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Mexican Biobank advances population and 
medical genomics of diverse ancestries
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Sergio Canizales-Quintero4, Andrés Jimenez-Kaufmann1, Hortensia Moreno-Macías6,7, 
Carlos A. Aguilar-Salinas8, Kathryn Auckland3, Adrián Cortés9, Víctor Acuña-Alonzo10, 
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Selene L. Fernández-Valverde1,18, Adrian V. S. Hill3,14, María Teresa Tusié-Luna6, 
Alexander J. Mentzer3,9 ✉, John Novembre2,15, Lourdes García-García4,20 ✉ & 
Andrés Moreno-Estrada1,20 ✉

Latin America continues to be severely underrepresented in genomics research, and 
fine-scale genetic histories and complex trait architectures remain hidden owing  
to insufficient data1. To fill this gap, the Mexican Biobank project genotyped 6,057 
individuals from 898 rural and urban localities across all 32 states in Mexico at a 
resolution of 1.8 million genome-wide markers with linked complex trait and disease 
information creating a valuable nationwide genotype–phenotype database. Here, 
using ancestry deconvolution and inference of identity-by-descent segments,  
we inferred ancestral population sizes across Mesoamerican regions over time, 
unravelling Indigenous, colonial and postcolonial demographic dynamics2–6. We 
observed variation in runs of homozygosity among genomic regions with different 
ancestries reflecting distinct demographic histories and, in turn, different distributions 
of rare deleterious variants. We conducted genome-wide association studies (GWAS) 
for 22 complex traits and found that several traits are better predicted using the 
Mexican Biobank GWAS compared to the UK Biobank GWAS7,8. We identified genetic 
and environmental factors associating with trait variation, such as the length of the 
genome in runs of homozygosity as a predictor for body mass index, triglycerides, 
glucose and height. This study provides insights into the genetic histories of individuals 
in Mexico and dissects their complex trait architectures, both crucial for making 
precision and preventive medicine initiatives accessible worldwide.

The architecture of complex traits in humans can be fully understood 
only in the context of history. Present-day Mexico covers seven cul-
tural regions, including much of Mesoamerica, with rich civilizational 
histories9. Archaeological and anthropological approaches have 
been used to regionalize Mexico into the north of Mexico, the north 
of Mesoamerica, the centre, occident and Gulf of Mexico, Oaxaca 
(referring here to the Oaxaca cultural region) and the Mayan region10 
(Fig. 1a). These regions are based on specific Indigenous civilizations 

and cultures, which flourished early in the Mayan region, Oaxaca, 
and the occident and the Gulf of Mexico, and later in the centre and 
north of Mesoamerica. Such histories have also been used to classify  
Mesoamerican chronology into preclassical, classical, postclassical, 
colonial and postcolonial periods11.

In the past 500 years, Spanish colonization has left an indelible mark 
on this Indigenous tapestry. In a colonial and postcolonial context, 
genetic ancestries that trace principally to Western Europe, West Africa 
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and East Asia can be identified in present-day Mexicans12–16. These 
genetic ancestries vary in structure and timing between Mesoamerican 
regions and give rise to extensive fine-scale population substructure 
and ancestry sources across Mexico12–16. Further, such varying genetic 
histories, as captured by ancestry distributions, have been shown to 
affect variation in complex traits such as lung force capacity12, and a 
number of other complex traits and diseases17.

Nevertheless, a large gap remains in the representation of Mexicans 
from across Mexico in cohorts with linked genotypes and phenotypes. 
Such representation could enable finer-scale studies of genetic histo-
ries and a better understanding of complex trait architectures among 
individuals with diverse ancestries from the Americas and those living 
in rural areas18. Past analyses on complex traits have been limited to 
studying individuals from the USA and Mexico City12,17. They have also 
not simultaneously modelled the influence on complex trait variation 
of a rich array of genetic and environmental factors as is possible with 
a nationwide biobank.

To bridge this gap, we launched the Mexican Biobank (MXB) project, 
densely genotyping 6,057 individuals from 898 localities distributed 
nationwide (Supplementary Figs. 1 and 2) recruited by the National 
Institute of Public Health (Instituto Nacional de Salud Pública) across 
all 32 states of Mexico. To select the samples for genomic and bio-
chemical characterization, we enriched for those individuals that 
speak an Indigenous language while maximizing geographic cover-
age and the inclusion of rural localities (about 70% of the MXB; Sup-
plementary Figs. 2–5). Of the participants in the MXB, 70% are female, 
and it comprises data for individuals born between 1910 and 1980 

(Supplementary Table 1) who were genotyped at about 1.8 million 
single nucleotide polymorphisms (SNPs) and have linked informa-
tion for complex traits, sociocultural and biogeographical markers  
(Supplementary Table 2).

Here, we leverage rich archaeological and anthropological informa-
tion to guide a regionalized analysis of Mexico, and harness the power 
of genome-wide local ancestry estimation and identity-by-descent 
(IBD) segments to decipher fine-scale genetic histories using 
ancestry-specific approaches to denote origins and historical popu-
lation size changes4,19. We reveal a very heterogeneous landscape of 
both, painting a genetically informed picture of varying demographic 
trajectories in Mesoamerican regions, including colonial migrations 
and dynamics. We further investigate the role of these evolutionary 
histories as captured by proxies of genetic ancestries in shaping genetic 
variation and complex trait patterns in Mexico today. We show that 
these histories result in marked geographic and ancestry-specific 
patterns in the distributions of runs of homozygosity (ROH) and of 
the genomic burden of rare deleterious variants. We carry out GWAS 
analyses across 22 binary and quantitative traits, and compare the 
prediction performance of polygenic scores computed using our 
GWAS or UK Biobank (UKB) GWAS data. Last, given that evolutionary 
histories (captured by genetic ancestries) could associate specific 
trait-relevant genotypes with certain genetic backgrounds, we study 
the impact of genetic ancestries, portions of the genome in ROH, 
polygenic scores and other sociocultural and biogeographical fac-
tors on creating variation in complex and medically relevant traits  
in Mexico.
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Fig. 1 | Mosaic ancestral patterns in the MXB and the genetic diversity 
within Mexico. a, Sampling for the MXB (n = 5,812 individuals with latitude and 
longitude values), showing Mexico regionalized into Mesoamerican regions 
according to an anthropological and archaeological context. b, Unsupervised 
clustering using ADMIXTURE and global reference panels (n = 9,007 including 
MXB) from the 1000 Genomes Project, the Human Genome Diversity Project 
and the Population Architecture using Genomics and Epidemiology Study.  
c, Uniform manifold approximation and projection (UMAP) analysis of MXB 

(n = 5,622) coloured by Mesoamerican region. d, Archetypal analysis of MXB  
(n = 5,833) with reference global individuals as in b, coloured by region (top) or 
in grey (bottom). This approach determines each individual’s position in a 
ten-dimensional space that in this visualization is reduced to two dimensions. 
Reference individuals (bottom) are coloured using ADMIXTURE inferred 
clusters from b. For example, for the Americas (1000 Genomes) and Middle 
East, where multiple clusters are inferred, a colour combining these cluster 
colours is used.
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Diverse ancestries across timescales
We begin by analysing the population structure in the MXB at differ-
ent geographic resolutions and timescales (see the section entitled 
‘Note on genetic ancestries’ in the Methods; Fig. 1 and Supplementary 
Figs. 6–24). Given the history of Mexico, in which genetic lineages are 
expected to trace back to disparate geographic regions (for example, 
the Americas, Western Europe, West Africa and East Asia) in the past 
approximately 500 years, we first analyse each individual in a frame-
work that infers proportions of genetic ancestries on the basis of genetic 
similarity to other individuals (using ADMIXTURE20) in a global refer-
ence sample. We use a similar approach to label local segments across 
the genomes of the study individuals. We use the term ‘ancestries from 
the Americas’ when referring to genetic ancestries that derive from 
genetic ancestors living in the Americas before European colonization; 
these have also been referred to as Indigenous ancestries, and in some 
places below we also use this term (Fig. 1b, Supplementary Figs. 11 and 
12 and Supplementary Table 3).

Higher proportional ancestries from the Americas are inferred in 
Mexico’s central and southern states, compared to the northern states, 
and ancestries from West Africa are observed in every state21 (Sup-
plementary Table 3) in agreement with historical records of shipping 
voyages from the transatlantic slave trade21,22 (Supplementary Fig. 14). 
We note the presence of a small but substantial proportion of ancestries 
from East Asia in almost every state (0–2.3%), the highest in the state 
of Guerrero (2.3%), and an even more modest proportion of ancestries 
from South Asia in most states as well (0–0.8%). These probably reflect 
migrations from Asia to Mexico dating to the Manila Galleon trade in 
the sixteenth and seventeenth centuries16,23–26, and later nineteenth- 
and twentieth-century migrations from China and Japan, especially 
to the north of Mexico27–29.

We observe the most significant genetic differentiation along a 
north-to-southeast cline in Mexico (measured using FST, which is an 
index quantifying the proportion of the total genetic variance con-
tained in subpopulations (S) relative to the total genetic variance (T); 
Supplementary Figs. 15–18). When considering autosomes of only 
individuals with ≥90% proportion of ancestries from the Americas 
(inferred using ADMIXTURE), the Mayan region of Chiapas, Tabasco, 
Yucatan, Quintana Roo and Campeche show relatively larger FST values 
with the other regions (Supplementary Figs. 17 and 18). This distinc-
tion is also apparent using ADMIXTURE-inferred ancestral clusters 
(Supplementary Fig. 13) and dimensionality reduction techniques 
highlighting this population substructure within Mexico (Fig. 1c,d and 
Supplementary Figs. 7–20). Individuals from the Mayan region tend to 
cluster mostly together, but overlap with individuals from the Gulf of 
Mexico and central Mexico, consistent with oral histories. In the rest of 
the regions, subtle substructure mirroring Mesoamerican geography is 
visible in the MXB, probably reflecting both unique local demographic 
histories of Indigenous ancestries and the effects of movement and 
mating among the different regions. Compared to previous sampling 
and analyses that focused on Indigenous groups with varying degrees 
of isolation in Mexico12, the MXB reveals lower average levels of FST 
and substructure, probably owing to the broader sampling (although 
the substructure presented by the Mayan region is more apparent in 
the MXB). The method of ref. 5 further highlights the ancestral diver-
sity reflected by the MXB samples that are represented as mixtures of 
multiple sources (Supplementary Fig. 22) in the presence of global 
references (Fig. 1d and Supplementary Figs. 21–23). Individuals from 
the same region (for example, the Mayan region) are modelled as mix-
tures of several sources, reflecting the diversity of ancestry variation 
within this and other Mesoamerican regions. Given this variation among 
ancestries from the Americas and the unique power given by the MXB to 
explore its impact on complex trait variation, we also obtain an axis of 
variation within ancestries from the Americas (Supplementary Fig. 24 
and Supplementary Table 4).

