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Comparing effectiveness of image 
perturbation and test retest 
imaging in improving radiomic 
model reliability
Jiang Zhang 1, Xinzhi Teng 1, Xinyu Zhang 1, Sai‑Kit Lam 2,3, Zhongshi Lin 4, Yongyi Liang 4, 
Hao Yu 5, Steven Wai Kwan Siu 6, Amy Tien Yee Chang 6, Hua Zhang 10, Feng‑Ming Kong 6,7, 
Ruijie Yang 8 & Jing Cai 1,3,9*

Image perturbation is a promising technique to assess radiomic feature repeatability, but whether it 
can achieve the same effect as test–retest imaging on model reliability is unknown. This study aimed 
to compare radiomic model reliability based on repeatable features determined by the two methods 
using four different classifiers. A 191-patient public breast cancer dataset with 71 test–retest scans 
was used with pre-determined 117 training and 74 testing samples. We collected apparent diffusion 
coefficient images and manual tumor segmentations for radiomic feature extraction. Random 
translations, rotations, and contour randomizations were performed on the training images, and 
intra-class correlation coefficient (ICC) was used to filter high repeatable features. We evaluated 
model reliability in both internal generalizability and robustness, which were quantified by training 
and testing AUC and prediction ICC. Higher testing performance was found at higher feature ICC 
thresholds, but it dropped significantly at ICC = 0.95 for the test–retest model. Similar optimal 
reliability can be achieved with testing AUC = 0.7–0.8 and prediction ICC > 0.9 at the ICC threshold 
of 0.9. It is recommended to include feature repeatability analysis using image perturbation in any 
radiomic study when test–retest is not feasible, but care should be taken when deciding the optimal 
feature repeatability criteria.

Radiomics is one of the most up-to-date quantitative imaging techniques nowadays. Quantitative features, which 
are believed to represent tumor phenotypes that are imperceptible to human eyes, are extracted in a high-
throughput manner from routine medical imaging, such as CT, MR, or PET. Morphological, histogram, as well 
as textural information could be included in different classes of radiomic features. They are then selected and 
built into different models to help noninvasive diagnosis1–3, prognosis4–6, and treatment response prediction7–9. 
Despite the promising potential of radiomics, the reliability of radiomic models is one of the major concerns 
when translating into routine clinical practice.

Radiomic feature repeatability refers to the feature’s ability to keep stable when the same subject is imaged 
several times under the same acquisition settings. It is believed to be the first and foremost criteria to ensure 
model reliability and has been studied extensively by previous research10–12. Test–retest imaging is one of the 
most popular approaches by repeatedly scanning each patient within a short period of time, and feature repeat-
ability is assessed by comparing the feature values between the two different scans. For example, Granzier et al. 
identified repeatable radiomic features within breast tissues using a two-day interval test–retest data with fixed 
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scanner and clinical breast protocol13. However, test–retest imaging is not a standard clinical procedure and 
requires additional medical resources and potential extra dose to patients. Consequently, the existing test–retest 
study include only a limited number of patients, which further reduced the significance of their findings. In addi-
tion, the conclusions of feature repeatability are hardly generalizable across image modalities and cancer sites14, 
rendering the necessity of specific repeatability analysis for different radiomic studies.

Several methods have been proposed to assess radiomic feature repeatability through image perturbation. 
Marco et al. first applied random translations of the regions-of-interest (ROIs) to assess the radiomic feature 
repeatability on apparent diffusion coefficient (ADC) images15. They found an overall satisfactory repeatability 
and a high site dependency. Zwanenburg et al. proposed to generate pseudo-retest images by random translation, 
rotation, noise addition and contour randomizations, and demonstrated similar patterns of feature repeatability 
to test–retest imaging16. Further studies have demonstrated the potential of perturbed images in quantifying 
radiomic model output reliability and improving the model generalizability and robustness by removing low-
repeatable features17–19. Although perturbation methods have been proven to be capable of capturing the majority 
of non-repeatable features in test–retest images, it is still unknown if image perturbation could replace test–retest 
imaging in building a reliable radiomic model.

