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Abstract

Our understanding of the genetics of the human cerebral cortex is limited both in terms of 

the diversity and the anatomical granularity of brain structural phenotypes. Here we conducted 

a genome-wide association meta-analysis of 13 structural and diffusion magnetic resonance 

imaging-derived cortical phenotypes, measured globally and at 180 bilaterally averaged regions 
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in 36,663 individuals and identified 4,349 experiment-wide significant loci. These phenotypes 

include cortical thickness, surface area, gray matter volume, measures of folding, neurite density 

and water diffusion. We identified four genetic latent structures and causal relationships between 

surface area and some measures of cortical folding. These latent structures partly relate to different 

underlying gene expression trajectories during development and are enriched for different cell 

types. We also identified differential enrichment for neurodevelopmental and constrained genes 

and demonstrate that common genetic variants associated with cortical expansion are associated 

with cephalic disorders. Finally, we identified complex interphenotype and inter-regional genetic 

relationships among the 13 phenotypes, reflecting the developmental differences among them. 

Together, these analyses identify distinct genetic organizational principles of the cortex and their 

correlates with neurodevelopment.

The human cerebral cortex is morphologically complex, with extensive interindividual 

and inter-regional variation associated with cognition, behavior, health, development and 

ageing1-4. This variation is partly genetic5-8, with several common genetic variants 

associated primarily (although not exclusively) with cortical thickness (CT), surface area 

(SA) and volume6,9-12. Less is known about the common variant genetics (including single-

nucleotide polymorphisms (SNPs)) associated with more complex cortical morphometric 

phenotypes, such as folding or curvature or with microstructural magnetic resonance 

imaging (MRI) measures of cortical myelination and cytoarchitecture. We also still do not 

fully understand how complex cellular and molecular mechanisms of neurodevelopment 

give rise to these distinct cortical brain phenotypes and their links to neurodevelopmental 

conditions. It is also unclear if common genetic variants contribute to cephalic disorders, 

although the impact of de novo damaging variants has been well documented13. Finally, the 

role of common genetic variants in regional cortical phenotypes and organization is also 

unclear. This is important as regional organization may partly emerge from heterochronous 

regional differences in gene expression14.

To address these questions, we conducted 2,347 genome-wide association studies (GWAS) 

for 13 global and 2,334 regional cortical brain phenotypes in 36,663 individuals from the 

UK Biobank (UKB)15 and the Adolescent Brain Cognitive Development (ABCD)16 cohorts. 

These included eight cortical macrostructural phenotypes extracted from high-resolution 

anatomical MRI and five cortical microstructural phenotypes extracted from diffusion MRI, 

which were estimated both globally and across 180 bilaterally averaged regions based on the 

Human Connectome Project parcellation scheme17 (Fig. 1; Methods).

Genome-wide associations of global cortical phenotypes

We first conducted GWAS of 13 global structural MRI cortical phenotypes (henceforth 

‘global phenotypes’; Fig. 1) in the UKB (nmax = 31,797). The phenotypes include 

macrostructural metrics such as SA, volume, CT, folding index (FI), intrinsic curvature 

index (ICI), local gyrification index (LGI), mean curvature (MC) and Gaussian curvature 

(GC). It also includes microstructural measures such as fractional anisotropy (FA), mean 

diffusivity (MD), isotropic volume fraction (ISOVF), intracellular volume fraction (ICVF) 

and orientation diffusion index (ODI). We identified 314 independent (r2 < 0.1, 1,000 kb) 
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genome-wide significant (P < 5 × 10−8) loci. Eighty-one of these were significant at the 

more stringent experiment-wide significance threshold (P < 4.58 × 10−11); Supplementary 

Table 1; Methods). We additionally conducted GWAS for the same 13 global phenotypes 

in individuals of predominantly European genetic ancestries in ABCD (nmax = 4,866). For 

237 GWAS loci in UKB for which data were available in ABCD, 204 SNPs (86%) had 

concordant sign of genetic association (P < 0.001, two-tailed binomial sign test), compared 

to 119 (~50%) under the null hypothesis that only 50% of the effects have concordant 

direction. Furthermore, 40 (16%) of these SNPs had concordant effect direction and had 

P values (P) < 0.01, against an expectation of 1.18 (0.5%). Three had concordant effect 

direction and P < 1 × 10−5 against an expectation of <1 (0.0005%), respectively, under the 

null, thereby rejecting the null hypothesis. In ABCD, 34 of these SNPs were significant 

after false discovery rate (FDR) correction and 13 after Bonferroni correction. We identified 

a modest positive correlation of effect size (Pearson’s r = 0.54, 95% confidence interval 

(CI) 0.45–0.63; Extended Data Fig. 1). Additionally, genetic correlations between UKB and 

ABCD were positive and high18 (Extended Data Fig. 1 and Supplementary Table 2) for all 

13 phenotypes except MD, albeit with wide CIs due to the relatively small size of the ABCD 

dataset. The robust replicability between two cohorts with different median ages (UKB: 64 

and ABCD: 10) is notable as brain structure and its genetic influences change over time19,20.

Given the observed shared genetics between UKB and ABCD, we conducted inverse-

variance weighted meta-analyses21 to combine the GWAS results across both UKB and 

ABCD. These meta-analyses identified 367 genome-wide significant loci, of which 89 were 

significant at an experiment-wide threshold (Supplementary Table 3). This ranged from 50 

genome-wide significant (P < 5 × 10−8) loci (18 experiment-wide significant, P < 4.58 

× 10−11) for SA to six GWAS loci (with 0 experiment-wide significant) for FA (Fig. 2), 

with some SNPs being associated with two or more phenotypes. In total, there were 75 

independent experiment-wide significant SNPs across all phenotypes. For all GWAS, the 

attenuation ratio (Methods) was not statistically different from 0 (Supplementary Table 

4), indicating no inflation in test statistics due to uncontrolled population stratification. 

All phenotypes had significant SNP heritabilities (linkage disequilibrium score regression 

coefficient (LDSC)22: 0.06 for FA to 0.37 for SA), with higher SNP heritabilities for cortical 

macrostructural metrics (Supplementary Table 4) compared to cortical microstructural 

phenotypes.

For SA and CT, we identified high genetic correlations with previous GWASs (SA, rg = 

0.91 ± 0.03; CT, rg = 0.83 ± 0.04)6. Notably, despite the smaller sample size of the current 

GWAS meta-analyses, we identified a higher number of genome-wide significant loci for 

both SA (50 versus 19) and CT (31 versus 3) and had higher statistical power measured 

using mean χ2 (SA, 1.30 for current GWAS versus 1.23 for ENIGMA; CT, 1.23 for current 

GWAS versus 1.18 for ENIGMA). The gain in power is likely due to reduced heterogeneity 

in imaging and genotyping in the current study compared to ENIGMA. All three significant 

loci for CT and 15 of the 19 significant loci for SA from ENIGMA were significant in our 

GWAS with concordant effect directions.
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Of the 75 independent experiment-wide significant SNPs or their proxies (r2 > 0.8 in CEU 

or GBR populations) only 11 were not associated with any other neuroimaging phenotype, 

indicating substantial pleiotropy (Supplementary Table 5).

Latent dimensions of global phenotypes

To better understand pleiotropy across the 13 global phenotypes, we estimated bivariate 

genetic and phenotypic correlations (Supplementary Table 6 and Fig. 3a). Patterns of genetic 

and phenotypic correlation across phenotypes were highly similar (Mantel’s test, r = 0.89, 

P = 1 × 10−4), in line with Cheverud’s conjecture23. Clustering of the genetic correlation 

matrix using multiple different methods consistently found that 12 of the 13 phenotypes 

(excluding only CT) formed four clusters relating to cortical expansion, curvature, water 

diffusion and neurite density and orientation (Supplementary Fig. 1). For the phenotypic 

correlation matrix, 11 of the 13 phenotypes formed four clusters, with CT and ICVF 

clustering separately (Supplementary Fig. 1).

Subsequently, we used genomic structural equation modeling (GSEM)24 to identify 

latent structures among the 13 global phenotypes. After excluding CT due to singleton-

clustering and moderate genetic correlations (rg between −0.3 and −0.7 with eight of 

the 12 cortical phenotypes (Fig. 3a and Supplementary Fig. 1)), exploratory followed by 

confirmatory factor analyses identified a correlated four-factor model with the acceptable 

fit (comparative fit index (CFI) = 0.89, standardised root mean squared residual (SRMR) 

= 0.13; Supplementary Table 7 and Fig. 3b). The four factors were similar to the four 

clusters and relate to cortical expansion (factor 1), curvature (factor 2), neurite density and 

orientation (factor 3) and water diffusion (factor 4). Phenotypic factor analyses produced 

four similar factors, albeit only after the removal of CT that did not cluster with any 

phenotypes and ICI that exhibited high cross-loading onto two factors (Supplementary Note 

1 and Supplementary Fig. 2).

Colocalization analysis of the experiment-wide significant associations supported the 

clustering and GSEM analyses and identified 56 colocalized genetic clusters among 

the global phenotypes (posterior probability of colocalization > 0.6). We use the term 

‘cluster’ to refer to a group of phenotypes within the 13 global phenotypes that share 

causal variants in an LD-defined genomic region. The highest number of colocalized 

loci was for cortical expansion phenotypes, followed by water diffusion, neurite density 

and orientation phenotypes and then curvature (Supplementary Table 8 and Fig. 3c). 

