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Abstract

Purpose of Review—Human cytomegalovirus (HCMV), while asymptomatic in most, causes 

significant complications during fetal development, following transplant or in immunosuppressed 

individuals. The host-virus interactions regulating viral latency and reactivation and viral control 

of the cellular environment (immune regulation, differentiation, epigenetics) are highly complex. 

Understanding these processes is essential to controlling infection and can be leveraged as a novel 

approach for understanding basic cell biology.

Recent Findings—Immune digital twins (IDTs) are digital simulations integrating knowledge 

of human immunology, physiology, and patient-specific clinical data to predict individualized 

immune responses and targeted treatments. Recent studies used IDTs to elucidate mechanisms of 

T cells, dendritic cells, and epigenetic control—all key to HCMV biology.

Summary—Here, we discuss how leveraging the unique biology of HCMV and IDTs will clarify 

immune response dynamics, host-virus interactions, and viral latency and reactivation and serve as 

a powerful IDT-validation platform for individualized and holistic health management.
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Introduction

Human cytomegalovirus (HCMV) is a prototypical betaherpesvirus infecting up to 90% of 

the world’s population [1, 2]. While asymptomatic in healthy individuals, the virus is the 
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leading cause of congenital abnormalities following fetal infection [3, 4] and is a significant 

cause of morbidity and mortality during hematopoietic stem cell [4–6] and solid organ [4, 

7] transplants. Like other herpesviruses, HCMV can establish lifelong persistence in the 

host, leading to distinct cellular regulation and disease states. Disease occurs following 

three distinct viral life cycle stages: initial infection, or after the establishment of viral 

latency from viral latency-induced myelosuppression, and/or acute CMV disease following 

reactivation. The complex interplay between the virus and host control viral latency and 

reactivation [8•, 9], cellular signaling (including differentiation, cell fate regulation, and 

hematopoietic processes) [10, 11], and the host immune responses to the virus (including 

specific T and B cell-driven immune responses) [12–14].

Hematopoiesis, including stem cell maintenance and the development of functional immune 

cells and appropriate immune responses, is an essential process for life and is intertwined 

with HCMV biology. Much of what we know about hematopoiesis comes from model 

organisms such as mice, which have been invaluable for elucidating basic functions 

and the natural responses to viral infection. Yet, significant differences between mice 

and humans demonstrate that not all functions are comparable between species, between 

disease states and/or infection, and “normal” hematopoiesis, demonstrating the complexity 

of these processes. Furthermore, biological differences at the individual level highlight a 

need to embrace this complexity by implementing personalized medicine. Development of 

medical digital twins or patient-specific computer models that integrate human physiology, 

immunology, and real-time data may support new understanding of disease mechanisms 

and prediction of disease course and outcome and identify the most appropriate treatment 

[15, 16•, 17, 18]. Digital twins also have the potential to elucidate the complex nature 

of biological processes including immune system responses to viral infections and the 

complexity of normal hematopoiesis.

One classic example of the differences between mice and humans is that while we now 

know the identity of specific stem cell subsets that are required for reconstitution in mice, 

the basic definition of a human hematopoietic stem cell (HSC) vs hematopoietic progenitor 

cell (HPC) remains only broadly defined (reviewed in [19]). This is illustrated in the 

success rate of serial transplants in mice where various HS/HPC subsets can be transplanted 

from wild-type to immunodeficient mice with full reconstitution ability. However, despite 

numerous advances since the early transplantation studies of human stem cells into mice 

(humanized mouse models) in the late 1980s [20–22], human cells still lack full lineage 

reconstitution. Additionally, a refined population for reconstitution has yet to be defined. 

Second, species-specific viruses highlight hematopoietic differences. HCMV is a classic 

example of this, as parallel evolution with the host immune system has made these viruses 

highly species-specific [23], to the degree that different primate CMVs have distinct 

mechanisms of viral behavior and cannot cross-infect [24]. Additionally, even differences 

within a single species, including sex [25], age [26], and environment (i.e., inflammation 

[27]), can significantly impact stem cells, differentiation, and risk for related malignancies. 

This demonstrates that while the basic principles of hematopoiesis are conserved, specific 

differences influence cell fate and function. Finally, immune responses to viral infections 

are highly specific due to external (e.g., environmental and species) and internal (e.g., age, 

coinfection, comorbidity) factors. This suggests that HCMV is an ideal case study that when 
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combined with a method for integrated data analysis (e.g., digital twins) could elucidate the 

complexities of human hematopoiesis and immune responses.

Medical Digital Twins

The concept of digital twins (DTs) was first described by Michael Grieves in 2002 as 

a virtual or real space containing an object, with data flowing between the two spaces 

[28]. This technology involves creating a computer-based simulation of real-world systems, 

allowing for testing and analysis across various industries, including manufacturing, 

automotive, and medical devices [29]. In recent years, there has been a growing interest 

in applying digital twin technology to human health and biology [30, 31]. For instance, 

in the context of HCMV infection, the physical space would include the host’s immune 

cells, HCMV, and the interactions between them. Data about these interactions are 

collected through laboratory tests (e.g., viral load, seroconversion), clinical observations 

(e.g., myelosuppression), patient histories (e.g., comorbidities), and other empirical means 

(including laboratory-identified mechanisms). The virtual space is a digital model that 

replicates the human immune response as closely as possible. This model would integrate 

the data collected from the physical space to create a dynamic and predictive simulation 

of the immune response to something like HCMV infection. For example, it might 

simulate how the virus interacts with immune cells, how the immune system responds, 

how the disease progresses, and how different treatments might affect the outcome. The 

potential of digital twins lies in their ability to predict immune responses and provide 

tailored treatments. This concept acknowledges the heterogeneity in disease progression and 

treatment, thereby improving patient care and healthcare system resilience.