This study aimed to compare radiomic model reliability after removing non-repeatable radiomic features 
assessed by image perturbation and test–retest imaging. We retrospectively analyzed a unique breast cancer 
test–retest ADC image dataset and compared both internal generalizability and robustness of the predictive 
models on pathological complete response (pCR). The overall study workflow is summarized by Fig. 1. This 
study could provide the radiomic community direct evidence of the benefit of image perturbation on building 
reliable radiomic models. Most importantly, whether image perturbation is equivalent to test–retest imaging in 
building a reliable radiomic model could be directly validated.

Results
Feature repeatability and predictability
Compared to test–retest, there was a systematic larger feature repeatability on image perturbation. Figure 2a 
visualizes the distribution of feature ICCs assessed by training perturbation versus test–retest. Among all the 1120 
volume-independent radiomic features, only 143 showed lower ICC under image perturbation than test–retest, 
which can be visualized as scarce scattered points above the diagonal line in Fig. 2a. However, the feature repeat-
ability under image perturbation and test–retest demonstrated a strong correlation with Pearson correlation 
r = 0.79 (p-value < 0.001).

The feature repeatability agreement between perturbation and test–retest showed a strong dependence on 
ICC thresholds, as shown in Fig. 2b. In general, the number of commonly repeatable and non-repeatable features 
between the two ICC measures increased with higher ICC thresholds. Specifically, the number of mutually agreed 
repeatable features decreased from 621 to 141, 18, and 2 with ICC threshold increased from 0.5 to 0.75, 0.9, and 

Figure 1.   Study workflow. We conducted our study by (1) radiomic feature repeatability assessment by test–
retest and image perturbation, (2) radiomic model development using high-repeatable features from the two 
assessments, and (3) internal generalizability and robustness analysis of the two models. Mp and Mtr are the 
models based on repeatable features assessed by image perturbation and test–retest respectively.
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0.95, as suggested by the shrinking blue bars in Fig. 2b. In contrast, the number of mutually disagreed repeatable 
features increased from 151 to 484, 989, and 1072 (green bars). For disagreements between perturbation and 
test–retest evaluation, very few (< 0.7%) features are repeatable against test–retest variations while unrepeatable 
against perturbation (red bars), and a considerate amount of features are repeatable against perturbation while 
unrepeatable under test–retest settings (orange bars).

Only a small portion of all the volume-independent radiomic features demonstrated strong univariate correla-
tion with the prediction outcome with an inclination towards high repeatable features (Fig. 2a). Quantitatively, 
111 radiomic features reached statistical significance (p-value < 0.05) when correlating with pCR. With the ICC 
threshold of 0.5, 11% (n = 71) of the high-repeatable features under test–retest had statistical significance and 
10% (n = 93). The percentage increased to 23% at ICC threshold of 0.75 but decreased to 5% (n = 1) and 0% 
(n = 0) at 0.9 and 0.95 for test–retest. However, a continuous increase to 11% (n = 72), 25% (n = 32), and 27% 
(n = 12) for perturbation was discovered. The final selected features for model development can be found in the 
Supplementary Material (Table S1).

Internal generalizability and robustness
An overall trend of increasing internal generalizability and robustness was observed with increasing ICC thresh-
olds. Figure 3 presented the overall trend and comparisons of training and testing AUCs of Mp and Mtr under 
varying feature ICC thresholds for the four classifiers. For logistic regression, the testing AUC increased sig-
nificantly from 0.56 (0.41–0.70) at baseline (ICC threshold = 0) to the maximum of 0.76 (0.64–0.88, p = 0.021) 
at ICC threshold = 0.9 under perturbation and 0.77 (0.64–0.88, p = 0.018) under test–retest. The same trend can 
be observed for the rest of the classifiers. On the other hand, both Mp and Mtr demonstrated steady decreases of 
the training AUCs under increasing ICC thresholds without statistically significant differences to the baseline. 
Similarly, the baseline models had the lowest robustness with, for example, prediction ICC = 0.51 (0.45–0.58) 
on training perturbation, 0.57 (0.49–0.66) on testing perturbation, and 0.45 (0.25–0.62) on test–retest for the 
logistic regression, as indicated by the lowest bars in Fig. 4. Significant improvement can be already observed 
when increasing the feature ICC threshold to 0.5 for both Mp and Mtr.