Genetic histories inferred within Mexico
Contemporary Mexicans derive ancestries predominantly from diverse 
lineages found in the Americas, Western Europe and West Africa. These 
ancestral sources have different demographic histories before their 
arrival in present-day Mexico and probably after their arrival within 
different Mesoamerican regions. To reveal the history of effective 
population sizes (Ne) of these three ancestries in the MXB, we ana-
lyse IBD segments4,30 stratified by local ancestry inference for each  
Mesoamerican region4 (Fig. 2).

We observe fine-scale variation in Ne trajectories for Indigenous 
lineages which we interpret in the context of the different cultural 
histories of Mesoamerican regions9 (Fig. 2). As generational time can 
vary, we present our analysis at two extremes of 20 and 30 years per 
generation31 (Supplementary Figs. 25 and 2c, respectively). Chronologi-
cally speaking, archaeologists document that Mesoamerican civiliza-
tions flourished first in the Mayan region, in Oaxaca, in the occident and 
in the Gulf of Mexico. In these regions, we observe large Ne already in 
the classical period (250–900 ce)32. For example, in the Gulf, where we 
observe high Ne since the preclassical period (2500 bce–250 ce), there 
is archaeological evidence, among a myriad of other groups, of the 
Olmecs in the preclassical period, the Totonacs in the classical period 
and the Huastecs in the postclassical period (900–1521 ce)33. In Oaxaca, 
we observe Ne rapidly growing in the preclassical to the classical period, 
in line with archaeological inferences that the Zapotecs were already 
starting to create sedentary settlements in the preclassical period fol-
lowed by a rise in social and political structures in the classical period. 
The subsequent postclassical period was characterized by militarism 
and warfare34, and our genetic evidence suggests a population decline 
towards the end of the postclassical period. In the Yucatan peninsula, 
the Maya had a prominent civilizational spread in the classical period 
(peak Ne observed). They started going through a slow decline only in 
the postclassical period due to what archaeologists have inferred as 
a combination of different political and ecological factors, and this 
trajectory is supported in the Ne trend32.

These patterns contrast with those of the centre and north of Meso
america, where the Aztec empire had a stronghold most recently; there 
we see increasing Ne in the postclassical right before the arrival of the 
Spaniards and into part of the colonial period, after which we start to 
see a population decline in Ne. The decrease in Ne after the arrival of the 
Spaniards is most prominent in the centre and north of Mesoamerica. 
In Oaxaca and the Mayan region, where Indigenous ancestries from the 
Americas are most prevalent today as evidenced by the ADMIXTURE 
analysis (Supplementary Table 3), the decrease in Ne is followed by an 
increase in the postcolonial period.

Concurrently, we observe that ancestries from Western Europe that 
entered the contemporary Mexican gene pool went through a sharp 
decline in effective population size during the colonial period. The 
extent of the founder effect varied by region, with the strongest effect 
seen in Oaxaca and the Mayan region (Supplementary Figs. 26 and 27).  
Ancestries from West Africa in Mexico revealed stronger founder 
effects that varied by region, with Ne ranging between 103 and 104 in 
the colonial period. The population size in the postcolonial period 
continued to grow in some regions such as the occident and north of 
Mexico and the Mayan region, compared to others (Supplementary 
Figs. 28 and 29). Consistent with previous results on self-identified 
Indigenous groups13,14, our results on the MXB individuals highlight the 
heterogeneity of group histories across the Mesoamerican regions as 
well as the expansion of Indigenous lineages in the postcolonial period 
in several regions.

We further generated ‘admixture graphs’6 for individuals from the 
Mesoamerican regions to investigate their shared history by using 
an ancestry-specific approach and limiting the analysis to genomic 
segments with ancestries from the Americas. The admixture graph 
approach models the different Mesoamerican regions as populations 
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in a progression of splits (Extended Data Fig. 1a and Supplementary 
Fig. 30), providing information about the genetic relationships among 
the different regions. We can observe a clear progression of splits among 
the populations from north to south, with the north of Mexico splitting 
first, followed by the common ancestor of the north of Mesoamerica 
and the occident of Mexico, followed by the common ancestor of the 
remaining regions. Notably, the centre of Mexico and the Mayan region 
are related, consistent with previous suggestions based on IBD12 and our 
population structure results, and both share a common ancestral source 
with Oaxaca and the Gulf of Mexico. These results further strengthen 
evidence for an Atlantic coastal corridor of gene flow between the 
Yucatan peninsula and central Mexico and the Gulf of Mexico previ-
ously posited in ref. 12. As demographic histories can affect patterns 
of genetic variation, such as distributions of ROH and of the genomic 
burden of deleterious variants, we next evaluate these metrics.

Impact of genetic histories on variation
We analyse the patterns of ROH in the MXB including how they  
vary across geography and genetic ancestry proxies (inferred from 
ADMIXTURE). ROH patterns help further illuminate the demographic 
and mating histories of Mexicans35, and are especially relevant for 
variation in complex traits when trait-relevant variation is affected by 
partially recessively acting alleles36. We identify ROH (≥1 Mb) in the 
MXB and observe that both the number of ROHs and the total length 
of ROH per individual increase as we move from north to southeast in 
the country (Supplementary Fig. 31). We confirm that this is primarily 
due to individuals with a higher inferred proportion of genetic ances-
tries from the Americas also having more ROH, particularly small ROH 
(smaller than those expected from recent consanguinity; for exam-
ple, <8 Mb), in their genomes (Fig. 3a, Supplementary Figs. 32 and 33 
and Supplementary Table 5). The appearance of many small ROHs 

indicates coalescences occurring at a period in the more distant past; 
for example, due to an ancient bottleneck or relatively small historical 
population size37.

Further, we observe that ROH found on Indigenous genomic seg-
ments are more frequent in younger individuals compared to older 
individuals (Spearman’s ρ = 0.31, P = 0.016; Fig. 3b). We corroborate 
that this correlation with birth year primarily derives from small ROH 
(ρ = 0.35, P = 0.006), and small ROH found on Indigenous genomic 
segments (ρ = 0.39, P = 0.002; Fig. 3b). The result is at least partly due 
to younger individuals having higher proportions of Indigenous ances-
tries compared to older individuals, especially in the rural localities 
(Supplementary Figs. 34 and 35), and agrees with recent observations 
about ancestry and ROH made in Mexican Americans17. We also confirm 
that this observation is not due to sampling bias (see the sampling ascer-
tainment note in the Supplementary Information). The observation 
of higher ancestries from the Americas in younger individuals in rural 
areas may be due to higher fertility rates in rural areas or individuals 
with other ancestries moving out from rural to urban areas.

We also investigate the effects of demographic histories on the fre-
quency distribution of genetic variants. This analysis is motivated by 
previous theoretical and empirical work showing that undergoing 
a bottleneck changes the allele frequency distribution in the group 
that experienced the bottleneck38–40, while leaving the overall sum of 
deleterious alleles per individual (‘deleterious mutational burden’) 
unchanged39,41,42. In particular, rare variants are lost or increase in fre-
quency after the bottleneck.

We evaluate this effect by computing the genome-wide sum of inter-
genic, synonymous and putatively deleterious (predicted-damaging 
missense and loss of function) alleles per individual. When consider-
ing only rare alleles (derived allele frequency ≤ 5%), we observe that 
individuals with higher ancestry proportions from the Americas 
carry fewer rare derived alleles across variant types (strongest effect 
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590, 820, 315 and 938 for the north of Mexico, north of Mesoamerica, centre of 
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region, respectively.
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observed for intergenic variants) (Fig. 3c) in contrast to other ances-
tries. We verified these observations with whole-genome sequences 
from a 1000 Genomes Project cohort (Mexican Ancestry in Los Angeles, 
California or MXL) (Supplementary Fig. 39), as well as with 50 genomes 
sequenced as part of the MXB project (Supplementary Fig. 40), to rule 
out ascertainment biases due to the array genotyping. Our result prob-
ably reflects primarily founder events during the peopling of America 
or subsequent genetic drift leading to loss of rare variants and/or their 
rise to higher frequencies.

GWAS and polygenic prediction in the MXB
To understand trait-associated locus transferability, we conduct 
GWAS analyses across 22 binary and quantitative traits (Supple-
mentary Table 6). We identify genome-wide significant loci passing 
Bonferroni correction (P < 2.27 × 10−9) on chromosomes 1, 9, 11 and 16 
associated with lipid levels in blood (Fig. 4a). Fine-mapping of inde-
pendent signals within these loci reveals variants in or near CELSR2 