Thus, with the exception of CT, cluster analysis, GSEM and colocalization analysis thus 

convergently indicate four latent factors, each phenotypically represented by two or more 

MRI phenotypes.

Causal relationships between cortical expansion phenotypes

We next used Mendelian randomization (MR)25 to investigate whether the genetic 

relationships between phenotypes represent causal mechanisms, especially among the five 

cortical expansion phenotypes. We tested three theories of causation. First, consistent with 

the radial unit hypothesis26 which suggests that SA emerges from the number of cortical 
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columns but thickness emerges from the number of cells within a cortical column, we 

would not expect causal effects between SA and CT. Indeed, we observed no significant 

evidence for a causal association between SA and CT. Second, because the volume is 

geometrically related to SA and estimated by the product of SA and CT, we expected 

to find a bidirectional causal relationship between SA and volume, and indeed, we found 

evidence for this. Third, previous research27-30 suggests that sulco-gyral folding emerges 

from differential tangential expansion of the cortex, partly due to the heterogeneous cortical 

distribution of progenitor cells31,32, suggesting a causal relationship of SA on folding (FI, 

LGI and ICI). Consistent with this, we found robust evidence that genetically predicted 

SA is associated with an increase in certain measures of folding (FI, LGI and ICI), but 

no evidence for reciprocally robust causal effects of folding metrics on SA (Supplementary 

Tables 9-11, Supplementary Note 2 and Extended Data Figs. 2 and 3). Together, these 

analyses suggest causal relationships between SA and some measures of folding.

Developmental and cellular profiles of global phenotypes

The complex genetic architecture among the 13 global phenotypes likely represents shared 

and distinct developmental and cellular processes. To better understand this, we aggregated 

SNP-based P values to gene-based P values using MAGMA33 and H-MAGMA34 and 

investigated if these genes exhibited specific developmental trajectories of gene expression 

using postmortem brain tissue data from PsychEncode35. We excluded FA due to the 

small number of genes identified. Genes associated with six of the seven macrostructural 

phenotypes had high relative expression prenatally, a peak in the late midgestation period 

(~19 to 22 postconception weeks (PCW)) and a decline in gene expression postnatally. 

In contrast, the four microstructural phenotypes were associated with genes that had peak 

expression at birth, followed by a less steep decline, or increased expression postnatally 

(Fig. 4a and Supplementary Table 12).

The different trajectories likely reflect different underlying cellular compositions for 

these phenotypes. Focusing on the developing brain, using sc-RNAseq data from 

psychENCODE14, we identified enrichment for intermediate progenitor cells for SA, 

volume and FI (Supplementary Table 13). To provide further temporal resolution, we 

investigated enrichment using scRNA-seq data from the first trimester (6–10 PCW)36 and 

scRNA-seq37 and scATAC-seq38 data from midgestation (marked by neural progenitor 

expansion)39-41. We did not identify any enrichment with cell types in the first trimester 

(Supplementary Table 14), but FI, volume and SA (cortical expansion phenotypes) were 

enriched for progenitor cells during midgestation (Supplementary Tables 15 and 16 and 

Fig. 4b), specifically for progenitor cells in the S phase and G2-M phases of mitosis. 

Additionally, CT and MC were enriched for multiple neuronal and glial cell types in both 

datasets, suggesting that these phenotypes are a composite of multiple cell types.

Considering the postnatal brain, there was no significant enrichment of genes in scRNA-

seq data from psychENCODE (ST 17). However, analyses using epigenetic signatures 

of four broad cell types42 identified enrichment across multiple phenotypes (Fig. 4c 

and Supplementary Table 4). For instance, cortical microstructural phenotypes were 

primarily enriched for epigenetic markers in oligodendrocytes and astrocytes, but not 

Warrier et al. Page 6

Nat Genet. Author manuscript; available in PMC 2023 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



neurons, consistent with the idea that these phenotypes primarily reflect myelination and 

related processes43. Taken together, these results demonstrate that genes underlying the 

13 global phenotypes have different developmental trajectories reflecting specific cellular 

developmental dynamics.

Cortical expansion and neurodevelopmental conditions

Given the enrichment of several of the global phenotypes with prenatal cellular and 

developmental processes, we hypothesized that these phenotypes are under negative 

selection pressures. Modeling the relationship between the minor allele frequency of 

the SNP and variance in effect size to quantify genome-wide signatures of selection 

using SBayesS44 suggested that the majority of the cortical macrostructural phenotypes 

are under significant negative selection (FDR q < 0.05; Fig. 5a and Supplementary 

Table 19). Additionally, we tested if the GWAS signals for the global phenotypes were 

enriched for constrained genes (that is, genes from which damaging variants are removed 

by natural selection45, genes associated with severe neurodevelopmental conditions46 or 

microcephaly). Cortical macrostructural phenotypes were significantly (FDR q < 0.05) 

enriched for highly constrained genes (pLOUEF < 0.37), and SA was enriched for genes 

associated with neurodevelopmental conditions (Supplementary Tables 20 and Fig. 5b). 

However, we identified no enrichment for genes linked to microcephaly, possibly because 

(1) several genes associated with microcephaly and other relevant cephalic disorders 

(for example, lissencephaly and holoprosencephaly) are yet to be discovered or properly 

documented, or (2) clinical microcephaly (and macrocephaly) might be genetically distinct 

from normative variation in brain size.

However, polygenic scores (PGS) for SA and volume, but not CT, were associated 

with macrocephaly and microcephaly in the expected directions in individuals from 

the deciphering developmental disorders (DDD)47,48 and SPARK49 studies (Fig. 5c). 

Furthermore, in the DDD cohort, PGS for both volume and SA were significantly associated 

with occipital-frontal circumference standardized for age and sex, in both individuals with 

and without a genetic diagnosis (Fig. 5d). This suggests that common genetic variants 

associated with normative variation in brain size are also linked to clinical cephalic 

disorders.

Finally, we conducted bivariate genetic correlations between the 13 phenotypes and 15 

different neurodevelopmental, psychiatric and cognition-related conditions. After multiple 

testing corrections, we identified significant genetic correlations between several cortical 

expansion phenotypes and measures of cognition (cognitive aptitude and educational 

attainment; Supplementary Table 22).

Prioritizing candidate genes

Given the previous enrichment and polygenic association with neurodevelopmental and 

cephalic disorders, we were interested in identifying potential causal genes from the global 

GWAS and investigating if these genes are associated with cephalic or neurodevelopmental 

conditions. We thus conducted functionally informed fine mapping of all experiment-wide 

Warrier et al. Page 7

Nat Genet. Author manuscript; available in PMC 2023 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



significant loci using Polyfun50 to identify causal variants. For 29 of these loci, we were 

able to finemap to fewer than five credible variants, and for eight, a single credible 

variant (Supplementary Table 23). We used nine overlapping methods to identify candidate 

genes (Methods) and identified 181 candidate genes (Supplementary Table 24). From 

this list, we defined prioritized candidate genes if they were supported by at least two 

experimental methods, leading to 40 different prioritized candidate genes, including 19 in 

the 17q21.31 region (Supplementary Table 25). Of these, 29 were identified for cortical 

expansion phenotypes, four for curvature phenotypes, 13 for neurite density and orientation 

phenotypes, 14 for water diffusion phenotypes and 12 for CT, with considerable overlap 

between the phenotypic domains.

Several genes identified for cortical expansion phenotypes are involved in mitosis, neural 

progenitor proliferation and cephalic and neurodevelopmental conditions including ATR 
(ref. 51), CENPW52, KANSL1 (ref. 53) and HMGA2 (refs. 54-56). Mutations in ATR 
cause Seckel syndrome, characterized by dwarfism, severe microcephaly and intellectual 

disability51. KANSL1 is associated with Koolen-de Vries syndrome, characterized by global 

developmental delays, and with over 50% of published individuals having microcephaly53. 

Mutations in HMGA2 lead to macrocephaly and Silver–Russell syndrome56. The overlap 

between fine-mapped genes from common variants and genes implicated through rare 

variants suggests convergence between rare and common variants. The genes identified 

for the cortical expansion phenotypes were enriched for the Wnt signaling pathway 

(GO:1904953, q = 0.04), which regulates progenitor proliferation and cortical size57.

Some genes implicated in CT and neurite density and orientation phenotypes were involved 

in axogenesis and neuronal migration, including VCAN58 and MACF1 mutations, which 

cause lissencephaly and defects in neuronal migration and axon guidance59. Finally, genes 

associated with water diffusion phenotypes included MOBP, which encodes a structural 

component of the myelin sheath, the neuronal proline and glycine transporter gene 

SLC6A20, and the lipid-gated potassium channel gene KCNK2.