Mtr demonstrated higher internal generalizability and robustness than Mp on larger feature ICC filtering 
thresholds in general. We observed smaller training AUCs and higher testing AUCs of Mtr at ICC thresholds of 
0.5 and 0.75 for all the four classifiers (Fig. 3). The AUC differences between Mp and Mtr were kept small with 
the absolute values below 0.1 (p > 0.05) for logistic regression and gaussian naive bayes while larger differences in 
testing AUCs were found for SVM and random forest. Under the ICC threshold of 0.75, Mtr had a significantly 
higher prediction ICC on both testing perturbation (e.g. logistic regression, Mtr=0.93 (0.91–0.95), Mp=0.86 
(0.82–0.90)) and test–retest ( Mtr=0.87 (0.80–0.92), Mp=0.75 (0.63–0.84)), while smaller differences found on 
training perturbation ( Mtr=0.91 (0.89–0.93), Mp=0.90 (0.86–0.92)), as demonstrated by Fig. 3. On the other 
hand, Mtr had smaller prediction ICCs under the ICC threshold of 0.5 with significant differences on training 
and testing perturbation for SVM and gaussian naive bayes. The ICC threshold of 0.9 demonstrated minimum 
model robustness deviations between Mp and Mtr , except for SVM under test–retest.

Both Mtr internal generalizability and robustness dropped significantly when increasing the ICC threshold 
from 0.9 to 0.95 for the four classifiers. For example, for logistic regression, the training AUCs of both Mp and 
Mtr remained stable, while a much larger decrease of testing AUC to 0.59 (0.45–0.73) was found for Mtr at ICC 
threshold = 0.95. On the contrary, Mp had a slightly reduced testing AUC to 0.75 (0.62–0.86). Similar to internal 
generalizability, the prediction ICC of Mtr fell significantly on training perturbation, testing perturbation, and 

Figure 2.   (a) Scatter plots showing the repeatability of volume independent features measured by intra-
class correlation coefficient (ICC) under test–retest imaging (y-axis) and image perturbation (x-axis). The 
perturbation method yielded higher ICC values than the test–retest method in general. Furthermore, features 
that had significant univariate correlations with the outcome, pCR, where colored as orange while the rest 
as blue. (b) Stacked bar plot displaying the feature repeatability agreement between perturbation and test–
retest. P + / − indicates the repeatable/unrepeatable feature group by the perturbation method and TR + / − for 
repeatable/unrepeatable feature group in the test–retest method.
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test–retest, except for gaussian naive bayes. On the other hand, the prediction ICC of Mp increased continuously 
and maximized at ICC threshold = 0.95. Figure 5 presents the distributions of the predicted probabilities of Mtr 
and Mp combining both training and testing samples at ICC threshold of 0.95 using the logistic regression clas-
sifier. As expected, they both followed the sigmoid mapping as logistic regression from the linearly combined 
features values. The predictions of Mtr are more aggregated in the high-slop region in comparison with Mp with 
more spread to the lower tail.

Discussion
This is the first study that directly compared the reliability of radiomic models based on repeatable radiomic 
features selected by image perturbation and test–retest imaging using ADC maps derived from a publicly avail-
able breast cancer DWI dataset. Model reliability was evaluated in both internal generalizability and robust-
ness, which were quantified by training and testing AUC and probability prediction ICC, respectively. During 
the experiment, several radiomic models were constructed for comparisons using varying feature repeatability 
(ICC) thresholds and four different classifiers. We observed systematically lower radiomic feature repeatability 
assessed by test–retest than perturbation with better binary agreement at higher ICC thresholds. Similar optimal 
internal generalizability and robustness were achieved by the four classification models based on perturbation 
( Mp ) and test–retest ( Mtr ) at the ICC threshold of 0.9 simultaneously. Slightly lower training AUCs and higher 
testing AUCs were achieved by Mtr than Mp at lower ICC thresholds (p > 0.05). In addition, Mtr demonstrated 
significantly higher prediction ICCs on training perturbation, testing perturbation, and test–retest at the ICC 
threshold of 0.75. Notably, increasing the ICC threshold to 0.95 resulted in significant drops of testing AUC and 
prediction ICCs for Mtr . Our results provide the direct evidence that our perturbation method could replace 
test–retest method in building a reliable radiomic model with optimal internal generalizability and robustness.