(low-density lipoprotein (LDL): rs7528419), ABCA1 (high-density lipo-
protein (HDL): rs9282541 and rs2065412), the LINC02702–BUD13–
ZPR1–APOA1–APOA4–APOA5–APOC3–SIK3 locus (HDL: rs180326 and 
rs200905431; LDL: rs66505542; triglycerides: rs947989, rs66505542 
and rs5104), HERPUD1–CETP (HDL: rs57502215, rs56129100, rs193695, 
rs56228609 and rs117427818; cholesterol: rs57502215, rs56228609 and 
rs118146573) and APOE (LDL: rs7412; triglycerides: rs440446), which 
have all previously been associated with lipid levels in European and 
Hispanic groups (Supplementary Table 7). Notably, we replicate the 
association of the ABCA1*C230 allele that has previously been associ-
ated with decreased HDL cholesterol levels (β = −0.219, s.e. = 0.030, 
P = 1.64 × 10−13; Fig. 4a), and is found almost exclusively in Indigenous 
groups from the Americas43. This association was replicated in the 
subset containing >90% inferred Indigenous ancestries although 
it did not reach genome-wide significance (β = −0.210, s.e. = 0.055, 
P = 1.22 × 10−4). Restricting the GWAS cohort to individuals with >90% 
inferred ancestries from the Americas did not identify any genome-wide  
significant loci.
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Fig. 3 | Demographic histories affect patterns of genetic variation in Mexico. 
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size in the past (n = 5,833 individuals). b, Sum of ROH per individual as a function 
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lines indicate ROH overlapping ancestries from the Americas (AMR). ROH are 
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Analysis of whole-genome sequences from 1000 Genomes MXL samples shows 
that the rare mutation burden result is robust to ascertainment bias of Illumina’s 
Multi-Ethnic Global Array (Supplementary Figs. 39 and 40). Variants were 
annotated using the Variant Effect Predictor tool, and nonsynonymous 
(deleterious) variants are a combined set of missense variants predicted to be 
damaging by polyphen2 along with splice, stop lost and stop gained variants.
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To assess transferability in the prediction of quantitative traits 
using polygenic scores, we re-perform a GWAS in only 4,000 randomly 
selected individuals from the MXB and construct polygenic scores in 
the remaining 1,778 individuals (Supplementary Fig. 41). We compute 
polygenic scores using both genotype data and imputed genotypes 
using TOPMed. To assess the impact of using different GWAS sum-
mary statistics on prediction performance, for comparison we also 
compute polygenic scores using pan-ancestry GWAS from the UKB in 
light of the varying ancestry sources in Mexico (Fig. 4b and Extended 
Data Fig. 1b). We observe that MXB-based prediction works better or 
as well as UKB-based prediction, despite much lower sample size, for 
glucose, creatinine, cholesterol and diastolic blood pressure (Extended 
Data Figs. 1b and 2–10 and Supplementary Tables 8 and 9). Triglycer-
ides, HDL and LDL cholesterol levels are also almost as well predicted 
by the MXB GWAS (Fig. 4b). These results indicate that further gains 
in prediction power would be achieved by increasing the sample size 
further. Although many factors are probably involved in differential 
polygenic score portability by trait, some trait architecture features 
are probably relevant, such as the strength of stabilizing selection 
that the trait is under, its mutational target size and heritability per 
causal site44,45. Using estimated mutational target sizes from previous 
GWAS studies45, we observe that traits with smaller inferred mutational  
target sizes (creatinine and triglycerides) are predicted better with SNPs 
discovered in MXB compared to traits inferred to have larger target 
size (height and body mass index (BMI))45. UKB-based predictors are 
used in our complex trait modelling below, as these can be computed 
for all MXB individuals.

Complex trait architectures in the MXB
Last, we assess the contribution of genetic variation resulting from 
variable demographic and environmental histories or causal variant 
distributions towards affecting variation in complex traits or diseases 
in Mexico (Supplementary Fig. 42). We focus on several quantitative 
traits: height, BMI, triglycerides, cholesterol, glucose, blood pres-
sure and others. Aiming to understand how the traits are distributed 

geographically and relative to single model covariates, we first visualize 
average trait values by units of our biogeographical and sociocultural 
factors to understand the dimensions of trait variation (Fig. 5a and 
Supplementary Figs. 43–51).

Next we use a mixed model to estimate the contribution of genetic 
factors to trait variation jointly modelled with the environmental  
factors (Fig. 5b,d and Supplementary Figs. 52–61). Genetic ancestry 
proxies can be associated with complex traits due to genetic factors 
or due to non-genetic factors that covary with genetic ancestries such 
as differential experiences of discrimination, dietary nutrition and 
socioeconomic status (Supplementary Fig. 42). The genetic factors 
that vary with genetic ancestry proxies can be different distributions 
of ROH or other differential patterns of genetic variation caused by 
demographic and environmental histories that vary among ances-
tries. ROH have also previously been shown to have associations with 
a broad range of complex traits such as height, weight and cholesterol, 
pointing towards a recessive architecture of these traits36,46. As shown 
above, genetic ancestry proxies in the MXB are correlated with the 
number and length of ROH (Fig. 3a). We, therefore, develop a mixed 
model for the association of genetic factors such as ancestry prox-
ies, ROH and polygenic scores with trait variation. We consider in our 
model several environmental factors to improve power and to query 
the role of genetic factors reflected in ancestry proxies compared 
to environmental factors. We include variables available in the MXB 
related to discrimination, socioeconomic opportunities and living 
environment (collectively called sociocultural and biogeographical 
factors), as well as unobserved random effects to model cryptic related-
ness and potential unmodelled environmental factors. In this model, a 
significant association with ancestry proxies could reflect the associa-
tion of particular causal genotypes with those ancestries or associated 
unmodelled environmental factors such as nutrition. Our combined 
model explains 66.6% of the variance for height, 30.4% for BMI, 44.3% 
for triglycerides, 30.9% for cholesterol and 30.91% for glucose.

As an illustrative example, height values show a clear increasing 
pattern from southeast to northwest in the MXB (Fig. 5a). Even though 
height values in every state exhibit a large variance (Fig. 5a), height is 
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Fig. 4 | Illustrative examples of GWAS and polygenic prediction in the MXB. 
a, Manhattan plots showing GWAS results for HDL cholesterol (top, n = 4,484) 
and triglycerides (bottom, n = 4,483) in the full MXB dataset. Fine-mapped 
genes are labelled (Methods). To aid with visualization, 1 in 200 SNPs with 
P > 0.01 were sampled for the Manhattan plots. b, Prediction performance is 
measured by the correlation between polygenic score (the sum of all alleles 
associated at P < 0.1 weighted by their estimated effect sizes) and trait value  
(as measured by Pearson correlation R and its associated two-sided P value)  
for HDL cholesterol (top, n = 1,327) and triglycerides (bottom, n = 1,326). 

According to the schematic in Supplementary Fig. 41, for b, GWAS was  
carried out in two-thirds of the MXB, and the remaining one-third of the  
MXB was used to compute polygenic scores and test their ability to predict 
complex traits. Smoothed conditional mean lines are shown using a linear 
model. Error bands represent 95% confidence intervals. Scores were 
computed using TOPMed-imputed MXB genotypes. Traits were normalized 
using an inverse normal transform (INT) for both a and b. For further evaluation of 
prediction performance, see Extended Data Figs. 1b and 2–10 and Supplementary 
Tables 8 and 9.
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significantly correlated with longitude (Fig. 5b and Supplementary 
Figs. 43 and 45). We find that individuals with a higher proportion of 
Indigenous ancestries from the Americas are significantly shorter 
(β P= − 0.45, < 2.2 × 10−16) whereas individuals with a higher proportion of  
ancestries from West Africa are significantly taller (β P= 0.07, < 0.005; 
Fig. 5b). Further, considering ancestries at a finer resolution, we observe 
decreased height with a change in ancestries from the north of Mexico 
(for example, Huichol and Tarahumara) to those from the Mayan region 
(for example, Tojolabal and Maya; β p= −0.156, = 6.13 × 10−6; Supplemen-
tary Fig. 55). Total length of ROH is also significantly associated with 
shorter height (β P= − 0.08, = 0.01). Simultaneously, younger individu-
als across the ancestry spectrum are taller than older individuals with 
the same ancestries (Fig. 5c), exhibiting the impact of non-genetic 
factors (improving nutrition in the birth year range studied or effects 
of ageing) on height variation as well.

Obesity is a public health issue in Mexico47 and has been suggested 
to be related to higher genetic risk associated with Indigenous ances-
tries48. Contrary to this hypothesis, in the MXB as a whole, when con-
sidered univariately, Indigenous genetic ancestries and speaking an 
Indigenous language actually correlate with lower BMI (Supplementary 
Figs. 49 and 60). In our joint model with covariates, although those 

associations disappear, ROH in a genome (which are more prevalent 
in Indigenous genetic ancestries) are also associated with lower BMI. 
By contrast, as living in an urban environment is associated with higher 
BMI (Fig. 5d), our results suggest a focus on factors related to an urban 
environment such as diet and sedentarism to help tackle the obesity 
issue in Mexico. Further segmented analysis considering only individu-
als in urban environments suggests the same: we observe individuals 
that speak an Indigenous language associating with higher BMI only 
in urban environments (Supplementary Fig. 61).

By contrast, some other traits show a correlation with an individual’s 
proportion of inferred genetic ancestries from the Americas: creati
nine (β P= − 0.13, = 0.0095), LDL (β P= − 0.141, = 0.013), triglycerides 
(β P= 0.16, = 0.001) and blood glucose level (β P= 0.19, = 0.0005; Sup-
plementary Fig. 54). In the MXB, the amount of an individual’s genome 
in ROH is associated with lower BMI (β P= − 0.18, = 7.11 × 10−5), triglyce
rides (β P= − 0.13, = 0.004) and blood glucose level (β = − 0.12, P = 0.01;  
Supplementary Fig. 56). We also find that polygenic scores computed 
using genome-wide significant SNPs from the UKB pan-ancestry GWAS 
are a significant predictor for complex trait variation for all traits ana-
lysed (Supplementary Fig. 57). Blood pressure is associated with envi-
ronmental factors and polygenic scores but not other genome-wide 
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Fig. 5 | An analysis of the factors influencing height and other complex trait 
variation. a, Bottom: map of average height in Mexico (n = 5,770). Height was 
normalized using an INT. Top: box plots of height (INT) variation in each state 
from northwest to southeast. The box plots show the median value and the 
quartiles. Whiskers extend to the minimum and the maximum values. The dots 
represent outliers. n = 5,846 biologically independent samples were used for 
the analysis. b, Explanatory model for height variation implicates the role of 
genetics and environment. The plot shows effect-size estimates and confidence 
intervals (1.96 × s.e.m.) from a mixed-model analysis. All quantitative predictors 
are centred and scaled by 2 standard deviations. Asterisks show significance at 
false discovery rate < 0.05 across traits and predictors analysed50. n = 4,625 
biologically independent samples were used for the analysis. c, Height as a 
function of birth year in quartiles of ancestries from the Americas (n = 5,598). 