Genetic loci associated with regional cortical phenotypes

To identify genetic influences on regional neuroimaging measures, we conducted 2,338 

GWAS using regional phenotypes measured for 180 bilaterally averaged cortical regions 

using the Human Connectome Parcellation scheme17. We did not adjust for global 

phenotypes to minimize false positives60 (Supplementary Note 3). In total, we identified 

4,260 experiment-wide significant (P < 4.58 × 10−11) loci. The highest number was 

associated with regional SA (1,033; Supplementary Table 26). These loci were more likely 

to contain constrained regions of the genome61 (P = 3.97 × 10−3, one-sided Wilcoxon 

rank-sum test). This enrichment was driven by loci that were significant for regional cortical 

expansion phenotypes (P = 4.38 × 10−4, one-sided Wilcoxon rank-sum test). The 4,263 loci 

clustered into 456 semi-independent regions when accounting for linkage disequilibrium 

(LD) (r2 > 0.1, 1,000 kb) agnostic of the neuroimaging phenotype, indicating widespread 

pleiotropy across the regional measures.
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To understand the extent to which these signals reflect genetic influences on the global 

phenotypes, we used the ‘GWAS-by-subtraction’ method to regress out a latent factor 

representing genetic variance62 on global phenotypes for 3,216 of the experiment-wide 

significant loci (Methods; Supplementary Table 27). In total, 1,633 (50%) of these loci 

remained experiment-wide significant (P < 4.58 × 10−11) and 3,049 (95%) remained 

genome-wide significant (P < 5 × 10−8), suggesting that the vast majority of these loci 

had statistically significant regional effects. In contrast, the global genetic latent trait reached 

experiment-wide significance for 966 of these loci (30%) and 1,499 (46%) reached genome-

wide significance, suggesting that as many as half of these loci are also associated with the 

global genetic latent trait. However, this could be partly by design, as the global phenotypes 

in this study are simply the sum of the regional phenotypes.

To further identify shared genetic loci across regional and global phenotypes, we conducted 

colocalization analyses across all experiment-wide significant (P < 4.58 × 10−11) loci 

(regional and global) for each of the 13 phenotypes separately (Supplementary Table 28). 

We identified between 409 (for SA) and 17 (for FA) colocalized clusters, where we use 

the term ‘cluster’ to refer to a group of phenotypes within one of the 13 neuroimaging 

modalities that share causal variants in an LD-defined genomic region. The largest cluster 

was at chr12:65559695-67181144 (12q14.3) comprising the global SA and 156 other 

regional SA GWAS. This region includes the aforementioned HMGA2, associated with 

Silver–Russell syndrome54-56. For all phenotypes except FA and MD, larger clusters were 

more likely to include hits in the global GWAS (P < 0.05, one-sided Wilcoxon rank-sum 

test). However, there were some large clusters that comprised only regional GWAS, 

suggesting more localized regional effects. Visual inspection of all clusters with a cluster 

size of 30 + GWAS (that is, clusters based on 30 or more regional GWAS) revealed 

that topologically closer regions were more likely to have higher genetic colocalization 

(Supplementary Figs. 3 and 4). Furthermore, median geodesic distance between regions 

within a cluster was smaller than the median geodesic distance between regions within and 

outside a cluster (P < 2 × 10−16, Wilcoxon rank-sum test).

Clusters that included the global GWAS also exhibited broader regional patterns of 

colocalization. For example, a locus at chr6:125424383-127540461, which includes 

CENPW, was associated with FI and ICI both globally and in over 30 regions in the superior 

(dorsal) cortex (Supplementary Fig. 5). CENPW exhibits regional differences in gene 

expression in the developing cortex63. These analyses demonstrate that SNPs associated 

with global phenotypes may be associated with only some regional phenotypes.

As with the global features, regional cortical macrostructural phenotypes showed an 

on average higher heritability compared to regional cortical microstructural phenotypes 

(Extended Data Fig. 4 and Supplementary Table 29; t = −19.4, P < 2 × 10−16, F(12,2327) 

= 420.7). We further evaluated if SNP heritability systematically varied across previously 

established functional (Yeo and Krienen communities)64 and morphological (Mesulam 

classes) parcellations65 of the cortex. Permutation analyses that account for spatial 

correlation between regions (spin permutation)66 revealed that only CT had relatively higher 

heritability in idiotypic sensory areas (Mesulam), and a similar profile was observed for the 

sensory-motor network (Yeo and Krienen)64 (Supplementary Table 30 and Supplementary 
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Fig. 6). This may reflect better histological and functional demarcation of the sensory-

motor regions relative to other regions. Overall, these results suggest limited evidence of 

SNP heritability for cortical morphology being preferentially larger or smaller in known 

functional and morphological organizational classes.

Previous research has indicated that asymmetry in some phenotypes across the cortex is 

modestly genetic67. In the UKB, we identified greater absolute average asymmetry for 

cortical expansion and cortical microstructural phenotypes compared to curvature-related 

phenotypes or CT. However, SNP heritability of the asymmetry index was minimal 

(Extended Data Fig. 5 and Supplementary Table 31) and reached statistical significance 

for only 21 phenotype-region combinations (q < 0.05). Together this indicates the minimal 

genetic contribution to asymmetry across the cortex and is suggestive of high genetic 

correlation across the hemispheres.

Differential regional genetic organization of the cortex

The high-resolution parcellation scheme used in this study also allowed us to evaluate 

the protomap hypothesis, which suggests that regional differentiation of the cortex is 

intrinsically (genetically) determined early in cortical development26,68. If this is true, 

we would expect regions that are spatially closer to each other to be genetically more 

similar. Partly supporting this, genetic correlations were moderately correlated with geodesic 

distances among the 180 regions for each of the 13 phenotypes (r = 0.57 for LGI to 0.13 for 

ICVF, P = 0.001 for all tests, Mantel test; Supplementary Table 32).

We further investigated if regional genetic correlations were higher within either functionally 

similar networks (Yeo and Krienen communities64) and morphologically similar classes 

of laminar differentiation (Mesulam classes65). Across multiple phenotypes we identified 

higher genetic correlations among Mesulam’s heteromodal association cortical regions 

but not in any of the Yeo and Krienen communities64 (Supplementary Table 33 and 

Supplementary Fig. 7).

To better understand if the 13 phenotypes are similar in their pattern of regional genetic 

correlations, we calculated cophenetic correlation coefficients among all 13 neuroimaging 

modalities using the regional genetic correlation matrices. Grouping based on cophenetic 

correlations identified four clusters with similar regional genetic correlation patterns (cluster 

1: SA, volume and LGI; cluster 2: all folding measures and CT; cluster 3: FA and OD and 

cluster 4: MD and ISOVF; Fig. 6a). Similar clusters were also observed when using regional 

phenotypic correlation matrices. These clusters differed from the clusters identified from 

the global phenotypes in that FI and ICI clustered together with CT and other measures 

of curvature. This suggests that clusters based on shared genetics of global phenotype 

moderately overlap with clusters based on regional genetic organization.

These four clusters were also distinguishable based on their correlation between regional 

geodesic distances and genetic correlation (Fig. 6b). Cluster 1 phenotypes, which relate 

to progenitor proliferation, had the highest correlation between genetic correlation and 

geodesic distance between regions. This was followed by cluster 4 (MD and ISOVF: the 
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water diffusion phenotypes), which both increase with age in adults69,70. We speculate that 

this patterning might reflect the heterochronous cellular and developmental trajectories of 

these phenotypes–regional differences in gene expression in the cortex exhibit a cup-shaped 

pattern with high regional differences in midgestation that re-emerge during adolescence and 

increase in adulthood14,71.

To further explore the pattern of regional organization, we extracted the first principal 

component from each respective genetic correlation matrix. The first principal component 

explained between 25% (LGI) to 62% (MD) of the variance. Clustering of the neuroimaging 

modalities based on the similarity of the first principal component of the region-to-region 

similarity was similar to the clustering based on the cophenetic correlations of the same 

region-to-region similarity (Fig. 6c), suggesting that the first principal component largely 

captures regional genetic organization. Visual inspection of the first principal component 

identified the following four different axes of variation: anterior–posterior (SA, volume and 

LGI: cluster 1 phenotypes), inferior–superior (ISOVF, MD: cluster 4 phenotypes) and a mix 

of primary-association and inferior–superior (CT, GC, MC, FI, ICI: cluster 2 phenotypes, 

and ICVF; Fig. 6d). For OD and FA (cluster 3 phenotypes), we were unable to identify 

a clear topological axis of variation. These are in line with the following patterns of 

gene expression in the human cortex: anterior–posterior gradients during development, and 

primary-association gradients postnatally up until adolescence and early adulthood72, and in 

the inferior–superior direction for water diffusion phenotypes, which are late-emerging73,74. 

Using the first principal component derived from regional phenotypic correlation, we 

identified clear axes of variation for SA, volume (anterior–posterior) and LGI, CT (inferior–

superior), but not for the other phenotypes (Extended Data Fig. 6). This likely reflects 

the additional influence of directionless nongenetic factors in the development of cortical 

microstructure and curvature.

Discussion

Our results provide granular insights into the organization and development of the human 

cortex and links to cephalic and neurodevelopmental conditions, after testing several 

different hypotheses (Supplementary Table 34). We find that cortical macrostructural and 

microstructural phenotypes are genetically distinct, enriched for different cellular and 

developmental processes and provide support for the differential tangential expansion 

hypothesis2 ,30,31. We find that even among individuals with severe developmental 

disorders47,48, common genetic variants are associated with cephalic disorders, expanding 

our understanding of the role of common and rare genetic variants in developmental 

disorders.