The lower radiomic feature repeatability under test–retest could be largely attributed by the larger variations 
of tumor segmentations. We further evaluated the segmentation similarities by the Dice similarity coefficients 
(DSC) and Hausdorff distances (HD) with rigid registrations between test and retest images. The tumor segmen-
tations were less similar between test and retest images (Dice = 0.51(± 0.16), HD = 12.47 mm(± 10.95 mm)) than 
image perturbation (Dice = 0.71(± 0.11), HD = 2.72 mm(± 0.90 mm)). Previous research by Saha et al. has also 
suggested less stable radiomics features from breast MRI within the tumor volume due to a large inter-reader 
variability (Dice = 0.60)20. They also emphasized the necessity of standardization in breast tumor segmentation 
through precise instructions or auto-contouring, where Dice can be increased to 0.77.

The slightly reduced model robustness and internal generalizability on Mp compared with Mtr could be 
explained by the conservative evaluation of feature repeatability by image perturbation. Compared with 
test–retest, image perturbation yielded larger numbers of repeatable radiomic features using the same ICC fil-
tering thresholds, and more features were found to be predictive in training under univariate test (Fig. 2a). Thus, 
the final selected features of Mp were more likely to be predictive in training and resulted in a higher training 
AUC. On the other hand, Mp had a slower increase of AUC in testing and prediction ICC in testing perturba-
tion and test–retest before ICC threshold reached 0.95, suggesting a slightly lower internal generalizability and 
testing robustness than Mtr . The rather strict evaluation of feature repeatability from test–retest may reduce the 
variabilities of selected features under the same patient condition and enhanced the probability of true discovery. 
Furthermore, the reduced number of feature candidates could also contribute to the lower risk of overfitting.

Figure 3.   Comparison of internal generalizability between models based on repeatable features assessed by 
image perturbation ( Mp , blue) and the test–retest imaging ( Mtr , orange) under varying thresholds for logistic 
regression, SVM, random forest, and gaussian naive bayes classifiers. Training and testing classification 
performance were quantified by area under the receiver operating characteristic curve (AUC). The error bars 
indicate 95% confidence intervals acquired from 1000-iteration bootstrapping.
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However, the extremely high feature ICC threshold of 0.95 resulted in a much lower internal generalizability 
and robustness under test–retest. During feature selection, only 5 features remained as repeatable for Mtr , and 
none of them showed significant univariate correlation with pCR in training. Consequently, the final selected 
features had a minimum probability of being truly predictive, and the constructed model was largely overfitted on 
training with significantly reduced testing AUC. Meanwhile, the predicted probabilities were confounded within 
the high-slop region (Fig. 5). Although the selected features and their linear combinations are guaranteed to be 
highly repeatable (ICC >  = 0.95), they could result in larger variations of the prediction values due to the sigmoid 

Figure 4.   Bar plots for comparing robustness between models based on repeatable features assessed by 
image perturbation ( Mp , blue) and the test–retest imaging ( Mtr , orange) under varying thresholds for logistic 
regression, SVM, random forest, and gaussian naive bayes classifiers. Model robustness was evaluated by 
probability prediction ICC under perturbation or tests-retest. The error bars indicate 95% confidence intervals 
acquired during ICC calculation.
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transformation. Although the internal generalizability and robustness describe model reliability from two differ-
ent perspectives, a model built from features with low sensitivity to the prediction target is more likely to have low 
performances on both due to the previous discussed reasons. Such findings underline the importance of careful 
selection on repeatable feature criteria when optimizing the final predictive model. A balance between sensitiv-
ity and repeatability needs to be achieved depending on the level of data standardization during application.