Error bands represent 95% confidence intervals. d, Trait profiles for BMI (left), 
triglycerides (middle) and glucose (right). Results of mixed-model analysis,  
as in b. The plot shows effect-size estimates and confidence intervals 
(1.96 × s.e.m.) from a mixed-model analysis. n = 4,607, 3,664 and 3,613 
biologically independent samples were used for the analysis for BMI, 
triglycerides and glucose, respectively. For b and d, PS are polygenic scores 
computed using UKB summary statistics (SNPs significant at P < 10–8), A(Africa/
East Asia/Americas) refers to ancestry proportions from that region as inferred 
from ADMIXTURE, and MDS1(A(Americas)) and MDS2(A(Americas)) refers to 
multidimensional scaling (MDS) axes within ancestries from the Americas as 
inferred using a MAAS-MDS analysis (Supplementary Fig. 24). Educational 
(Edu.) attainment is on a scale from 0 to 8 (low to high educational attainment), 
and altitude is measured in metres (low to high).
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genetic factors (Supplementary Fig. 53). Notably, among the environ-
mental factors investigated, living in an urban environment is associ-
ated with higher height, BMI, cholesterol and creatinine levels, whereas 
living at high altitudes is significantly associated with higher triglyc-
eride, glucose, cholesterol, creatinine and blood pressure levels  
(Supplementary Fig. 58). Higher educational attainment is associated 
with higher height, LDL, HDL and lower triglyceride levels, whereas 
speaking an Indigenous language is associated with lower creatinine 
and cholesterol levels (Supplementary Fig. 58).

Previous work has implicated the ABCA1*C230 allele (rs9282541) in 
decreasing HDL levels and shown that this allele is apparently exclu-
sive to Indigenous genetic ancestries from the Americas (found in 29 
of 36 Native American groups, but not in European, Asian or African 
individuals)43. In the MXB, we similarly observe the ABCA1*C230 allele 
to be in higher frequencies in individuals with a higher proportion of 
ancestries from the Americas, and observe that individuals with higher 
ABCA1*C230 allele frequencies have lower HDL levels (Supplementary 
Fig. 59a). Nevertheless, overall, Indigenous ancestries are not asso-
ciated with HDL levels after accounting for other covariates. In fact, 
genetic variants collectively on the Indigenous genetic background 
are associated with lower LDL levels (Supplementary Fig. 59b). These 
results illustrate how the interplay between cultural and diet factors and 
genetic factors are essential for different cholesterol outcomes. They 
also imply that although some functional variants may be specific to 
regions or genetic backgrounds, these are few (about 1,000 such vari-
ants estimated in the Americas with a frequency of 40% or higher from 
the Human Genome Diversity Project sampling of diverse genomes49), 
and caution against using an individual’s global ancestry proportion 
as a predictor of the effect of a single functional variant. Our results 
overall support that functional variants with variable frequencies or 
environmental interactions are partially responsible for variation in a 
range of complex traits in Mexico43.

Conclusion
Our work demonstrates the value of generating genotype–phenotype  
data on underrepresented groups to reveal lesser-known genetic 
histories and generate findings of biomedical relevance. It is also 
an illustration of the joint modelling of genetic and environmental 
effects to reveal the aetiology of complex traits and disease. In this 
project, we ensure diverse Indigenous and rural presence in our sam-
pling strategy, consider the fluidity of ancestries from different local 
and global regions in our analyses, and evaluate their reflection in 
genetic and disease-relevant complex trait variation. By leveraging 
the largest nationwide genomic biobank in Mexico, we find diverse 
sources of ancestries in Mexico in light of its unique history, and infer 
demographic and admixture histories and ROH using ancestry-specific 
haplotype identity that reveal an elaborate fine-scale structure in the 
country. Observing a larger number of small ROH in younger individu-
als in the MXB and in genomic segments of Indigenous ancestries is 
relevant for parsing the genetic architecture of complex traits and 
diseases, especially those with a recessive component. We also show 
that demographic history affects the frequency distribution of genetic 
variants, thus changing how many rare variants individuals with differ-
ent ancestries carry. We demonstrate the value of GWAS carried out 
on a resource such as the MXB for predicting complex traits. The MXB 
GWAS exhibits utility for polygenic score computation in independent  
Mexican cohorts, as well as for meta-analysis with other GWAS cohorts 
to increase prediction power further. Last, we observe a significant 
impact of genetic ancestries at different timescales, ROH, polygenic 
scores and sociocultural and biogeographic variables on various 
complex traits implicating the importance of both genetic and envi-
ronmental factors in explaining complex trait variation and in consid-
erations of potential public health interventions. Our results exhibit the 
added importance of considering genetic factors for preventive and 

personalized medicine above and beyond environmental factors. Our 
results will inform the design of future genetic and complex trait studies 
in Mexico and Latin America, and will hopefully motivate additional 
efforts to strengthen local research capacity across Latin America and 
benefit underserved groups globally.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-023-06560-0.

1.	 Mills, M. C. & Rahal, C. The GWAS Diversity Monitor tracks diversity by disease in real time. 
Nat. Genet. 52, 242–243 (2020).

2.	 Maples, B. K., Gravel, S., Kenny, E. E. & Bustamante, C. D. RFMix: a discriminative modeling 
approach for rapid and robust local-ancestry inference. Am. J. Hum. Genet. 93, 278–288 
(2013).

3.	 Hilmarsson, H., Kumar, A. S., Rastogi, R. & Bustamante, C. D. High resolution ancestry 
deconvolution for next generation genomic data. Preprint at bioRxiv https://doi.
org/10.1101/2021.09.19.460980 (2021).

4.	 Browning, S. R. et al. Ancestry-specific recent effective population size in the Americas. 
PLoS Genet. 14, e1007385 (2018).

5.	 Gimbernat-Mayol, J., Mantes, A. D., Bustamante, C. D., Montserrat, D. M. & Ioannidis, A. G. 
Archetypal analysis for population genetics. PLoS Comput. Biol. 18, e1010301 (2022).

6.	 Nielsen, S. V. et al. Bayesian inference of admixture graphs on Native American and Arctic 
populations. PLoS Genet. 19, e1010410 (2023).

7.	 Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. 
Nature 562, 203–209 (2018).

8.	 Pan-Ancestry Genetic Analysis of the UK Biobank https://pan.ukbb.broadinstitute.org/ 
(Pan-UK Biobank, accessed date 2 October 2022).

9.	 Coe, M. D., Urcid, J. & Koontz, R. Mexico: from the Olmecs to the Aztecs (Thames & 
Hudson, 2013).

10.	 Vela, E. Áreas culturales: Oasisamérica, Aridamérica y Mesoamérica. Arqueol. Mex 82, 
28–29 (2018).

11.	 Mendoza, R. G. in The Oxford Encyclopedia of Mesoamerican Culture Vol. 2 (ed. Carrasco, D.) 
222–226 (2001).

12.	 Moreno-Estrada, A. et al. The genetics of Mexico recapitulates Native American 
substructure and affects biomedical traits. Science 344, 1280–1285 (2014).

13.	 García-Ortiz, H. et al. The genomic landscape of Mexican Indigenous populations brings 
insights into the peopling of the Americas. Nat. Commun. 12, 5942 (2021).

14.	 Romero-Hidalgo, S. et al. Demographic history and biologically relevant genetic variation 
of Native Mexicans inferred from whole-genome sequencing. Nat. Commun. 8, 1005 (2017).

15.	 Ávila-Arcos, M. C. et al. Population history and gene divergence in native Mexicans 
inferred from 76 human exomes. Mol. Biol. Evol. 37, 994–1006 (2020).

16.	 Rodríguez-Rodríguez, J. E. et al. The genetic legacy of the Manila galleon trade in Mexico. 
Phil. Trans. R. Soc. B 377, 20200419 (2022).

17.	 Spear, M. L. et al. Recent shifts in the genomic ancestry of Mexican Americans may alter 
the genetic architecture of biomedical traits. Elife 9, e56029 (2020).

18.	 Popejoy, A. B. & Fullerton, S. M. Genomics is failing on diversity. Nature 538, 161–164 
(2016).

19.	 Moreno-Estrada, A. et al. Reconstructing the population genetic history of the Caribbean. 
PLoS Genet. 9, e1003925 (2013).

20.	 Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in 
unrelated individuals. Genome Res. 19, 1655–1664 (2009).

21.	 Patin, E. et al. Dispersals and genetic adaptation of Bantu-speaking populations in Africa 
and North America. Science 356, 543–546 (2017).

22.	 Trans-Atlantic Slave Trade Database https://www.slavevoyages.org/ (Slave Voyages, 
accessed date 15 November 2021).

23.	 Seijas, T. Asian Slaves in Colonial Mexico: from Chinos to Indians (ed. Klein, H. S.) 
(Cambridge Univ. Press, 2014).

24.	 Chávez, C. P. M. El alcalde de los chinos en la Provincia de Colima durante el siglo XVII: 
un sistema de representación en torno a un oficio. Let. Hist. 1, 95–115 (2009).

25.	 Keresey, D. O. La esclavitud Asiática en el virreinato de la Nueva España, 1565-1673.  
Hist. Mex. 61, 5–57 (2011).

26.	 Carrillo, R. Asia llega a América. Migración e influencia cultural asiática en Nueva España 
(1565-1815). Asiadémica 3, 81–98 (2014).

27.	 Mishima, M. E. O. Siete Migraciones Japonesas en México: 1890-1978 (El Colegio de 
Mexico, 1982).

28.	 Augustine-Adams, K. Prohibir el mestizaje con chinos: solicitudes de amparo, Sonora, 
1921-1935. Rev. Indias 72, 409–432 (2012).

29.	 Guillén, M. L. Vivir para trabajar. La inserción laboral de los inmigrantes chinos en 
Chiapas, siglos XIX y XX. Studium: Revista Humanidades 19, 113–140 (2013).

30.	 Browning, S. R. & Browning, B. L. Accurate non-parametric estimation of recent effective 
population size from segments of identity by descent. Am. J. Hum. Genet. 97, 404–418 
(2015).

31.	 Wang, R. J., Al-Saffar, S. I., Rogers, J. & Hahn, M. W. Human generation times across the 
past 250,000 years. Sci Adv. 9, eabm7047 (2023).

32.	 Gugliotta, G. The Maya: glory and ruin. The National Geographic Magazine 212, 68–109 
(August 2007).

33.	 Diehl, R. A. The Olmecs: America’s First Civilization (Thames & Hudson, 2004).

https://www.ncbi.nlm.nih.gov/snp/?term=rs9282541
https://doi.org/10.1038/s41586-023-06560-0
https://doi.org/10.1101/2021.09.19.460980
https://doi.org/10.1101/2021.09.19.460980
https://pan.ukbb.broadinstitute.org/
https://www.slavevoyages.org/


Nature  |  Vol 622  |  26 October 2023  |  783

34.	 Marcus, J. & Flannery, K. in The Cambridge History of the Native Peoples of the Americas 
(eds Adams, R. E. W. & MacLeod, M. J.) 358–406 (Cambridge Univ. Press, 2000).