Regionally, topologically closer regions were likely to share genetic loci and be genetically 

similar, suggesting that regional effects are not constrained to parcellation boundaries and 

supporting the protomap hypothesis26,68. We identify principal dimensions of regional 

genetic organizations among the phenotypes, suggesting that cortical organization is 

informed by distinct waves of molecular processes, some of which are highly directional.
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Our analyses focused on individuals predominantly of European genetic ancestries and 

common genetic variants, as we were limited by sample size, computational power and 

methodology. There is considerable heterogeneity in MRI preprocessing and postprocessing 

approaches, including the application of parcellation schemes75,76. We chose a commonly 

used approach to increase the compatibility of our summary statistics. Finally, expanding 

the number of phenotypes such as functional MRI (fMRI), white matter and subcortical 

measures will provide a more precise atlas of the genetics of structure and function of the 

human brain and the genetic relationships between them.

In conclusion, by conducting and analyzing GWAS of 13 different neuroimaging modalities 

both globally and across 180 cortical regions we provide unprecedented insights into the 

genetic organization and development of the human cortex. We make this resource freely 

available to researchers for further analysis.

Methods

Inclusion and ethics

This research complies with all relevant ethical regulations. Ethical procedures for the UKB 

are controlled by the Ethics and Guidance Council (http://www.ukbiobank.ac.uk/ethics), and 

the study was conducted in accordance with the UKB Ethics and Governance Framework 

document (https://www.ukbiobank.ac.uk/media/0xsbmfmw/egf.pdf), with institutional 

review board approval by the North West Multicenter Research Ethics Committee. Ethical 

approval for ABCD was obtained from multiple institutional review boards.

Datasets

UKB—The UKB is a prospective cohort of 500,000 individuals from the UK. Of these 

individuals, 100,000 will undergo brain scanning5,15,77, with approximately 40,000 scans 

having been completed when the current study commenced. Participants were excluded 

from the MRI study on the basis of standard MRI safety criteria such as metal implants, 

recent surgery or conditions problematic for scanning such as hearing problems, breathing 

problems or claustrophobia.

ABCD—The ABCD study is an ongoing study of childhood and adolescence78. Participants 

from the general population were recruited from all over the United States across 21 sites 

by providing select schools with information packets to all families with 8- to 10-year-old 

students.

Image acquisition—Data were acquired as part of the UKB and ABCD cohort studies 

with the following protocols. For the UKB (https://www.fmrib.ox.ac.uk/ukbiobank/protocol/

V4_23092014.pdf), T1-weighted structural imaging was obtained using the following 

parameters: 1.0 mm isotropic resolution, TR = 2,000 ms, TE = 2.01 ms, TI = 880 ms and 

flip angle 8 degrees; T2-weighted fluid-attenuated inversion recovery (FLAIR) structural 

imaging was obtained using the following parameters: 1.0 × 1.0 × 1.1 mm resolution, TR 

= 5,000 ms, TE = 395.0 ms and TI = 1,800 ms; and diffusion-weighted imaging (2.0 mm 

isotropic resolution) was obtained using the following parameters: MB = 3, R = 1, TE/TR 
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= 92/3,600 ms, PF 6/8, fat sat, b = 0 s mm−2 (5× + 3× phase-encoding reversed), b = 1,000 

s mm−2 (50×), b = 2,000 s mm−2 (50×), 105 + 6 time-points (PA–AP). For ABCD (https://

github.com/nih-fmrif/abcd_protocols) and ref. 16, T1-weighted imaging (1.0 mm isotropic 

resolution) was obtained using the following parameters: TR = 2500 ms, TE = 2.88 ms, 

TI = 1060 ms, flip angle 8 degrees; T2-weighted imaging (1.0 mm isotropic resolution) 

was obtained using the following parameters: TR = 3200 ms, TE = 565 ms, flip angle 

variable; and diffusion-weighted imaging (1.7 mm isotropic resolution) was obtained using 

the following parameters: TR = 4100 ms, TE = 88 ms, flip angle 90 degrees, 500 (6-dirs); 

1,000; (15-dirs) 2,000; (15-dirs) and 3,000 (60-dirs)

While not processed as part of the present analysis, we also obtained framewise 

displacement parameters from each individual’s accompanying resting-state fMRI scan.

Image processing—Structural minimally processed T1 and T2-FLAIR-weighted data 

were obtained from UKB (application 20904) and the ABCD study (via the NIH Data 

Archive Repository). These images were preprocessed with FreeSurfer (v6.0.1)79 using 

the T2-FLAIR-weighted image to improve pial surface reconstruction when available. 

Recon-all reconstruction included bias field correction, registration to stereotaxic space, 

intensity normalization, skull-stripping and white matter segmentation. A triangular surface 

tessellation fitted a deformable mesh model onto the white matter volume, providing 

gray–white and pial surfaces with >160,000 corresponding vertices registered to fsaverage 

standard space. When no T2-FLA1R image was available, FreeSurfer reconstruction was 

done using the T1-weighted image only. Given systematic variation related to the inclusion 

of T2 FLAIR, this was included as a confound variable in downstream analyses. Cortical 

surfaces were reconstructed for each individual using FreeSurfer and registered using 

FreeSurfer’s surface-based registration to fsaverage. The Human Connectome Project’s 

(HCP) multimodal parcellation v1.0 (ref. 17) was resampled from fs_LR to fsaverage using 

existing transformations80 and from there back to the individual’s surface meshes based on 

the FreeSurfer folding-based surface registration. Reconstruction quality was assessed using 

the Euler index81 and included as a covariate in subsequent analyses (Supplementary Note 

4).

Structural diffusion-weighted imaging was obtained in processed form from UKB and 

ABCD in a similar fashion. As described in the UKB Brain Imaging Documentation 

(v1.8)82, UKB diffusion images were corrected for eddy currents, head motion and outlier 

slices using the Eddy tool (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/EDDY). Echo planar imaging 

(EPI) distortion correction was performed using a field map estimated from three (b = 0) 

images with standard (anterior–posterior) phase encoding and three (b = 0) images acquired 

with reversed-phase encoding. Similarly, ABCD diffusion images were corrected for eddy 

currents (12 free parameters), head motion (rigid-body registration) and EPI distortion using 

pairs of b = 0 with opposite phase encoding polarities83. Neurite orientation dispersion and 

density indices (NODDI) parameters were estimated using the accelerated microstructure 

imaging via convex optimization84 processing approach from the minimally processed 

diffusion images. The subject-specific T1-aligned (based on surface alignment procedures) 

parcellation template was coregistered to the diffusion-weighted image using fsl FLIRT, and 

regional values for FA, MD and the three NODDI parameters were extracted using AFNI’s 
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3dROIstats function for all of the 360 cortical regions included in the Human Connectome 

parcellation and averaged across the hemisphere to reduce the number of regions to 180 

bilateral regions. We also evaluated a direct surface-based registration approach in line with 

HCP protocols for surface-based registration (Supplementary Note 4b).

In total, the following 13 different imaging-derived phenotypes were extracted using this 

pipeline:

1. Total SA of the cortex (measured at midthickness)

2. Total volume of the cortex (volume)

3. Average thickness of the cortex (CT)

Measures of curvature–we calculated five measures of curvature. Assuming two 

principal curvatures (k1 and k2), we can define the five measures of curvature as 

follows.

4. Total MC = (k1 + k2) ∕ 2. MC is typically thought to measure extrinsic curvature. 

In other words, this is not curvature that is intrinsic to the surface, but rather 

extrinsic to the surface.

5. Total GC = k1 × k2

6. Total ICI = max(K, 0). In other words, if GC is positive, ICI is positive. If GC is 

negative, ICI is 0.

7. Total FI = ABS(K1) × (ABS(K1) − ABS(K2)).

8. Total LGI85–gyrification index quantifies the amount of curvature that is buried 

within the sulcal folds and is a measure of gyrification. This is computed by 

calculating the ratio of the area between an outer smoother surface and an inner 

surface tightly wrapping the pial surface. As it is a ratio, it is a unitless measure.

These measures have consistently been found to have high test–retest reliability 

(intraclass correlation coefficient (ICC): ~0.8) across sites, acquisition protocols 

and recent FreeSurfer versions86-90. The above properties measure primarily 

tissue macrostructure. To better understand cortical microstructure, we calculated 

five measures from the diffusion-weighted images91. Because conventional 

diffusion parameters such as FA and MD alone are not specific to the underlying 

microstructure of axons and dendrites (referred to, collectively, as neurites), we 

also extracted NODDI measures92,93.

9. FA91–FA is thought to be a measure of microstructural integrity. Higher FA 

values are thought to indicate fiber tracts (that is, greater anisotropy). FA would 

be higher in areas of greater neurite density due to less isotropic water diffusion.

10. MD91–MD measures the degree of displacement (or diffusivity) of water. It can 

be a measure of membrane density and degree of myelination. Lower membrane 

density and greater myelination are thought to decrease MD.
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We calculated the following three metrics using NODDI. NODDI assumes 

three microstructural environments for the diffusion of water–intracellular, 

extracellular and CSF43. The intracellular environment is anisotropic and water 

diffusion in this environment can be quantified using

11. ICVF–also referred to as neurite density index, this is a measure of the density 

of neurites (axons and dendrites). Higher ICVF values indicate that a greater 

fraction of the tissue consists of neurites.