Despite the different reliabilities of Mp and Mtr under multiple feature repeatability criteria, they both achieved 
optimal internal generalizability and high robustness at the ICC threshold of 0.9 with similar metric values. Such 
observation provides the direct evidence that perturbation could replace test–retest imaging while achieving the 
similar optimal model performance. It is advised to incorporate radiomic feature repeatability analysis using 
image perturbation when test–retest is less achievable due to limited medical resources. Nevertheless, the optimal 
ICC threshold discovered by this study may not be generalizable to other radiomics applications where different 
image modalities and cancer site were studied and different radiomic features were extracted.

In addition to the comparisons between perturbation and test–retest, we discovered a positive impact of 
higher feature repeatability on model reliability, as suggested by the increasing testing AUCs and prediction ICCs 
under higher ICC thresholds. Our results are consistent with the findings by Teng et al. that image perturbation 
could enhance radiomic model reliability on multiple head-and-neck cancer datasets17. A higher model output 
repeatability is generally guaranteed with increased input repeatability when using a linear logistic regression 
model, as long as the predictability is ensured. Similar to the comparison between Mp and Mtr , both the reduced 
feature variabilities and candidate numbers from higher repeatability thresholds could be the major contributors 
of the enhanced internal generalizability.

Our study has several limitations that need to be addressed by future investigations. First, only one public 
dataset was used to conduct this experiment. Further investigations on the applicability of our findings need to 
be conducted on other image modalities, cancer sites, and radiomic feature categories. Second, previous studies 
have also suggested the impact of scanning settings and image preprocessing parameters on radiomic feature 
repeatability21–23. Therefore, a comprehensive test–retest dataset including different scanners, image acquisition 
protocols and preprocessing settings is needed to further evaluate the role of perturbation in building a reli-
able radiomic model. Third, we evaluated model reliability in terms of internal generalizability and robustness 
without considering external validation performance. Patient data from multiple institutions could be recruited 
to further enhance our understandings of the impact of feature repeatability on cross-institutional reliability.

Conclusions
We systematically compared the radiomic model reliability, including both internal generalizability and robust-
ness, between using repeatable radiomic features assessed by image perturbation and test–retest imaging. The 
same optimal reliability can be achieved by image perturbation as test–retest imaging. Higher feature repeat-
ability resulted in higher model reliability in general, but may have an opposite effect at extremely high repeat-
ability threshold. We recommend the radiomic community to include feature repeatability analysis using image 

Figure 5.   Distributions of the linearly combined feature values and predicted probabilities of the logistic 
regression models developed from test–retest repeatable features and perturbation repeatable features using 
the feature intra-class correlation coefficient threshold of 0.95. The predicted probabilities follow the sigmoid 
mapping of the logistic regression. Samples with ground-truth of non-event are colored by blue and event by 
orange. Predictions of the test–retest model were aggregated in the high-slop region whereas a wider spread is 
found for the perturbation model.
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perturbation in any radiomic study when test–retest is not feasible, but care should be taken when deciding the 
optimal criteria during repeatable feature selection.

Methods
Study design
As illustrated in Fig. 1, patients were randomly split into one training and testing set for model development and 
validation. We assessed model reliability in both internal generalizability and robustness. Internal generalizability 
was evaluated by its discriminatory power on both the training and testing set. Model robustness was quantified 
by measuring output probability variability on perturbed training, perturbed testing, and test–retest images, 
similar to the methodology adopted by Teng et al.17. The comparisons were performed under different feature 
repeatability thresholds to mimic a wide range of selections of repeatability criteria.

Patient data
We retrospectively collected 191 patients from the publicly available BMMR2 challenge dataset24,25. It was derived 
from the ACRIN 6698 trail where female patients with invasive breast cancer were prospectively enrolled from 
ten institutions between 2012 and 201526. All the patients received neoadjuvant chemotherapy with 12 weeks of 
paclitaxel (with/without additional experimental agent) followed by 12 weeks of anthracycline before surgery. 
Diffusion-weighted MRI was performed for each patient before, 3 weeks after, and 12 weeks after the commence-
ment of the chemotherapy. IRB approval is waived due to the solely use of public data.