35.	 Ceballos, F. C., Joshi, P. K., Clark, D. W., Ramsay, M. & Wilson, J. F. Runs of homozygosity: 
windows into population history and trait architecture. Nat. Rev. Genet. 19, 220–234  
(2018).

36.	 Clark, D. W. et al. Associations of autozygosity with a broad range of human phenotypes. 
Nat. Commun. 10, 4957 (2019).

37.	 Ringbauer, H., Novembre, J. & Steinrücken, M. Parental relatedness through time revealed 
by runs of homozygosity in ancient DNA. Nat. Commun. 12, 5425 (2021).

38.	 Henn, B. M. et al. Distance from sub-Saharan Africa predicts mutational load in diverse 
human genomes. Proc. Natl Acad. Sci. USA 113, E440–E449 (2015).

39.	 Henn, B. M., Botigué, L. R., Bustamante, C. D., Clark, A. G. & Gravel, S. Estimating mutation 
load in human genomes. Nat. Rev. Genet. 16, 333–343 (2015).

40.	 The 1000 Genomes Project Consortium. A global reference for human genetic variation. 
Nature 526, 68–74 (2015).

41.	 Simons, Y. B., Turchin, M. C., Pritchard, J. K. & Sella, G. The deleterious mutation load is 
insensitive to recent population history. Nat. Genet. 46, 220–224 (2014).

42.	 Do, R. et al. No evidence that selection has been less effective at removing deleterious 
mutations in Europeans than in Africans. Nat. Genet. 47, 126–131 (2015).

43.	 Acuña-Alonzo, V. et al. A functional ABCA1 gene variant is associated with low 
HDL-cholesterol levels and shows evidence of positive selection in Native Americans. 
Hum. Mol. Genet. 19, 2877–2885 (2010).

44.	 Robinson, M. R. et al. Evidence of directional and stabilizing selection in contemporary 
humans. Proc. Natl Acad. Sci. USA 115, E4732 (2018).

45.	 Simons, Y. B., Mostafavi, H., Smith, C. J., Pritchard, J. K. & Sella, G. Simple scaling laws 
control the genetic architectures of human complex traits. Preprint at bioRxiv https://doi.
org/10.1101/2022.10.04.509926 (2022).

46.	 Malawsky, D. S. et al. Influence of autozygosity on common disease risk across the 
phenotypic spectrum. Preprint at medRxiv https://doi.org/10.1101/2023.02.01.23285346 
(2023).

47.	 Barquera, S. & Rivera, J. A. Obesity in Mexico: rapid epidemiological transition and food 
industry interference in health policies. Lancet Diabetes Endocrinol. 8, 746–747 (2020).

48.	 Mendoza-Caamal, E. C. et al. Metabolic syndrome in indigenous communities in Mexico: 
a descriptive and cross-sectional study. BMC Public Health 20, 339 (2020).

49.	 Bergström, A. et al. Insights into human genetic variation and population history from 929 
diverse genomes. Science 367, eaay5012 (2020).

50.	 Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful 
approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 
4.0 International License, which permits use, sharing, adaptation, distribution 
and reproduction in any medium or format, as long as you give appropriate 

credit to the original author(s) and the source, provide a link to the Creative Commons licence, 
and indicate if changes were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your 
intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, 
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

https://doi.org/10.1101/2022.10.04.509926
https://doi.org/10.1101/2022.10.04.509926
https://doi.org/10.1101/2023.02.01.23285346
http://creativecommons.org/licenses/by/4.0/


Article
Methods

Encuesta Nacional de Salud 2000
Since 1988, Mexico has established periodical National Health Surveys 
(Encuesta Nacional de Salud (ENSA), originally conceived as National 
Nutrition Surveys) for surveillance of Mexican population-based 
nutrition and health metrics. In this study, we use data and samples 
collected from the survey carried out in 2000, the ENSA 2000. This 
survey was a probabilistic, multi-stage, stratified, cluster household 
survey conducted by the Mexican Secretariat of Health from Novem-
ber 1999 to June 2000. Research design and methods have been 
described elsewhere51. Participants were randomly selected to be 
representative of the civilian, non-institutionalized Mexican popu-
lation at the state and national levels. Trained personnel conducted 
the interviews. Information was collected on household and sociode-
mographic characteristics, current health status, healthcare service 
usage and behavioural aspects of participants. Sera and buffy coats 
were obtained from 43,085 individuals aged 20 years or older. More 
than fifty publications have arisen from this survey providing critical 
insights into the status of national health alongside some genetic traits 
of the sampled population52. In particular, the inclusion of individuals 
from remote and rural locations in Mexico makes this survey unique. 
Given its large volume, sophisticated sampling design, breadth of 
demographic sampling and extensive trait data, the ENSA 2000 repre-
sents a valuable untapped genetic resource to link genetic markers and  
health outcomes.

Phenotype, lifestyle and environmental data for the MXB 
Project
For each individual, we have access to a range of anthropometric, dis-
ease, lifestyle and environmental data. These variables are summarized 
in Supplementary Table 2. Serum samples were further used to measure 
a number of biochemical traits analysed in this study. All traits analysed 
in the complex trait analysis were preprocessed as follows.

Biometric data were filtered to remove outliers with apparent 
errors in data entry. Outliers were identified on the basis of distribu-
tion density over the complete dataset of >6,000 individuals, result-
ing in height between 100 and 200 cm and weight between 25 and  
300 kg.

Biochemical traits were similarly curated to remove extremes and 
negative values (<0). Glucose was also checked against finger prick tests 
taken at the time of the survey, and values that were greatly discordant 
were also removed. Glucose measurements were further stratified by 
random or fasting glucose samples based on participant question-
naire responses.

Blood pressure was manually curated for individuals for whom values 
differed by more than 20 units for the two readings taken, for whom 
diastolic pressure was higher than systolic, or for whom values were 
unusually high or low (<30 or >300). In these cases, both readings were 
manually checked, and discordant readings were discarded. These 
updated values were then merged with the remaining samples. A set 
of adjusted blood pressure phenotypes was also generated, adjusting 
for treatment for hypertension. In those individuals who were reported 
to be receiving some form of hypertension treatment, 15 units were 
added to systolic blood pressure and 10 to diastolic blood pressure 
(SBP_adj and DBP_adj)53,54.

Quantitative traits were normalized using an inverse normal trans-
form before complex trait analyses.

For each individual, we have access to data for various sociocultural 
factors such as access to healthcare and clean water, yearly income, 
educational attainment, whether they speak an Indigenous language 
or not, and whether they live in a rural or urban environment.

Localities were assigned values of latitude, longitude and altitude 
(metres) using data from the National Institute of Statistics and Geog-
raphy (INEGI) in Mexico.

Sample selection and genotyping for the MXB Project
To select the subset of biobanked samples to be genotyped, we first 
identified the total number of localities represented in the collection 
of extracted DNAs (that is, 898 recruitment sites). We then allocated 
one sample to each locality in consecutive additive rounds targeting 
an average sample size of 5 to 10 individuals regardless of population 
density. The initial rounds were enriched for individuals who reported 
to speak an Indigenous language, and then randomly selected sam-
ples were included until saturating budget capacity. This strategy 
ensured maximization of both geographic coverage and represen-
tation of Indigenous ancestries, resulting in a total of 6,144 samples 
distributed nationwide. A further subset of 87 samples failed DNA qual-
ity control or hybridization during genotyping, for a total of 6,057 
successfully genotyped samples. Samples were genotyped on the 
Illumina’s Multi-Ethnic Global Array (MEGA). The design of this array 
was previously led by C.R.G. and G.L.W. Several properties place the 
MEGA array as the ideal choice for biobank genotyping. It captures 
1,748,250 SNPs derived from admixed population studies, making 
it broadly applicable in diverse populations. The array has boosted 
SNP coverage in both the MHC and KIR loci, a marker set of more than 
30,000 SNPs for ancestry estimation, and includes more than 17,000 
medically relevant genetic variants from previous GWAS and clinical 
studies. Such breadth of coverage of genomic diversity provides a 
comprehensive quantitative resource of the genetic variability in this  
cohort.título.

Generation and quality control of MXB genetic data
Genome Studio was used to convert raw image files to plink files with 
raw genotype information. All SNPs were flipped to the forward strand, 
and duplicate SNPs were removed. For sites with missing chromosome 
number, physical position or both, we updated the map using the 
information in the SNP name or by mapping their rsID using dbSNP 
Build 151.

We removed all individuals with >5% missing genotype data and all 
genotypes with >5% missing individuals. We restricted the analyses 
to autosomes and removed all monomorphic SNPs. We restricted 
the analysis to biallelic SNPs and removed all SNPs with an ambigu-
ous strand for all downstream analyses. All related individuals were 
detected using plink (--Z-genome --min 0.5) after pruning for link-
age disequilibrium (--indep-pairwise 50 5 0.5). A script was written 
to iteratively find and remove related individuals to obtain the final 
quality-controlled dataset.

Sources and quality control for reference panels
Reference genetic panels were used for various analyses of popula-
tion structure. We used global populations from the 1000 Genomes 
Project (1KGP)40 and the Human Genome Diversity Project (HGDP)55, 
Zapotec individuals from Oaxaca from the Population Architecture 
using Genomics and Epidemiology Study (PAGE)56, and Indigenous 
individuals from across Mexico from the Native Mexican Diversity 
Project (NMDP)12 for the analyses of population structure and ancestry.

For each reference panel, we restricted the analysis to autosomes, 
removed all monomorphic SNPs, flipped all SNPs to the forward strand, 
and removed SNPs with an ambiguous strand.

Anthropological classification
We used an anthropological and archaeological context to delineate 
different Mesoamerican regions10. An individual’s locality was used 
to place them into one of the seven regions: the north of Mexico, the 
north of Mesoamerica, the centre, occident and Gulf of Mexico, Oaxaca 
and the Mayan region in the southeast10. This classification was used to 
visualize and regionalize some of the population structure and history 
analyses, especially those relating to Indigenous genetic substructure 
within Mexico.