12. ODI–this measures the orientation and spatial variation of the neurite fibers. Zero 

indicates perfectly aligned straight fibers and one for completely isotropic fibers. 

Thus, larger values of ODI represent highly dispersed neurites and smaller values 

represent highly aligned neurites.

13. ISOVF–this is a measure of water diffusion, typically representing cerebrospinal 

fluid and ventricles in the cortex.

All white matter metrics have also shown high test–retest reliability (ICC: −0.8) and scanner 

consistency, both in a longitudinal subset of the UKB dataset (n = 2,817, mean scan-to-scan 

interval 2.25 years s.d.: 0.12)90 and in a specifically designed test–retest cohort to evaluate 

both intervendor and scan–rescan reliability94.

We note that all phenotypes were standardized. Mean CT was calculated as the average 

across the 180 bilaterally averaged cortical regions. Due to this standardization, the 

standardized scores from the average and total values will be identical.

We calculated the hemispheric asymmetry between the regional values using the widely 

used asymmetry index67,95-97.

Asymmetry index = (left − right) ∕ ((left + right) ∕ 2) (1)

Genome-wide association analyses

Genetic quality control in the UKB—Genetic quality control and imputation of 

the UKB were done by the UKB team and described in detail elsewhere15. After this, 

we included only individuals of self-identified white ethnicity, and from this group of 

individuals, excluded individuals who were above ±5 s.d. from the means of the first 

two genetic principal components, and refer to this group as individuals of predominantly 

European genetic ancestries. We further removed individuals whose genetic sex did not 

match their reported sex, or had excessive genetic heterozygosity, as provided by the UKB 

team. For the GWAS, we used all genotyped and imputed SNPs in the UKB that had a 

minor allele frequency >0.01% and were in Hardy–Weinberg equilibrium (HWE; P < 1 × 

10−6) and, for imputed SNPs, had an imputation r2 > 0.4. After quality control, we retained 

a maximum of 31,797 participants and 15,916,802 SNPs. We conducted our analyses 

using people of predominantly European genetic ancestries as this represented the largest, 

relatively genetically homogeneous group. We did not conduct GWAS for individuals in 

other ethnic groups as there were fewer than 400 individuals with imaging and genetic data 

after quality control in each of the other ethnic groups, which is insufficient sample size for 
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linear mixed-effect models for GWAS. However, as greater data from other ethnic groups 

become available, we will revisit these analyses.

Genetic quality control in ABCD—Before imputation, we filtered SNPs with 

missingness >90% and deviations from HWE (P < 1 × 10−6). We removed individuals 

with missingness >5% and whose genetic sex did not match their reported sex. As HWE and 

heterozygosity are incorrectly calculated in populations with diverse genetic ancestries, these 

steps were conducted in relatively homogenous genetic ancestral groups identified using 

principal-component-based clustering after combining the data with the 1000 Genomes 

phase 3 data98. Principal components were calculated using GENESIS99 after accounting for 

relatedness between samples as calculated using KING100. We calculated genetic principal 

components using only genotyped SNPs that had passed quality control, and after pruning 

the SNPs to account for LD (r2 > 0.1), and after removing the MHC locus, a region of 

long-range LD. To identify genetically homogeneous groups, we used the first five principal 

components to identify clusters in the 1000 Genomes data using UMAP, identifying seven 

broad populations–non-Finnish Europeans, Finnish Europeans, Africans, Americans, East 

Asians, South Asian and Bengali. Then, using the first five PCs from the ABCD dataset, we 

projected individuals onto the seven clusters, identifying broadly homogeneous populations 

(Supplementary Fig. 8). HWE-based filtering (P < 1 × 10−6) and removing individuals 

with excess heterozygosity (±3 s.d.) was then conducted. After clustering into genetically 

homogeneous groups, we additionally calculated genetic PCs specifically in the subgroup 

of the ABCD participants that were predominantly of European genetic ancestries, again 

using a pruned set of genotyped SNPs and after excluding the MHC. The data were then 

merged, phased (Eagle v 2.4) and imputed (Minimac4) using the TOPMED Imputation 

Server. From the imputed data, we removed SNPs with poor imputation (r2 < 0.4) and minor 

allele frequency <0.1% (n = 14,495,763 SNPs). We restricted our analyses to individuals of 

predominantly European genetic ancestries (n = 4,866).

Genome-wide association analyses—In both the UKB and ABCD, we followed the 

same procedures outlined below. We conducted whole brain and regional GWAS analyses 

for the 13 phenotypes mentioned in the ‘Image Processing.’ For each region, we averaged 

the values bilaterally, resulting in a total of 180 regional phenotypes per phenotype. For ICI 

and FI, we excluded regions ‘52’, ‘PI’ and ‘PHA2’ because of no variance. In total, we 

conducted 2,347 GWAS using FastGWA (v1.93)101. FastGWA can simultaneously account 

for both relatedness and subtle population stratification in the analyses.

All phenotypes were scaled to a mean of 0 and a s.d. of 1. We removed individuals who 

scored above or below 5 s.d. from the mean for all phenotypes, as these are most likely 

technical outliers. Furthermore, these outliers skew the phenotypic scores and cannot be 

used in fastGWA, which can produce false positives at stringent P value or for SNPs 

with low minor allele frequencies101. Additionally, we visually inspected histograms of 

all phenotypes and further removed outliers above or below 5 median absolute deviations 

for phenotypes with substantial skew, primarily for MD and FI. Additionally, to ensure 

that the GWAS were not confounded by fine-scale population stratification, among the 

individuals of European ancestry identified in UKB or ABCD, we removed individuals who 
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were above or below 5 s.d. from the mean of the first two genetic principal components. 

For all GWAS, we included age, age2, sex, age × sex, age2 × sex, imaging center, first 

40 genetic principal components, mean framewise displacement (as obtained from the 

accompanying resting-state fMRI scan), maximum framewise displacement (as obtained 

from the accompanying resting-state fMRI scan) and Euler Index81 as covariates. In 

addition, for structural MRI metrics derived from T1, we included the inclusion of T2 scans 

as covariates as this influenced the calculation of these metrics. To ensure this inclusion did 

not bias our results, we also computed separate GWAS for individuals with both T1 and 

T2-FLAIR and individuals who only had a usable T1 but no additional T2 FLAIR. Genetic 

correlations between the T1-only sample and the T1 + T2-FLAIR-weighted sample were 

indistinguishable from 1 for all 7 GWAS, indicating that the overall genetic architecture 

is identical. Furthermore, effect sizes of the genome-wide significant SNP were highly 

correlated between the Tl-only GWAS and the combined GWAS (r = 0.9998, P < 2 × 10−16).

For the regional GWAS, we chose not to include the respective global phenotypes for three 

reasons. First, adjusting for heritable and highly correlated phenotypes biases the GWAS 

estimates60,102. All global phenotypes were substantially heritable and highly correlated 

with the regional phenotypes (detailed in Supplementary Note 3). Second, including highly 

correlated and heritable covariates may result in collider bias for downstream analyses such 

as MR103. Given that we wish to make the summary statistics available for researchers to 

conduct other analyses, including global phenotypes as a covariate can restrict the scope 

of downstream analyses. Finally, we were specifically interested in identifying SNPs with 

effects across the cortex, which may not have been possible if we had adjusted for global 

phenotypes. We note that methods such as genomic-SEM24, mtCOJO104 and multivariable 

MR105 all allow adjustment for global GWAS in downstream analyses. Here we used 

genomic-SEM to regress out the genetic effects of the global phenotype for the majority 

of experiment-wide significant SNPs (definition of which is detailed below), to identify the 

fraction of SNPs that remained significant. We note that modeling of global versus local 

genetic effects at a genome-wide level as conducted elsewhere106 is beyond the scope of this 

study.

We meta-analyzed results from the UKB and ABCD using inverse-variance weighted 

meta-analyses in Plink v1.9 (ref. 107), excluding SNPs that were absent from the UKB, 

given the difference in sample sizes (and consequently, statistical power) between the 

UKB and ABCD. We checked for inflation in summary statistics using the attenuation 

ratio. In fastGWA, which uses a linear mixed-effects model, the LDscore intercept is not 

a good indicator of inflation in test statistics due to population stratification. Instead, as 

recommended108, we used the attenuation ratio:

Attenuation ratio = (LDSC intercept − 1) ∕ (meanχ2 − 1) . (2)

We investigated if our variantsor variants in high LD (r2 > 0.8 in CEU or GBP populations) 

were significantly associated with neuroimaging phenotypes (including quality control) 

metrics sequentially using the following four different databases: the Oxford Brain Imaging 

Genetics PheWeb (PheWeb(ox.ac.uk)), GWAS catalog (GWASCatalog(ebi.ac.uk)), GWAS 
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ATLAS (Genome-wide association study ATLAS (ctglab.nl)) and Brain Imaging Genetics 

Knowledge Portal Brain Imaging Genetics Summary Statistics.

Multiple testing correction—Using matrix decomposition109, we estimated that there 

were 1,092 independent phenotypes. This was estimated from all 2,347 global and regional 

phenotypes included in the study, and thus corrects for all the tests conducted in the study. 

