted that an 
inflammatory profile is seen in female mouse models of RTT, sug-
gesting that the immune pathway is possibly involved (Neier et 
al., 2021). Indeed, microglia have been found to play a part since 
activated microglia and loss of microglia through apoptosis are 
associated with the development of the condition (Lukens and 
Eyo, 2022). On the therapeutic scale, both prebiotics and probiot-
ics are believed to have the potential for GI as well as behavioral 
dysfunctions in RTT, although specific solutions remain to be fur-
ther appreciated (Borghi et al., 2017).

Conclusion and future perspectives
Currently, the application of GF models, antibiotics, FMT, brain 
imaging, microbiome sequencing, and bioinformatics has 

brought us closer to understanding the microbiota–gut–brain axis 
[reviewed by (Cryan et al., 2019)]. Evidence from both preclinical 
and clinical research has indicated that the gut microbiota modu-
lates diverse processes in the CNS and neurodevelopment, among 
which data accumulated primarily from preclinical studies have 
shown that the gut microbiota acts through the aforementioned 
three pathways along the microbiota–gut–brian axis to impact 
blood−brain barrier permeability, synaptic pruning, neurogenesis, 
neuronal signaling, and behaviors or emotions such as sociability, 
sensory, memory, learning, and stress (Erny et al., 2017; Vuong et 
al., 2017; Pronovost and Hsiao, 2019; Morais et al., 2021). However, 
various questions remain unsolved, and in some cases, informa-
tion from studies may be conflicting.

Firstly, studies so far have established that there are three path-
ways along the microbiota–gut–brain axis, the endocrine/systemic 
pathway, the immune pathway, and the neuronal pathway, and 
interactions as well as overlaps between pathways have also been 
studied. However, there are potentially other novel components that 
might be involved in these pathways, such as autophagy and the 
endocannabinoid system, that are being increasingly recognized 
[reviewed by (Shoubridge et al., 2022)]. The roles and categorization 
of these components require further exploration. Despite our grow-
ing understanding, the exact mechanism of how various physiologi-
cal processes of the CNS are affected by the gut microbiota remains 
to be addressed more elaborately as well.

Secondly, in spite of the accumulating evidence on the impacts 
of the gut microbiota on the differentiation and maturation of 
immune cells, studies on certain enteric immune cells remain 
immature. For instance, there have been limited studies on the 
microbial impacts on mast cells. Besides, it has long been estab-
lished that the local immune systems are important in other 
organs such as the lung and the liver. Indeed, microbial dysbiosis 
of the lung has been found to impact the immunity of the lung, 
which plays a role in chronic lung diseases (O’Dwyer et al., 2016). 
However, the way that the gut microbiota regulates the immune 
systems in these organs to affect neurodevelopmental processes 
still needs to be further explored.

In addition, there have been data supporting both the genomic 
and non-genomic influence of the gut microbiota, especially the 
interplay of gut microbiota-derived metabolites and epigenetics 
involved in diverse cellular processes (Woo and Alenghat, 2022). 
As mentioned above, the most studied metabolites are SCFAs, 
with various studies on their effects on epigenetics as well as cel-
lular receptors and intracellular signaling cascades (Dalile et al., 
2019). However, there is still a paucity of data on the exact mech-
anisms of how various other microbial-derived metabolites, and 
microbial cell wall components affect neurodevelopmental pro-
cesses through the immune, neuronal, and endocrine pathways 
via epigenetics regulations.

Meanwhile, in recent years, optogenetic technology has emerged 
as a promising assistance in neuroscience research. With the help 
of this technology, the crosstalks between the heart and the brain 
have gradually been revealed (Veerakumar et al., 2022; Hsueh et al., 
2023). However, the application of this technology in understanding 
the crosstalks between the gut and the brain in NDDs remains in its 
infancy. Optogenetic technology has been found to be able to con-
trol the metabolism of the gut microbiota and regulate engineering 
bacteria that are taken in for therapeutic purposes, demonstrat-
ing its potential in neuroscience research (Hartsough et al., 2020). 
Therefore, more studies need to be carried out to make full use of 
optogenetic technology to further appreciate the impacts of the gut 
microbiota on neural circuits.



A review of gut microbiota in neurodevelopmental disorders  |  771

Pr
ot

ei
n

 &
 C

el
l

Finally, as discussed in the previous reseaches, therapeu-
tic interventions such as probiotics, prebiotics, synbiotics, diet, 
and FMT, have been accepted as promising in NDDs. However, 
although there have been a large amount of data coming from 
animal experiments, evidence from humans is still insufficient 
(Ng et al., 2020). Meanwhile, customized plans for different 
patients need to be standardized so that the effects of the afore-
mentioned therapeutic methods can be brought to full play.
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