Note on genetic ancestries
Genetic ancestry arises from a set of paths through the ancestral recom-
bination graph57. In this study, we obtain proxies for genetic ancestries 
using ADMIXTURE20 (see below). As such, we are discretizing a continu-
ous quantity for the purposes of understanding the effects of varying 
demographic histories on genetic and complex trait variation in MXB. 
The labelling and use of such discretized ancestry proxies remains 
a contentious issue58. To clarify the point that such proxies are not 
essentialized entities in the real world, but rather variables we use for 
the purposes just described, we opt to refer to our ancestry proxies 
as being from the region whose present-day individuals such proxies 
cluster with. Thus, we use, “ancestries from the Americas”, “ancestries 
from West Europe”, “ancestries from West Africa”, “ancestries from 
South Asia” and “ancestries from East Asia” in the text, and shorter 
versions of the same for some figures (A(Americas) and so on).

Such regions are useful for our analyses only in so much as they 
reflect demographic and environmental histories that may affect the 
genetic and complex trait variation we are interested in. This is only 
one arbitrary scale to discretize at, and we also consider the origins 
and implications of ancestral variations within such regional groupings 
in several analyses, in which we carry out dimensionality reduction 
within such regional groupings (for example, MDS1(A(Americas)) and 
MDS2(A(Americas))).

Although not intended, the groupings used may seem to some as 
similar to racial categories that were created in the past 500 years 
and used to justify European superiority and colonization of global 
regions including present-day Mexico58–60. In Mexico, such categories 
have a similar history of racism and eugenics as in other parts of the 
world61. We reject fixed hierarchical categorizations of humans, as 
well as their use to justify the superiority of one group over another. 
We use ancestry proxies that are estimated from ADMIXTURE using 
unsupervised clustering, as well as axes of ancestry that result from 
dimensionality reduction within these ancestries, capturing variation 
among groups from the Americas, for example. Despite the confluence 
of genetic ancestries from around the globe in present-day Mexico, 
genetic ancestries in humans are continuous over time and space and 
should be considered only in that complexity and at different scales.

Population structure analyses
For the analyses of population structure, we merged the quality- 
control-filtered MXB dataset and reference panels using plink. We 
repeated some of the quality control steps on the merged dataset, 
removing any monomorphic or duplicate SNPs. We also removed 
individuals with >5% missing genotype data, and genotypes with >5% 
missing individuals to obtain the clean merged dataset.

We carried out two sets of principal components analysis (PCA) and 
ADMIXTURE20 analysis. One was carried out on the merged dataset 
including MXB, Zapotecs from the Population Architecture using 
Genomics and Epidemiology Study, and global populations from 
the 1000 Genomes Project and the Human Genome Diversity Project 
(Fig. 1b, Supplementary Figs. 6, 11 and 12 and Supplementary Table 3), 
and the other was carried out on the merged dataset including only 
MXB and individuals indigenous to present-day Mexico from the NMDP 
(Supplementary Figs. 8–10 and 13). FST analysis was carried out on all 
MXB individuals, as well as on only MXB individuals with 90% ancestry 
from the Americas as estimated from the ADMIXTURE analysis (Sup-
plementary Figs. 15–18).

smartpca from Eigenstrat62 was used to carry out the PCA. Principal  
components generated by smartpca (Supplementary Figs. 6 and 7) 
were used to carry out the uniform manifold approximation and pro-
jection (UMAP) analysis (Fig. 1c and Supplementary Figs. 19 and 20)63. 
FST analysis was carried out using smartpca.

Given the large loss of SNPs due to admixture linkage disequilib-
rium in our admixed Mexican individuals, we opted not to prune for  

linkage disequilibrium for the population structure analyses pre-
sented in this study. We repeated the analysis on a set of SNPs pruned 
for linkage disequilibrium and obtained similar results (data not 
shown). Unless otherwise noted, given the admixed nature of the 
Mexican individuals, we did not remove SNPs owing to departure from 
Hardy–Weinberg equilibrium in the MXB, as many SNPs are expected 
to be out of Hardy–Weinberg equilibrium owing to admixture and  
population structure.

We also computed and visualized population structure using 
the method of ref. 5 (‘archetypal analysis’) with individuals from 
the quality-controlled MXB dataset and individuals from the 1000 
Genomes, the Human Genome Diversity Project and the Population 
Architecture using Genomics and Epidemiology Study as our reference 
panel (Supplementary Figs. 21–23). We also carried out the analysis 
using only the quality-control-filtered MXB dataset. In both analyses, 
PCA results were generated only once and used as input to compute 
archetypes from K = 3 to 10. In reporting the results, we refer to the 
‘archetypes’ in the analysis as ‘sources’, given that the word archetypes 
has connotations of pure types that are not necessary for the model to 
be applied to population genetic data.

Analyses of subcontinental ancestry
Analyses were carried out to obtain axes of genetic variation or ances-
try among a continental group. Such analyses also help interpret the 
specific origins of an ancestry present in Mexico today. These analy-
ses were carried out using rfmix2 to estimate local ancestry along the 
genome and pcamask19 to carry out an ancestry-specific PCA for ances-
tries originating from present-day Africa. During the course of this 
study, new and improved methods to estimate local ancestry along the 
genome (GNOMIX)3 and to carry out ancestry-specific PCA (Multiple 
Array Ancestry Specific Multidimensional Scaling, MAAS-MDS, an 
MDS designed for analysing samples from several different genotyp-
ing arrays simultaneously)64 were published, allowing us to use these 
tools for the analysis of ancestry variation within the Americas for the 
complex trait analysis.

MAAS-MDS on ancestries from the Americas. For the MAAS-MDS64 
analyses, we used GNOMIX3 for local ancestry inference using its preset 
‘best’ mode and then masked the non-Indigenous segments. For the 
European reference, we used the cohorts Iberian populations in Spain 
(IBS) and British from England and Scotland (GBR) from 1KGP (198 sam-
ples)40, for ancestries from Africa, the Yoruba in Ibadan, Nigeria (YRI) 
cohort from 1KGP (108 samples), and for ancestries from the Americas,  
Peruvian in Lima, Peru (PEL) from 1KGP (only those samples with 
>95% ancestry from the Americas) and the 50 genomes of Indigenous  
individuals across Mexico generated as part of the MXB Project  
(79 samples)65. For the PEL, we used an unsupervised clustering analy
sis with ADMIXTURE (K = 3) together with IBS and YRI from the 1KGP to  
find those PEL samples with >95% assignment to a cluster not shared 
with IBS or YRI; that is, with >95% ancestries from Americas. The ad-
ditional 50 genomes from MXB were selected to have high Indigenous  
ancestries as described previously65. The reference genomes were 
merged with each array resulting in 856,352 SNPs in array 1 and 967,338 
in array 2. Array 1 included 10 Indigenous groups from NMDP genotyped 
with the Affymetrix 6.0 array: Tarahumara, Huichol, Purepecha, Nahua, 
Totonac, Mazatec, Northern Zapotec (from Villa Alta district, Northern 
Sierra in Oaxaca state), Triqui, Tzotzil and Maya (from Quintana Roo 
state). Array 2 included the 6,051 individuals from the MXB project 
genotyped with MEGA. The MAAS-MDS was applied to the Indigenous 
American ancestry segments (that is, masking intercontinental compo-
nents of African and European origin) in both arrays 1 and 2. The analysis 
was run using average pairwise genetic distances and considering only 
individuals with >20% Indigenous American ancestries, to generate 
ancestry-specific MDS axes for ancestries from the Americas in the 
MXB (Supplementary Fig. 24).
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asPCA on ancestries from Africa. We carried out this analysis on all 
individuals in the MXB with ≥5% ancestry from Africa estimated from 
the admixture analysis. This resulted in 1,965 individuals with ancestry 
originating from present-day Africa. In this set of individuals, we used 
populations from the 1000 Genomes Project (CEU: Utah residents 
(CEPH) with Northern and Western European ancestry and YRI: Yoruba 
in Ibadan, Nigeria)40 and the Population Architecture using Genomics 
and Epidemiology Study (Zapotecs from Oaxaca)56 to estimate local 
ancestry using rfmix2. The MHC region was excluded from the analysis. 
SNPs out of Hardy–Weinberg equilibrium were removed from each of 
the reference panels (10−3) and the MXB AFR (10−8) subset beforehand. 
This dataset was merged with a subcontinental reference panel cover-
ing a range of groups in present-day Africa21. Pcamask19 was used to 
mask all ancestries other than ancestries from Africa, and to generate 
ancestry-specific principal components for ancestries from Africa in 
the MXB (Supplementary Fig. 14).

Population history analyses
Ancestry-specific estimation of effective population size trajec-
tories. Analyses of population history using an approach that uses 
ancestry-specific identity-by-descent (IBD) segments were carried out 
on the entire MXB dataset, and on individuals belonging to each of the 
Mesoamerican regions (Fig. 2 and Supplementary Figs. 25–29). IBD seg-
ments of the genome can be used to estimate effective population size 
(Ne) for thousands of years into the past30. These IBD segments can be 
further overlapped with local ancestry tracts to obtain ancestry-specific 
IBD tracts to estimate population size in an ancestry-specific manner 
for an admixed cohort (this approach has been called asIBDNe)4.

For this analysis, the MXB was merged with populations from the 
1000 Genomes Project (CEU: Utah residents (CEPH) with Northern 
and Western European ancestry and YRI: Yoruba in Ibadan, Nigeria)40 
and the Population Architecture using Genomics and Epidemiol-
ogy Study (Zapotecs from Oaxaca)56. SNPs in each population were 
previously filtered for Hardy–Weinberg equilibrium (10−5 for refer-
ence groups and 10−10 for the MXB samples). The MHC region was 
excluded from the analysis. We repeated some of the quality control 
steps on the merged dataset, removing any monomorphic or dupli-
cate SNPs. We also removed individuals with >5% missing genotype 
data, and genotypes with >5% missing individuals to obtain the clean  
merged dataset.

We followed a computational pipeline recommended by the 
developers of asIBDNe to call IBD segments and local ancestry along 
the genome. We used beagle (beagle.25Nov19.28d.jar)66 to phase 
the data, refined-ibd (refined-ibd.17Jan20.102.jar)67 to call IBD and 
merge-ibd-segments (merge-ibd-segments.17Jan20.102.jar) to remove 
breaks and short gaps in IBD segments, removing gaps between IBD 
segments that have at most one discordant homozygote and that are 
less than 0.6 cM in length. Local ancestry was estimated using rfmix. 
The rfmix output was rephased to match the original phasing. asIBDNe 
(ibdne.19Sep19.268.jar) was run to estimate ancestry-specific popula-
tion sizes using a 2-cM IBD length threshold.