Consequently, using the total number of independent phenotypes, we used Bonferroni 

correction to define an experiment-wide threshold of 4.58 × 10−11 (5 × 10−8/1,092) to 

correct for the multiple tests conducted. To identify significant loci, we cl umped the GWAS 

using an r2 threshold of 0.1 over 1,000 kb. We used LD information available from a random 

sample of 5,000 unrelated individuals from the UKB who were included in the GWAS.

Genetic correlation and causal analyses

Genetic correlation, SNP heritability estimation, clustering and GSEM—For the 

global phenotypes, we used LDSC (v1.01)18,22 to compute genetic correlations and SNP 

heritability for the meta-analyzed GWAS statistics, using LD weights from the North West 

European populations. Intercepts were not constrained. Heritability and genetic correlation 

(among 180 regions per phenotype for all 13 phenotypes) of the regional GWAS were 

calculated using LDSC as incorporated within genomic-SEM24. Additionally, for the global 

phenotypes in the UKB, we conducted GCTA–GREML110 (v1.93) based SNP heritability 

using a genetic relationship matrix calculated using all imputed SNPs included in the 

GWAS, for 30,765 unrelated individuals (using a GCTA–GREML cutoff of 0.05) with 

neuroimaging GWAS. For the asymmetry indices, we calculated SNP heritability for a 

subset of approximately 9,650 unrelated individuals. We applied the same quality control 

and used the same covariates as for the GWAS.

For the global phenotypes, clustering of the phenotypic and genetic correlation matrices was 

conducted on the Euclidean distance. As the final hierarchical clustering is dependent on the 

clustering method used, we used three different clustering methods (Average, Ward D and 

Complete Linkage) and visualized the different clusters obtained. Cophenetic correlations 

(in R Stats (version 3.6.2)) were obtained by comparing the phenotypic and genetic 

dendrograms produced by the different clustering methods.

GSEM was conducted using genomic-SEM24 using summary GWAS statistics of the 

global cortical phenotypes. We conducted exploratory factor analyses using the even 

chromosomes, identified factor models and conducted confirmatory factor analyses using 

the odd chromosomes. The final model was selected after multiple iterations based on both 

fit indices and theoretical predictions. Fit indices and path diagrams are provided for models 

based on all chromosomes.

For the regional phenotypes, we conducted 1,000 spin permutations66 tests to investigate 

if SNP heritability of regions or genetic correlation among regions were higher in 

regions falling within functionally64 or morphologically similar classes65. Spin permutation 

accounts for spatial correspondence between regions and generates null models using 

random rotations across the spherical cortical surface66.
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We investigated if the genetic correlation among regions was correlated with topological 

geodesic distances among regions using the Mantel test (within each phenotype separately). 

We investigated if the clustering of regions based on genetic correlations was similar 

between phenotypes based on cophenetic correlation.

Phenotypic correlation and principal component analysis—Comparable to 

region-specific genetic correlations, we also generated region-to-region phenotypic 

correlation matrices (‘structural covariance’) for both UKB and ABCD cohorts by taking 

the Pearson correlation across subjects on the scaled and filtered data. UKB and ABCD were 

then combined into a single meta-covariance matrix using the ‘psychmeta’ package (v 2.6.0) 

in R111.

We extracted the first principal component from the regional genetic correlation matrix 

and regional phenotypic correlation matrix for each of the 13 phenotypes separately. This 

principal component analysis was done using a singular value decomposition of the centered 

and scaled similarity matrix using the ‘stats’ package (v 3.6.3) in R.

Colocalization—To identify colocalized genomic regions among the 13 global 

phenotypes, we used Hyprcoloc112. Hyprcoloc is robust to participant overlap and can 

conduct multitrait colocalization using hundreds of GWAS. We restricted our analyses 

to experiment-wide significant loci and mapped these onto predefined approximately 

independent LD blocks in individuals of European ancestry (approximately 1.6 Mb 

on average)113. We did not adjust for either participant or known correlation between 

phenotypes, as the method gives reasonable results comparable to adjusting for correlation 

between phenotypes. We used the branch and bound divisive clustering algorithm 

incorporated in Hyprcoloc to identify clusters of phenotypes that colocalize at any given 

locus. We used the default variant-specific prior probabilities in Hyprcoloc112–prior 1 

(probability that an SNP is associated with a single trait) as 1 × 10−4, and prior c (prior 

probability that the SNP is associated with a second trait) as 0.02. We identified colocalized 

genomic regions if the genomic regional association probability was 0.6 or higher. We used 

this probability of 0.6 as simulation analyses by the authors of method112 to demonstrate 

that at a regional association probability of 0.6, the empirical probability of identifying true 

clusters is greater than 90%. We used the same pipeline to investigate colocalization for 180 

regional GWAS and the global GWAS for each of the 13 phenotypes conducted separately.

MR—To investigate the causal effects of SA on other cortical macrostructural phenotypes, 

we conducted MR analyses25 using global phenotypes. To avoid bias due to participant 

overlap, we randomly divided the UKB into two groups of individuals (group A: n = 15,884 

of which males = 7,455; group B, n = 15,899, of which males = 7,500) and conducted 

GWAS analyses in each of the groups separately for the eight cortical macrostructural 

phenotypes using the same pipeline as detailed above. We generated instruments that 

consisted of SNPs with P < 5 × 10−8 in the exposure, with minor allele frequency >1%, 

and which were near-independent (clumping r2 = 0.001 using a 1,000 kb window using data 

from 5,000 unrelated individuals from the UKB). Where fewer than five SNPs met these 

criteria, we relaxed the P value threshold to P < 1 × 10−6. Using SA GWAS generated 

in group A as the exposure and the GWAS for the remaining six phenotypes in group 
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B as the outcome, we conducted inverse-variance weighted bidirectional MR analyses. To 

account for pleiotropy, we additionally conducted the following sensitivity analyses: (1) 

median weighted MR (majority-valid114), (2) MR-Egger (accounts for pleiotropy)115; (3) 

MR PRESSO (detects and excludes outliers in the instrument116). Additionally, (4) for the 

significant MR results, to further account for correlated (vertical) pleiotropy, we conducted 

MR analyses using CAUSE (v1.2)117 using the following two instruments: one with of SNPs 

with P < 5 × 10−8, and another at a more relaxed threshold of P < 0.001. We investigated 

heterogeneity in the instrument using Cochran’s Q and investigated if the Egger intercept 

was significant. We investigated if the orientation of the causal direction was correct using 

Steiger analyses118 and conducted additional sensitivity analyses after removing SNPs that 

did not have the correct causal orientation. Finally, we inspected the scatter plot, forest plot 

and plots generated from leave-one-out analyses to identify if the results were driven by a 

subset of the SNPs. Analyses (1) and (2) and the sensitivity analyses were conducted using 

the R-package TwosampleMR (v.0.4.26)119.

We repeated all MR analyses except for CAUSE using instruments generated in the UKB 

as the exposure and ABCD as the outcome. However, this was quasi-bidirectional, in that 

in both directions, the exposure was instruments generated in the UKB and the outcome 

was SNPs in the ABCD. We did not conduct CAUSE in this instance due to a sample size 

imbalance that reduces statistical power.

Given substantial pleiotropy between the phenotypes, we identified significant MR 

associations if—(1) the P value was <0.0035 (Bonferroni-corrected threshold) in both the 

within UKB and the UKB–ABCD analyses for IVW, MR PRESSO and weighted median; 

(2) MR-Egger was in the consistent direction to the IVW (MR-Egger has lower statistical 

power so we did not require it to be statistically significant); (3) if Steiger analyses identified 

incorrect causal orientation, criteria 1 and 2 were met after Steiger filtering and (4) results 

were significant when MR was conducted using CAUSE, which accounts for correlated 

pleiotropy. Analyses were conducted using the two-sample MR package (version 0.5.6)119. 

Power-calculations120 were conducted assuming a s.d. in the exposure results in a 0.33 unit 

s.d. change in the outcome, which is a medium effect size.

Gene-based association and enrichment analyses

Gene-based association—We used MAGMA (version 1.10)33 to conduct gene-based 

association testing based on physical location. MAGMA assigns SNPs to the nearest gene. 

In line with previous analyses, we expanded the window to 35 kb upstream and 10 kb 

downstream of the gene to capture regulatory regions121. In addition, we used H-MAGMA34 

(using MAGMA v1.08) to identify genes based on Hi-C mapping. In contrast to MAGMA, 

H-MAGMA is able to map SNPs to genes based on long-range interactions and can account 

for tissue-specific regulatory effects. To map developmental trajectories, we used Hi-C data 

from postnatal and prenatal human cortex34,122. Subsequently, for enrichment analyses, we 

used Hi-C data from the prenatal cortex given that the majority of the phenotypes were 

either enriched for gene expression in the prenatal cortex or did not differ in gene expression 

between prenatal and postnatal cortex, and because many processes investigated occurred 

prenatally.
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Developmental trajectories—To identify patterns of gene expression across cortical 

prenatal and postnatal windows, we used data from PsychEncode14. The data were divided 

into the following nine developmental windows: Window 1, 8–9 PCW; Window 2, 12–13 

PCW; Window 3, 16–17 PCW; Window 4, 19–22 PCW; Window 5, 35 PCW to 4 months; 

Window 6, 6 months to 2.5 years; Window 7, 3–11 years; Window 8, 13–19 years and 

Window 9, 21–40 years. Gene expression values were log base 2-transformed after adding 

a pseudocount and normalized. For 12 of the 13 phenotypes, the transformed expression 

values of all genes with q < 0.05 were averaged for each developmental window and 

smoothed LOESS curves were plotted. The excluded phenotype was FA as H-MAGMA and 

MAGMA identified 1 and 0 genes with q < 0.05, respectively.