Pretreatment DWI-derived ADC maps and manual tumor segmentations were downloaded from The Cancer 
Imaging Archive27 for radiomics model development. Pathologic complete response (pCR), which is the binary 
outcome assessing the absence of invasive disease in breast and lymph nodes at the time of surgery28, was used 
as the prediction endpoint. We adopted the same train-test split as the BMMR2 challenge with 60% (n = 117) 
randomly chosen as the training set and the remaining 40% (n = 74) set as the testing set. The same ratios of pCR, 
hormone receptor (HR), human epidermal growth receptor 2 (HER2) status were controlled for the train-test 
split. Additionally, we collected the 71 test–retest pre-treatment ADC map pairs scanned within a “coffee-break” 
from the BMMR2 challenge dataset for comparison. Forty-one test–retest patients overlapped with the primary 
patient cohort. The tumor volume was manually drawn on dynamic contrast-enhanced MR subtraction images26, 
and migrated to the ADC map.

Radomics feature extraction
A comprehensive set of Radiomics features was extracted from the original and filtered DWI images within 
the tumor volume. Before feature extraction, all the DWI images were isotropically resampled to the resolu-
tion of 1mmx1mmx1mm and discretized to a fixed bin number of 32 for the original and filtered images. Such 
preprocessing procedure ensures the consistent image resolution and pixel values across patients with reduced 
noise. We applied three-dimensional Laplacian-of-Gaussian (LoG) image filters with multiple kernel sizes (1, 
2, 3, 4, 5 mm) and eight sets of wavelet filters with full combinations of high-/low-pass in three dimensions. 
Both first-order (n = 18) and texture features (n = 70) were extracted from each preprocessed image, and shape 
features (n = 14) were extracted from the tumor segmentation. Texture features include calculations from Gray-
Level Co-occurrence Matrix (GLCM), Gray Level Size Zone Matrix (GLSZM), Gray Level Run Length Matrix 
(GLRLM), and Origi Matrix (NGTDM). The definitions and extraction of radiomic features follow the stand-
ardization by the image biomarker standardisation initiative29. In total, 1316 radiomics features were extracted 
for each patient. Detailed settings of the image preprocessing and feature extraction parameters are listed in 
Table 1. All the image preprocessing and feature extraction procedures were performed by the Python package 
PyRadiomics (version 3.0.1)30.

Feature repeatability assessment
Radiomics feature repeatability was assessed from both perturbed images and test–retest images for model 
reliability comparisons, shown in Fig. 1. We performed 40 image perturbations independently for each patient 
by random combinations of rotations, translations, and contour randomizations, same as the methodology 
adopted by Teng et al.17. Contour randomization was achieved by deforming the original tumor segmentation by 
a 3-dimensional random displacement field. The algorithm of random displacement field generation is adapted 
from the methodology proposed by Simard et al.31. A random field vector component on each dimension is 
generated randomly under a uniform distribution between -1 and 1 for each voxel point. All the z-component 
of the field vectors on the same slice were kept to the same value to mimic the uniform inter-slice contour vari-
ations from the slice-by-slice contouring. The field vectors were then normalized on each dimension by the root 
mean square and scaled by the user-defined intensity value. They were then smoothed by a gaussian filter with 
user-defined sigma to ensure the continuous change of the random displacement field and avoid sharp changes 
of the deformed contours. Detailed image perturbation parameters can be found in Table 1.

The same set of radiomics features were extracted from each perturbed or test/retest image with the same 
preprocessing procedure. One-way, random, absolute, single rater intraclass correlation coefficient (ICC)32 was 
calculated for each radiomic feature under both image perturbation and test–retest due to the random choice of 
perturbation parameters and scanning condition for each patient:

MSR −MSW

MSR + (k + 1)MSW
,
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where MSR represents the mean square of average perturbation values for patients, MSW is the residual source 
of variance, which is calculated as the variance of perturbation values averaged across patients, and k is the 
number of perturbations. The ICC calculation was provided by the Python package Pingouin (version 0.5.2)33.