AdmixtureBayes. In this study, we used AdmixtureBayes6 to generate, 
analyse and plot admixture graphs for a sample of 6,011 individuals 
from the MXB (Extended Data Fig. 1a and Supplementary Fig. 30). Our 
focus was on inferring the demographic history of Indigenous groups 
in Mexico, so we used only the allele frequencies of the Indigenous 
portions of the MXB genomes. In particular, we used GNOMIX for local  
ancestry inference as described in the section entitled ‘MAAS-MDS 
on ancestries from the Americas’ in the Methods, and masked the 
non-Indigenous segments.

We grouped the individuals on the basis of Mesoamerican regions 
of Mexico, to understand the variation of Indigenous demographic 
histories across the country. We used Han Chinese as an outgroup for 
the Indigenous ancestries.

Using AdmixtureBayes, we inferred the split events and admixture 
events that have occurred in the MXB. We used the default param-
eters for generating the admixture graph with the exception of the 
number of chains and iterations, which we set to a higher value of 16 
(--MCMC_chains 16) and 20,000 (--n 20000) to ensure convergence; we 
also used the -slower flag, enabling the computation of the necessary 
information to plot the top trees, and a burn-in period correspond-
ing to half the samples. We plotted the tree with the highest posterior 
probabilities, which provides a visual representation of the inferred 
admixture events and allows us to explore the uncertainty in the infer-
ences. Further details of the AdmixtureBayes method and prior used 
can be found in the corresponding paper6.

ROH
The MXB dataset was pruned for linkage disequilibrium using plink 
(--indep-pairwise 50 5 0.9). ROH were estimated using plink (--homozyg) 
identifying 349,400 ROH. We estimated the number of ROH carried by 
an individual (nROH) and the total sum of ROH in an individual in kilo-
bases (sROH or sumROH) (Fig. 3 and Supplementary Figs. 31–33). ROH 
were divided into small, medium and large according to the theoretical 
framework in ref. 37. Python scripts were used to categorize ROH by 
length, and to overlap ROH with local ancestry calls from rfmix to obtain 
ancestry-specific ROH summary statistics (Supplementary Table 5). 
Local ancestry calls were the same as those used for the asIBDNe analy-
sis. A total of 38,340 ROH did not overlap a homozygous local ancestry 
assignment and were removed from this analysis; the remaining 311,060 
that overlapped a homozygous local ancestry assignment were kept. We 
used a python script to compute the number of ROH in ancestry switch 
points as well (58 ROH or 0.00019 of all ROH fell within an ancestry 
switch and were also excluded from the analysis).

ROH were also correlated with birth year in the MXB (Fig. 3b) and 
used as a variable in the complex trait mixed-model analysis. For the 
birth year analysis, we removed the first two decades, as each year 
has below 15 individuals sampled in this period. Birth year was also 
directly correlated with ancestries from the Americas (inferred using 
ADMIXTURE) in rural and urban localities separately. ROH were also 
correlated with global ancestries per individual estimated from the 
admixture analysis (Fig. 3a and Supplementary Fig. 32). An R script 
was used to analyse distributions of the sum of ROH by geography 
(Supplementary Figs. 31 and 33).

Mutation burden analyses
Variants were annotated according to whether they were ancestral 
or derived, and their functional effect depending on their location 
in a gene or genome. Ancestral alleles for each SNP in the MXB were 
inferred using the EPO pipeline from the 1000 Genomes Project. Vari-
ant Effect Predictor68 was used to annotate the effect of a variant using 
the humdiv database, and picking one consequence (or transcript) per 
variant according to a criterion that includes the canonical status of 
the transcript, APPRIS isoform annotation, transcript support level, 
biotype of transcript (‘protein_coding’ preferred) and consequence 
rank preferring high impact.

Mutation burden is defined as the sum of derived alleles carried by an 
individual. A computational pipeline using vcftools, python, linux and 
R was used to compute mutation burden in different classes of variants, 
and at different derived allele frequency thresholds. We computed 
either a rare mutation burden (derived allele frequency ≤ 5%) or an 
overall mutation burden considering all allele frequencies. Our pipeline 
used the R packages matrixStats, dplyr and ggplot2. We correlated the 
mutation burden with the global ancestry percentage from different 
present-day continental origins in all individuals. The ancestry esti-
mates were from the admixture analysis. We computed a Spearman’s 
correlation and P value (Fig. 4).

This analysis was repeated in the 1000 Genomes Project Mexican 
Ancestry in Los Angeles, California (MXL) cohort (Supplementary 



Fig. 39). This was to check whether the effect we were observing was 
due to ascertainment bias in the MEGAex array that covers fewer rare 
variants predominantly native to the area that is Mexico today. The 
whole-genome sequences from the 1000 Genomes Project allowed us 
to rule this out. Ancestry estimates were generated using ADMIXTURE 
with reference panels from 1000 Genomes (CEU: Utah residents (CEPH) 
with Northern and Western European ancestry, GBR: British in England 
and Scotland, YRI: Yoruba in Ibadan, Nigeria and PEL: Peruvian in Lima, 
Peru) and 50 whole-genome sequences of Indigenous individuals across 
Mexico generated as part of the MXB Project65. Variant effect predic-
tor was used to annotate SNPs, and mutation burden was computed 
in the same manner. The deleterious category includes the following 
consequence terms: splice acceptor variant, splice donor variant, stop 
gained, stop lost and start lost.

GWAS analyses
Phenotype definitions and quality control. Binary health-related phe-
notypes were defined on the basis of questionnaire responses. Cases 
were defined on the basis of a positive response to the questionnaire 
questions. Controls were those who responded with ‘no’. Individuals 
responding with ‘do not know’, ‘prefer not to answer’ or ‘no response’ 
were excluded (Supplementary Table 6). Additionally, arthritis cases 
were defined as any individual with gout arthritis, rheumatoid arthritis 
and/or other forms of arthritis. Two hypertension phenotypes were 
defined: Hypertension_1, based on a diagnosis of hypertension; and 
Hypertension_2, which additionally took into account blood pressure 
readings. Cases were defined on the basis either a diagnosis for hyper-
tension, medication or blood pressure readings greater than 140/90.

Quantitative traits were measured as previously described51. Data 
were filtered to remove outliers with apparent errors in data entry, and 
negative values (<0) based on distribution density over the dataset. 
Height was limited to participants with measurements between 100 
and 200 cm; weight was restricted to between 25 and 300 kg. Glucose 
and fasting glucose levels were checked against finger prick tests taken 
at the time of the survey and values that were greatly discordant were 
removed. Fasting glucose measurements were defined on the basis 
of whether participants had eaten in the 8–12 h before the samples 
being taken.

Blood pressure was manually curated for individuals for whom values 
differed by more than 20 units for the two readings taken, for whom 
diastolic pressure was higher than systolic, or for whom values were 
unusually high or low (<30 or >300). In these cases, both readings were 
manually checked, and discordant readings were discarded. These 
updated values were then merged with the remaining samples. For 
GWAS, the first set of readings was used unless removed during the 
quality control process, in which case the second set of readings was 
used, if available. A set of adjusted blood pressure phenotypes was 
also generated, adjusting for treatment for hypertension. In those 
individuals who were reported to be receiving some form of hyperten-
sion treatment, 15 units were added to systolic blood pressure and 10 
to diastolic blood pressure.

GWAS. GWAS analyses for both binary and quantitative traits were 
carried out with regenie (v3.1.3)69. Before GWAS, individuals with mis-
matched sex or IBD > 0.9 were removed. Quantitative traits were inverse 
normalized before analysis. Only case–control traits with more than 
100 cases were taken forward for analysis. For all analyses, age, sex and 
the first four principal components were included as covariates. For 
cholesterol, triglycerides, HDL, LDL, hypertension and fasting glucose, 
BMI was also included as a covariate.

Polygenic score GWAS. GWAS was carried out on a random subset of 
4,000 individuals with genotype data available, as described above. 
For quantitative traits, raw values were again normalized within the 
selected subset before analysis.

Fine mapping of GWAS-significant loci. Lead association SNPs and 
potential causal groups were defined using FINEMAP (v1.3.1; R2 = 0.7; 
Bayes factor ≥ 2) of SNPs within each of these regions on the basis of 
summary statistics for each of the associated traits70. FUMA SNP2GENE 
was then used to identify the nearest genes to each locus on the basis 
of the linkage disequilibrium calculated using the 1000 Genomes EUR 
populations, and explore previously reported associations in the GWAS 
catalogue40,71 (Supplementary Table 7).

Polygenic score analyses
We computed polygenic scores using plink and summary statistics 
from the MXB GWAS conducted on 4,000 individuals as described 
above72. We computed scores on the remaining 1,778 individuals. We 
also computed scores for the same individuals using pan-ancestry 
UKB GWAS summary statistics (https://pan.ukbb.broadinstitute.org)7,8 
(Supplementary Fig. 41). Linkage disequilibrium was accounted for by 
clumping using plink using an r2 value of 0.1, and polygenic scores were 
computed using SNPs significant at five different P-value thresholds  
(0.1, 0.01, 0.001, 0.00001 and 10−8) with the --score sum modifier  
(giving the sum of all alleles associated at a P-value threshold weighted 
by their estimated effect sizes). We tested the prediction performance 
of polygenic scores by computing the Pearson’s correlation between 
the trait value and the polygenic score (Supplementary Tables 8 and 9). 
Further, we created a linear null model for each trait including age, 
sex and ten principal components as covariates. We created a second 
polygenic score model adding the polygenic score to the null model. We 
computed the r2 of the polygenic score by taking the difference between 
the r2 of the polygenic score model and the r2 of the null model. In gen-
eral, MXB-based prediction is improved by using all SNPs associated at 
P < 0.1 and using TOPMed-imputed data, whereas the UKB-based predic-
tion shows its best performance using only genome-wide significant 
SNPs (at 10−8 or 10−5) and only genotyped data (Extended Data Fig. 1b 
and Supplementary Tables 8 and 9).

Complex trait variation models
To assess the factors involved in creating complex trait variation, we 
carried out a mixed-model analysis using the lme4qtl R package for all 
quantitative traits. lme4qtl allows flexible model creation with multiple 
random effects73.