Enrichment analyses—To investigate enrichment for cell types, signatures of genomic 

constraint and gene sets associated with neurodevelopmental and cephalic disorders, we 

conducted the following analyses. Within each gene set, significant results were identified 

after correcting for all 13 phenotypes using Benjamini–Hochberg FDR correction (q < 0.05).

To identify cell types in the prenatal and postnatal cortex, we conducted enrichment analyses 

using (1) single-cell gene expression data from PsychENCODE14 using prenatal (5 PCW 

to 125 d) and postnatal gene expression. To provide additional temporal resolution, we also 

conducted analyses using (2) single-cell gene expression data that spanned early cortical 

development (6–10 PCW)36; (3) single-cell gene expression data spanning midgestation 

period of cortical development (17–18 PCW)37; (4) single-cell epigenomic data (scATAC-

seq) from the midgestation period of cortical development38 and (5) cell-type-specific 

(fluorescent-activated nuclei sorting isolated) epigenomic (ATAC-seq and ChiP–seq) data 

from postnatal cortex42. Analyses for datasets 1–3 were conducted using MAGMA gene-set 

enrichment using genes identified by MAGMA and H-MAGMA. Following previously 

described methods121, we filtered out genes with nonunique names and genes not expressed 

in any cell types. Gene expression values were log base 2-transformed after adding a 

pseudocount and normalized. Mean cell-type-specific gene values were calculated, and 

this was divided by the mean expression of the gene in all cells to get relative cell type 

expression. We then selected the top 10% of genes with the highest relative expression 

in each cell type to conduct enrichment analyses using MAGMA gene-set enrichment 

analyses33. Significant cell types were identified if q < 0.05 in analyses using both H-

MAGMA- and MAGMA-identified genes. Analyses for datasets 4 and 5 were conducted 

using conditional partitioned heritability analyses in LDSC (that is, enrichment for a cell 

type after conditioning on all other cell types and baseline annotations)123,124.

We used the same gene-enrichment pipeline as above to investigate gene enrichment for 

genes that are constrained (pLOUEF < 0.37)45, genes associated with neurodevelopmental 

disorders46 (662 genes with FDR < 0.05) and genes associated with severe microcephaly 

obtained from the Genomics England Panel (244 genes, signed off on March 2, 2022: Severe 

microcephaly (Version 2.304; https://nhsgms-panelapp.genomicsengland.co.uk/panels/162/

v2.2)). Signatures of selection were identified using SBayesS44.
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PGS association analyses

Genetic quality control and PGS generation—PGS for SA, CT and volume 

were calculated using the meta-analyzed GWAS in a dataset of individuals with severe 

developmental disorders (DDD study, n = 6,916) and autistic individuals and their families 

(SPARK dataset, n = 25,621) using PRScs125. PRScs is a Bayesian algorithm that infers 

posterior effect sizes of SNPs using continuous shrinkage and does not require defining 

P value thresholds. Details of genetic quality control in the DDD cohort in individuals 

of predominantly European ancestries are provided elsewhere48. The data were re-imputed 

using the TOPMed reference panel, and variants with low imputation quality (minimac4 r2 

< 0.8) were excluded. We kept common (minor allele frequency >1%) SNPs that are also 

in HapMap3 to calculate the PGS using PRScs. Genetic-ancestry QC of the SPARK dataset 

was conducted similar to the ABCD dataset and as detailed elsewhere126,127. We calculated 

PGS on individuals of predominantly European ancestries as identified by genetic principal 

components. All PGS were standardized with a mean zero and a s.d. of 1 for all analyses.

Defining phenotypes in DDD and SPARK—In the DDD study, we used HPO terms 

assigned by clinicians to define macrocephaly (n = 396 with HPO term ‘HP:0040194’, 

‘HP:0000256’, ‘HP:0004482’, ‘HP:0004481’, ‘HP:0004488’ or ‘HP:0005490’) and 

microcephaly (n = 1,198 with HPO term ‘HP:0040195’, ‘HP:0000252’, ‘HP:0005484’, 

‘HP:0004485’, ‘HP:0000253’, ‘HP:0011451’ or ‘HP:0040196’). We also analyzed occipital-

frontal circumference data (n = 6,146), which were calculated as s.d. from the mean given 

the proband’s gestational age at birth, age at time of measurement and sex. In the SPARK 

dataset, information about macrocephaly and microcephaly were obtained from parental/

caregiver reports of medical diagnoses.

Statistical analyses—Linear or logistic mixed-effect regressions (random intercepts for 

family, in SPARK) were conducted using either PGS for volume or PGS for SA and CT in 

a multiple regression framework. Primary analyses were conducted using logistic regression, 

separately for macrocephaly and microcephaly (coded as 1) compared to controls (that is, 

individuals in the cohort without microcephaly or macrocephaly; coded as 0). In the DDD, 

we also conducted linear regression using standardized occipital-frontal circumference. 

Additionally, we conducted linear regression with macrocephaly coded as 1, microcephaly 

as −1 and no diagnosis as 0. In the DDD study, we included sex, genetic diagnosis and the 

first ten genetic principal components as covariates. Specifically, we considered probands 

to be ‘diagnosed’ if they had at least one variant reported to DECIPHER that had been 

confirmed as pathogenic or likely pathogenic (C/LP) by a clinician, or that had been 

predicted as P/LP by a computational algorithm based on the American College of Medical 

Genetics criteria, as described in ref. 128. In SPARK, age, sex, autism diagnosis and the 

first ten genetic principal components were included as covariates. Significant results were 

identified after Benjamini–Hochberg FDR correction (q < 0.05) across all models.

Fine mapping, summary Mendelian randomization (SMR) and prioritizing 
candidate genes—For all exome-wide significant loci in the global GWAS (n = 90), we 

conducted functionally informed fine mapping using Polyfun50, using SuSiE (v 0.12.10)129 

as the fine-mapping method and with up to five causal variants per locus, with each 
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locus defined 500 kb upstream and downstream of the sentinel variant. In-sample LD was 

obtained from 5,000 unrelated individuals included in the GWAS from the UKB. We used 

precomputed prior causal probabilities from the UKB as provided in Polyfun.

To link the variants in the 95% credible sets to genes, we used Hi-C data from (1) the 

prenatal brain germinal zone122, (2) the prenatal brain cortical plate122, (3) neurons from 

postnatal cortex130 and (4) glia from postnatal cortex130. Additionally, we (5) used Ensembl 

Variant Effect Predictor131 to identify genes containing damaging missense (deleterious 

in SIFT and/or damaging/probably damaging/possibly damaging in PolyPhen) and protein-

truncating variants from the list of the 95% credible sets.

To identify candidate genes using relevant eQTL and methylation data, we further conducted 

SMR132. SMR was conducted for all 13 phenotypes, using cis-eQTL data from postmortem 

(6) prenatal133 and (7) postnatal brains134, and additionally (8) methylation data from 

postnatal brains135. Within each phenotype, we identified significant genes by using 

Bonferroni correction for the total number of genes tested. We excluded significant genes 

with evidence to indicate that the MR association results are due to pleiotropy using the 

HEIDI test (HEIDI P < 0.01)132.

Finally, (9) we identified the closest gene to each sentinel variant (that is, the SNP with 

the lowest P value in each locus). Where the variant was intergenic, we included both the 

closest upstream and downstream genes. From these nine methods, we identify a list of 

prioritized candidate genes if they are supported by at least two methods. We conducted 

Gene Ontology (GO) enrichment analyses to identify biological pathways enriched for the 

prioritized candidate genes.

Extended Data

Extended Data Fig. 1 ∣. Consistency in genetic effects between ABCD and UKB.
(a) Correlation in effect size (regression beta from GWAS) between ABCD and UKB 

cohorts for all 237 genome-wide significant SNPs in the UKB: Pearson’s correlation 
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coefficient, r = 0.54 with 95% confidence interval 0.45–0.63. (b) Genetic correlation (central 

point) and 95% confidence intervals (error bars) for 12 global phenotypes in the UKB and 

ABCD cohorts. Given the relatively small size of ABCD, the intercept has been constrained 

as there is no participant overlap between the UKB (Nmax = 31,797) and ABCD (Nmax = 

4,866) and there is no inflation in test statistics due to uncontrolled population stratification. 

Consequently, estimates of genetic correlation can be above 1.