Radiomics model construction
Two types of radiomics models were separately constructed from the repeatable features under image perturba-
tion ( Mp ) and test–retest ( Mtr ), as shown in Fig. 1. Volume dependent radiomic features were first removed to 
minimize its confounding effect on the comparison results, as tumor volume is more stable by definition. Radi-
omic features that had a Pearson correlation r > 0.6 to the tumor mesh volume was removed from subsequent 
analysis. Repeatable features were determined from the pre-set ICC thresholds of 0, 0.5, 0.75, 0.9, and 0.95. They 
were further filtered by redundancy and outcome relevancy before model training. We adopted the minimum 
Redundancy—Maximum Relevance (mRMR) feature selection algorithm to rank the repeatable features based 
on the redundancy and outcome relevancy34. Finally, 5 top-ranked features were selected for model development 
using four different classifiers, including logistic regression, SVM, random forest, and gaussian naive bayes. They 
were trained by the scikit-learn package (version 1.3.0) in Python. The majority pCR group (non-event) was 
randomly down-sampled by 500 times and an ensemble of classifiers were trained. The final prediction probability 
of each patient was given by the average of the individual model predictions. This easy-ensemble approach could 
reduce the training bias from the heavily imbalanced outcome35. It was implemented by the publicly available 
python package imbalance-learn (version 0.9.1)36.

Model reliability assessment
We assessed radiomics model reliability in both internal generalizability and robustness (Fig. 1). Internal gener-
alizability was assessed by comparing training and testing classification performance evaluated by AUC. Model 
robustness was assessed by the model prediction repeatability under the setting of both perturbation (training 
and testing) and test–retest. Probability predictions of either model were generated on the perturbed training, 
perturbed testing, and test–retest images, and the one-way, random, absolute ICCs were calculated for the predic-
tion repeatability using the same rationale of feature repeatability. Both internal generalizability and robustness 
were compared between Mp and Mtr with different ICC threshold settings, as shown in Fig. 1.

Statistical analyses
Each classification performance metric was evaluated under 1000-iteration patient bootstrapping to acquire 95% 
confidence interval (95CI). Two-way p-values for comparing the classification performance were calculated by 
permutation test with 1000 iterations using the function “permutation_test” provided by the open-source Python 
package scipy (version 1.9.1)37. The comparison was performed between each pair of models with and without 
feature repeatability filtering as well as Mp and Mtr . A p-value < 0.05 was considered significant. The 95CI of the 
model prediction ICC was evaluated according to the formulas presented by McGraw et al. 32.

Data availability
The public dataset of BMMR2 challenge was available via TCIA website (https://​wiki.​cance​rimag​ingar​chive.​net/​
pages/​viewp​age.​action?​pageId=​50135​447).

Table 1.   Image perturbation, preprocessing, and radiomic feature extraction parameters.

Pixel value offset 0

Resample pixel size (mm) [1, 1, 1]

Image/mask interpolation algorithm B-spline

Mask partial volume threshold 0.5

Interpolation grid alignment Align grid origins

Translation distances (pixel) [0.0, 0.2, 0.4, 0.6, 0.8]

Rotation angles (degree) [− 5, 0, 5]

Rotation axis Mask bounding box center, axial direction

Contour randomization smoothing sigma (mm) [10, 10, 10]

Contour randomization intensity (mm) [1, 1, 1]

Perturbation times 40

Image discretization bin number 32

Image filters Unfiltered, Laplacian-of-Gaussian (3D), Wavelet

Kernel size of Laplacian-of-Gaussian filter (mm) [1, 2, 3, 4, 5]

Wavelet filter starting level 0

Wavelet filter total level 1

Wavelet filter type Coilf1

Wavelet filter decompositions [LLL, HLL, LHL, LLH, LHH, HLH, HHL, HHH]

Feature class Shape, firstorder, glcm, glrlm, glszm, gldm, ngtdm

https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=50135447
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=50135447
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Code availability
The extracted radiomics features, analysis results, and code can be accessed from https://​github.​com/​John1​36219​
655/​BMMR2_​test_​retest_​vs_​pertu​rbati​on.​git.
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