We considered several genetic and environmental variables as fixed 
predictors of complex trait variation. Genetic variables included 
polygenic scores computed using UKB summary statistics (SNPs 
significant at P < 10−8) for each trait, genetic ancestries estimated 
from ADMIXTURE, continuous axes of ancestry variation estimated 
using MAAS-MDS, and ROH (amount of ROH carried in an individual 
genome in kilobases). We also considered biogeographical variables 
such as latitude, longitude and altitude (metres). We considered demo-
graphic variables of age and sex. Last, we considered sociocultural 
variables: educational attainment (which shows a positive correlation 
with income levels (Supplementary Fig. 52); however, income levels 
are available only for a third of the individuals); whether they speak 
an Indigenous language or not as a proxy for differential experience 
of discrimination and culture; and whether they live in an urban or 
rural environment. BMI was included as a covariate for all quantitative 
traits except height, BMI and creatinine (Fig. 5 and Supplementary 
Figs. 53–58). To ease interpretation of the mixed-model coefficients 
for jointly considered numeric and binary predictors, we standard-
ized predictor variables as follows74. To make coefficients of numeric 
predictors comparable to those for untransformed binary predictors, 
we divide each numeric variable by two times its standard deviation74. 
We centred both the binary and numeric predictors. All of the covariates 
mentioned above are significant when jointly modelled for at least one 
tested trait, justifying their use in the full model.

We also include two random predictors in our model. These are: the 
covariance structure defined by the genetic relationship matrix; and 

https://pan.ukbb.broadinstitute.org


Article
the locality where the individual is from to capture any other environ-
mental variation (such as diet) not captured by the fixed predictors.

The genetic relationship matrix was generated using the GENESIS R 
package using kinship coefficients. As kinship estimates can be inflated 
under the presence of population structure and admixture, we obtained 
kinship coefficients for the genetic relationship matrix in the follow-
ing manner: (1) PC-air75 was used to obtain principal components that 
capture ancestry and not relatedness (this procedure used kinship 
coefficients estimated using KING76 as input to partition samples into a 
related (5,562) and unrelated (271) set (using kinship threshold 0.044) 
and carrying out PCA on the unrelated set); (2) PC-relate77 was used to 
obtain kinship coefficients that capture relatedness but not ancestry 
(this method uses the ancestry-representative principal components 
from (1) to correct for population structure before calculating the 
kinship coefficients).

For this analysis, we removed rare variants (MAF < 5%), regions with 
known long-range linkage disequilibrium78,79 and variants in high link-
age disequilibrium (r2 > 0.1 in a window of 50 kb and a sliding window 
of 1 variant).

To account for multiple significance testing, the false discovery rate 
was controlled at 0.05 using the approach of Benjamini–Hochberg50.

ABCA1 variant frequencies were computed using plink in individuals 
from the MXB stratified by ancestry proxies from ADMIXTURE or by 
HDL cholesterol levels (Supplementary Fig. 59).

Maps of Mexico to visualize trait distributions were created using the 
mxmaps R package (Supplementary Fig. 43). Variog from the GeoR R 
package was used to compute variograms on complex traits, with lon-
gitude and latitude used to compute distance (Supplementary Fig. 51).

Inclusion and ethics
Samples were collected as part of the 2000 National Health Survey 
(ENSA 2000) conducted by the National Institute of Public Health 
(Instituto Nacional de Salud Pública (INSP)) across Mexico. The ENSA 
2000 was carried out following the strictest ethical principles and in 
accordance with the Helsinki Declaration of Human Studies. Informed 
consent was obtained from all participants after extensive community 
engagement. National Health Surveys have been conducted periodi-
cally in Mexico since 1988, so the community is engaged with the study 
and receptive to household visits by INSP staff and fieldwork teams. 
As described in the original methodology51, the ENSA 2000 involved 
a 2-h visit to each household. Before recruitment, the team met with 
the political, religious and community leaders of each locality to com-
municate the nature of the study, answer all questions and engage with 
the community. This community engagement process was essential 
in every recruitment site, with an emphasis on Indigenous and rural 
communities to ensure understanding of the study. Extracted DNAs 
have been stored and maintained at the INSP (Cuernavaca, Mexico), 
and selected samples were genotyped at the Advanced Genomics Unit 
of CINVESTAV (Irapuato, Mexico) through a collaboration agreement. 
The data have been jointly analysed, promoting local leadership and 
participation of Mexican researchers and trainees. The project was 
reviewed and approved by the Research Ethics Committee and the 
Biosafety Committee of the INSP (Institutional Review Board approvals 
CI: 1479 and CB: 1470). For the present project, personally identifiable 
data were removed from the dataset.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The genotype and phenotype datasets for the 6,057 newly genotyped 
individuals from the MX Biobank Project are available at the European 
Genome-phenome Archive (EGA) through a Data Access Agreement 

with the Data Access Committee (EGA accession number for study: 
EGAS00001005797; datasets: EGAD00010002361 (Mexican_Biobank_
Genotypes) and EGAD00001008354 (Mexican Biobank 50 Genomes)). 
Data can be accessed only for academic research and non-commercial 
use. GWAS summary statistics generated as part of this study are avail-
able at https://doi.org/10.5281/zenodo.7420254.
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Extended Data Fig. 1 | Genetic histories and polygenic prediction in the MXB. 
A) Admixture histories of individuals in different cultural regions using an 
AdmixtureBayes approach. Here the admixture graph with the highest posterior 
probability is shown, inferred using genomic regions with ancestries from the 
Americas. Internal inferred ancestral node populations are colored grey.  
The tree is rooted using the Han as an outgroup. B) Trait variance explained and 
p-value threshold of best predictive polygenic score using MXB-GWAS-based 
or UKB-GWAS-based prediction. Polygenic scores were computed using SNPs 

significant at five different p-value thresholds (0.1, 0.01, 0.001, 0.00001, 10−8). 
A linear null model was created for each trait including age, sex and 10 principal 
components as covariates. A second polygenic score model was created adding 
the polygenic score to the null model. We computed the R2 of the polygenic 
score by taking the difference between the R2 of the polygenic score model and 
the R2 of the null model. The maximum R2 was used to the pick the p-value 
threshold for the best predictive polygenic score shown in the table.



Extended Data Fig. 2 | Prediction performance of MXB-GWAS-based or 
UKB-GWAS-based polygenic scores computed for height in the MXB. Traits 
are inverse normalized. Prediction performance is measured by the correlation 
between polygenic score (the sum of all alleles associated at p < 0.1 weighted by 

their estimated effect sizes) and trait value (Pearson correlation R and 
associated two-sided p-value). Smoothed conditional mean lines are shown 
using a linear model. Error bands represent 95% confidence intervals.
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Extended Data Fig. 3 | Prediction performance of MXB-GWAS-based or 
UKB-GWAS-based polygenic scores computed for BMI in the MXB. Traits  
are inverse normalized. Prediction performance is measured by the correlation 
between polygenic score (the sum of all alleles associated at p < 0.1 weighted by 

their estimated effect sizes) and trait value (Pearson correlation R and 
associated two-sided p-value). Smoothed conditional mean lines are shown 
using a linear model. Error bands represent 95% confidence intervals.



Extended Data Fig. 4 | Prediction performance of MXB-GWAS-based or 
UKB-GWAS-based polygenic scores computed for triglycerides in the MXB. 
Traits are inverse normalized. Prediction performance is measured by the 
correlation between polygenic score (the sum of all alleles associated at p < 0.1 

weighted by their estimated effect sizes) and trait value (Pearson correlation R 
and associated two-sided p-value). Smoothed conditional mean lines are shown 
using a linear model. Error bands represent 95% confidence intervals.
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Extended Data Fig. 5 | Prediction performance of MXB-GWAS-based or 
UKB-GWAS-based polygenic scores computed for cholesterol in the MXB. 
Traits are inverse normalized. Prediction performance is measured by the 
correlation between polygenic score (the sum of all alleles associated at p < 0.1 

weighted by their estimated effect sizes) and trait value (Pearson correlation R 
and associated two-sided p-value). Smoothed conditional mean lines are shown 
using a linear model. Error bands represent 95% confidence intervals.



Extended Data Fig. 6 | Prediction performance of MXB-GWAS-based or 
UKB-GWAS-based polygenic scores computed for HDL in the MXB. Traits 
are inverse normalized. Prediction performance is measured by the correlation 
between polygenic score (the sum of all alleles associated at p < 0.1 weighted by 

their estimated effect sizes) and trait value (Pearson correlation R and 
associated two-sided p-value). Smoothed conditional mean lines are shown 
using a linear model. Error bands represent 95% confidence intervals.
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Extended Data Fig. 7 | Prediction performance of MXB-GWAS-based or 
UKB-GWAS-based polygenic scores computed for LDL in the MXB. Traits are 
inverse normalized. Prediction performance is measured by the correlation 
between polygenic score (the sum of all alleles associated at p < 0.1 weighted by 

their estimated effect sizes) and trait value (Pearson correlation R and 
associated two-sided p-value). Smoothed conditional mean lines are shown 
using a linear model. Error bands represent 95% confidence intervals.



Extended Data Fig. 8 | Prediction performance of MXB-GWAS-based or 
UKB-GWAS-based polygenic scores computed for glucose in the MXB. 
Traits are inverse normalized. Prediction performance is measured by the 
correlation between polygenic score (the sum of all alleles associated at p < 0.1 

weighted by their estimated effect sizes) and trait value (Pearson correlation R 
and associated two-sided p-value). Smoothed conditional mean lines are shown 
using a linear model. Error bands represent 95% confidence intervals.
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Extended Data Fig. 9 | Prediction performance of MXB-GWAS-based or 
UKB-GWAS-based polygenic scores computed for creatinine in the MXB. 
Traits are inverse normalized. Prediction performance is measured by the 
correlation between polygenic score (the sum of all alleles associated at p < 0.1 

weighted by their estimated effect sizes) and trait value (Pearson correlation R 
and associated two-sided p-value). Smoothed conditional mean lines are shown 
using a linear model. Error bands represent 95% confidence intervals.



Extended Data Fig. 10 | Prediction performance of MXB-GWAS-based or 
UKB-GWAS-based polygenic scores computed for diastolic blood pressure 
in the MXB. Traits are inverse normalized. Prediction performance is measured 
by the correlation between polygenic score (the sum of all alleles associated at 

p < 0.1 weighted by their estimated effect sizes) and trait value (Pearson 
correlation R and associated two-sided p-value). Smoothed conditional mean 
lines are shown using a linear model. Error bands represent 95% confidence 
intervals.
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