Extended Data Fig. 2 ∣. Mendelian randomization analysis for causal relationships between 
genetic effects on global brain phenotypes.
Scatter plots for the bidirectional MR effects between surface area and folding index, 

intrinsic curvature index, and local gyrification index. Slopes of the line (MR regression 

coefficient) indicate the estimated MR effect by method. Linear a, b, and c are scatter plots 

where surface area is the exposure, and d, e, and f are scatter plots where surface area is 

the outcome. All scatter plots are for MR analyses conducted by splitting the UKB into two 

samples of similar sample sizes. All estimates were statistically significant in scatter plots 

A,B, and C. Inverse-variance weighted MR failed to reach statistical significance in scatter 

plots d, e, and f. Number of SNPs included in the MR are provided in Supplementary Table 

9. Error bars represent standard errors of the effect size (point estimates).
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Extended Data Fig. 3 ∣. Forest plots and leave-one-out plots.
Forest plots (a–c) and leave-one-out (d–f) between surface area and folding index (FI, A 

and D), Intrinsic curvature index (ICI, B and E), and local gyrification index (LGI, C and 

F). Number of SNPs included in the MR are provided in Supplementary Table 9. Error bars 

indicate 95% confidence intervals of the effect (point estimates).
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Extended Data Fig. 4 ∣. Regional heritability.
a. The distribution of the SNP heritability for the 180 bilaterally-averaged regional 

phenotypes of the 13 neuroimaging modalities. Maximum GWAS sample size = 36,663. 

Box plots indicate the median value (central line), the interquartile range, and the whiskers 

indicate the minimum and maximum. b. The cortical spatial topology of SNP heritability for 

the 13 neuroimaging modalities.
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Extended Data Fig. 5 ∣. Asymmetry indices and SNP heritability of asymmetry indices for the 13 
phenotypes.
a. Asymmetry indices for the 13 phenotypes. Positive values indicate leftward asymmetry. 

b. SNP heritabilities for asymmetry indices by region and phenotype. SNP heritability was 

calculated using GCTA–GREML for approximately 9,650 unrelated individuals from the 

UK Biobank. Significant regions were identified after FDR correction within each of the 13 

phenotypes.

Extended Data Fig. 6 ∣. Topography of the first phenotypic principal components.
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Color scales depict the relative eigenvector ranging from −20 to +29, in all plots the 

midpoint is defined as 0. It should be noted that the sign is somewhat ambiguous and 

that the magnitude is relative to its own scaling (in this case within each phenotype for 

which the PCA is performed). Thus, in this context, the color scale indicates to what extent 

regions show more homogenous similarity (that is, regions with more similar color have 

more similar covariance).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Code availability

Code used are available at https://github.com/ucam-department-of-psychiatry/UKB 

(ref. 136), https://github.com/ucam-department-of-psychiatry/ABCD (ref. 137), vwarrier/
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ABCD_geneticQC (github.com; ref. 138) and vwarrier/Imaging_genetics_analyses 

(github.com; ref. 139).
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Fig. 1 ∣. Schematic overview of 13 brain MRI phenotypes and the genetic analyses.
a, We considered eight cortical macrostructural phenotypes: CT, cortical SA, please note 

that this is for illustrative purposes and that the SA is measured at midthickness, gray 

matter volume (Vol), FI, ICI, LGI, MC and GC. b, We also considered five cortical 

microstructural phenotypes: FA, MD, ICVF (also called neurite density index (NDI)), 

ISOVF and ODI. Each phenotype was measured globally (total or mean for the whole 

cortex) and regionally at each of 180 bilaterally averaged cortical regions defined by the 

Human Connectome Project parcellation scheme. We conducted genome-wide association 

studies of all phenotypes after removing outliers and investigated the latent structure of all 

phenotypes, developmental trajectories and cell type specificity and genetic organization.
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Fig. 2 ∣. Manhattan plots of GWAS meta-analysis of 13 global MRI phenotypes.
Blue dotted line indicates the threshold for genome-wide significance (P = 5 × 10−8), and 

the brown dotted line indicates the threshold for experiment-wide significance (P = 4.58 

× 10−11). Each dot on the x axis indicates an SNP and the y axis indicates the −log10(P 
values). All analyses were conducted by linear mixed models.
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Fig. 3 ∣. Pleiotropy among the 13 global phenotypes demonstrated by genetic/phenotypic 
correlations, structural equation modeling and colocalization analysis.
a, Phenotypic and genetic correlation matrices. The upper matrix triangle shows bivariate 

genetic correlations for each pair of phenotypes estimated using LDSC, and the lower 

triangle shows the pairwise phenotypic correlations (Spearman’s coefficient). The diagonal 

indicates the SNP heritability of each phenotype based on LDSC. Phenotypes are ordered 

based on hierarchical clustering of the genetic bivariate correlation (hierarchical clustering 

on the phenotypic correlation matrix resulted in a near identical ordering). b, Genomic SEM 

path diagram demonstrating the underlying latent structure of 12 of the 13 global phenotypes 

and the interfactor genetic correlations. Dashed lines connecting two variables, covariance 

relationships; double-headed arrows connecting a variable to itself, variance estimates; 

single-headed arrows pointing from independent variables to dependent variables, regression 

relationships. Circles indicate latent variables, and squares indicate measured phenotypes. 

The model was identified using unit variance identification such that the variance of the 

latent factors was set to one, and the dotted arrows across the factors can be interpreted 

as genetic correlation estimates. c, UpSet plot of the results of colocalization analysis 
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demonstrating the numbers of genomic loci that colocalize between the 13 phenotypes. 

The dots correspond to the colocalized clusters, with the number of clusters in the vertical 

bars. The number of times a phenotype colocalizes is provided in the horizontal bars. 

Additionally, summary of clusters identified through GSEM and colocalization analyses and 

their relationship with other terms used in this study are also provided. Vol, gray matter 

volume.
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Fig. 4 ∣. Enrichment of GWAS signals in different cell types during development.
a, Developmental trajectories of average gene expression in cortical postmortem-bulk RNA 

data (PsychEncode) for all significant genes (FDR < 0.05, n = 34–1,113; Supplementary 

Table 12) identified using H-MAGMA (left) or MAGMA (right) for 12 of the 13 

global phenotypes. Data for FA are not shown as too few genes were identified as 

significant. The shaded region indicates 95% confidence intervals. b, Results of enrichment 

analyses for cell-specific gene expression from midgestation. FDR-corrected log10(P values) 

for gene enrichment using genes identified from MAGMA (multiple regression) are 

plotted. The red line indicates the significance threshold at FDR-corrected P ≤ 0.05. 

Additionally, significant enrichments identified using H-MAGMA genes are indicated with 

an asterisk. c, Results of enrichment analyses from cell-specific epigenetic marks from 

postnatal cortex identified using LDSC-based enrichment. End, endothelial cells; ExDp1, 
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excitatory deep layer neurons 1; ExDp2, excitatory deep layer neurons 2; ExM, maturing 

excitatory neurons; ExN, migrating excitatory neurons; ExMU, maturing excitatory neuron, 

upper enriched; InCGE, CGE interneuron; InMGE, MGE interneuron; IP, intermediate 

progenitors; OPC, oligodendrocyte precursor cells; oRG, outer radial glia; PgS and PgG2M, 

cycling progenitors, S phase and G2-M phase, respectively; Per, pericytes; vRG, ventral 

radial glia.
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Fig. 5 ∣. Signatures of constraint and links to neurodevelopment for the global phenotypes.
a, Estimates of selection for the 13 cortical phenotypes. Selection coefficients (S), calculated 

with SBayesS, are provided as points on the y axis (points). Bars indicate 1 s.d. for 

the selection coefficients. Negative values indicate that lower-MAF alleles tend to have 

larger effect sizes. Sample sizes are sample sizes of the individual GWAS (nmax = 

36,663). Vol, gray matter volume. b, Results of the enrichment analyses for constrained 

genes and genes associated with neurodevelopmental disorders using genes identified from 

MAGMA. FDR-corrected log10(P values) for gene enrichment using genes identified from 

MAGMA (multiple regression) are shown (y axis). The red line indicates the significance 

threshold at FDR-adjusted P = 0.05. Additionally, significant enrichments identified using 

H-MAGMA genes are indicated with an asterisk c, Odds ratio (OR; provided as points) 

and 95% confidence intervals (error bars) for macrocephaly and microcephaly compared 

to individuals with neither for 1 s.d. increase in polygenic scores for volume, SA and CT 

in the DDD (n = 6,916) and SPARK (n = 25,621) cohorts. d, Line of best fit plotted 

using the linear model between genetic principal component corrected polygenic scores 

(SA and volume) and standardized (compared to the general population) occipital-frontal 

circumference (OFC s.d.) for individuals with or without a genetic diagnosis in the DDD 

cohort. The shaded region indicates 95% confidence intervals.
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Fig. 6 ∣. Topographic similarity and principal component structure of cortical phenotypes.
a, Cophenetic similarity matrix depicting the similarity between the region × region 

similarity matrices. The upper triangle shows the cophenetic genetic similarity, the lower 

triangle shows the cophenetic phenotypic similarity and the diagonals show the phenotype–

genotype cophenetic similarity across features. b, Correlation between network topology 

and geodesic distance organized by hierarchical clustering of the cophenetic similarity. c, 

Spatial correlation between the first principal component of each regional similarity matrix. 

The upper triangle shows the genetic similarity, the lower triangle shows the phenotypic 

similarity and the diagonals show the phenotype–genotype correlation across. d, Topology 

of the first genetic principal components, with color depicting the relative PCA eigenvalues. 

The color thus indicates to what extent regions show more homogenous similarity (that 

is, regions with more similar color have more similar covariance), but the actual sign and 

magnitude are relative within each phenotype.
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