Skip to main content
. 2023 Oct 25;19(11):91. doi: 10.1007/s11306-023-02055-1

Table 2.

Random forests models

Number of features Accuracy MCCa AUCb Sensitivity Specificity
Multi-omics (n = 76)
 Untreated 12 95.45 0.9129 0.9669 1 0.9167
 ZDVc 7 95.65 0.9161 0.9923 1 0.9091
 PI-ARTd 20 80.65 0.6193 0.9333 0.8571 0.7647
Number of features Accuracy MCC AUC Sensitivity Specificity
Plasma (n = 97)
 Untreated 5 92.86 0.8564 0.9641 0.9231 0.9333
 ZDV 20 87.1 0.736 0.9872 0.85 0.9091
 PI-ART 20 89.47 0.7922 0.9694 0.9375 0.8636
Number of features Accuracy MCC AUC Sensitivity Specificity
DBS (n = 76)
 Untreated 20 95.45 0.9129 0.9587 1 0.9167
 ZDV 4 95.65 0.9161 0.9615 1 0.9091
 PI-ART 20 83.87 0.6792 0.9208 0.8667 0.8125

Characteristics and performance of random forests models, multi-omic (maternal plasma + maternal DBS), maternal plasma, and maternal DBS for preterm birth in each treatment group

aMatthew’s correlation coefficient

bArea under the receiver operator characteristic curve

cZidovudine monotherapy group

dProtease inhibitor-based antiretroviral therapy group