Advancements in digital twins for human organs, diseases, and immune digital twins (IDTs) 

have led to new drug predictions, methods for clinical analyses and health screening, and 

personalized treatments. Recent examples of IDTs include a digital twin of the human 

airway system, which combines fluid dynamics of drugs in aerosols (the delivery platform 

via an inhaler) with data from cell absorption of the same drugs to enhance drug delivery 

accuracy [32, 33], and Dassault Systèmes’ Living Heart project that utilizes individualized 

measurements of blood flow, mechanics, and electrical impulses to create a personalized 

model of each individual’s condition to assist in complex heart-related decisions, such as the 

need for a pacemaker [32, 34]. Similarly, Roy et al. propose a cardiovascular digital twin 

platform that simulates the effects of exercise on cardiac parameters, providing personalized 

guidance for patients with cardiac comorbidities [35]. In addition, the artificial pancreas 

is an exemplary medical digital twin that leverages continuous, real-time data feedback to 

assist type I diabetic patients in managing their insulin [36]. Combining these examples 

demonstrates the ability of DT technology to inform targeted treatment interventions.

The Immune System and Digital Twins

IDTs are digital representations or simulations of an individual’s immune system. Ongoing 

efforts for IDT development include outlining opportunities, challenges, and roadmaps [15]. 

By integrating knowledge of human immunology, physiology, and patient-specific clinical 

data, IDTs can predict individualized immune responses, enabling targeted treatments. This 
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approach holds significant promise for improving patient outcomes [15, 16•, 18]. New 

comprehensive computational models of the immune system at the cellular level can serve 

as an “IDT blueprint” [37]. IDTs may allow us to understand complex systems, including 

hematopoiesis and viral regulation of immune responses, especially when complex intra- 

and inter-cellular interactions govern cell fate, interactions, and disease progression.

The immune system is activated in response to exogenous (infection, injury, or other harmful 

stimuli) and endogenous (chronic autoimmune and autoinflammatory) insults. HCMV, for 

example, delivers a series of twin controls of the immune response. During initial or acute 

infection, active viral replication simultaneously stimulates and suppresses different “arms” 

of the immune response (reviewed in [12–14, 38]). Latent viral infection modulates the 

immune response evasion by infection of the “immune-privileged” HPCs [39, 40], regulating 

immunomodulatory cytokines, including master cellular regulator TGF-β [41], and directly 

regulating stem cell maintenance and differentiation (reviewed in (9)).

Proper representation of the baseline state when developing a general-purpose IDT is 

critical. Accurate representation of the resting or surveillance state of the immune system 

in a digital twin is essential for understanding how the immune system transitions from 

this baseline state to an active state in response to insults. To do this, the balance between 

activation and suppression signals and the complex regulatory mechanisms that maintain 

immune homeostasis must be captured. Due to its complex interactions with the immune 

system and the diverse immune responses it elicits, HCMV can serve as a valuable 

perturbation system for IDTs to address some of the challenges associated with modeling 

immune system dynamics. This controlled perturbation, with an evolutionarily specific 

virus, could accurately capture the delicate interplay between activation and suppression 

signals and sophisticated regulatory mechanisms that ensure immune homeostasis to provide 

a more comprehensive understanding of the immune system’s functioning.

Viral Latency and the Immune System

HCMV latency is characterized by a distinct viral and cellular control, including the lack 

of virus particle production, a not yet fully defined replication program, and unique cellular 

responses [1]. Latent virus is commonly accepted to be maintained in CD34+ HPCs, while 

CD14+ monocytes support persistence and dissemination, and mature monocytic lineage 

cells (macrophages and dendritic cells (DCs)) support reactivation [1, 8•, 9]. Latency 

establishment in HPCs provides a unique and immune-privileged location for avoiding the 

host immune response. Yet, despite direct avoidance by the virus, the immune system is still 

highly involved in viral regulation.

Following vaccination or acute viral infection [42], including initial infection from other 

chronic latency-establishing infections (e.g., HIV or EBV [43]), naïve CD8+ T cells can be 

activated and exhibit rapid expansion and differentiation into effector T cells. These effector 

T cells can target infected cells and eliminate the virus [43, 44], although these responses 

can vary between initial and persistent infection and/or asymptomatic, latent, or reactivated 

conditions (reviewed in [45–47]). After clearance of the initial viral infection, a subset of T 

cells further differentiate into long-lasting effector memory cells (CD8+ Tem), which provide 
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long-term protection from subsequent infections or adaptive immunity [48, 49]. Continuous 

exposure to antigens can result in decreased number and functionality of T cells, also known 

as exhausted T cells (43). The pattern of T cell differentiation is controlled by a host of 

metabolic, epigenetic, and transcription factors which can lead to diverse immunological 

responses.

HCMV is unique in these responses as well. Similar to other viral infections, early studies 

demonstrated that the transfer of HCMV-specific CD4+ and CD8+ T cells to transplant 

patients are key to controlling the HCMV infection [50, 51]. Sylwester et al. found that 

HCMV-specific T cells dominate both the CD4 and CD8 T cell memory compartments 

[52••]. These responses included recognition of a wide range of HCMV antigens and 

were more common than any other pathogen response tested to date, including up to 

10% of the total memory T cell compartment as an individual ages [52••]. However, 

these broadly reactive T cells can vary with donor, age, and clinical codependences. In 

HCMV seropositive donors, Jackson et al. observed that some donors had a more diverse 

CD4+ T cell repertoire response to HCMV, while others had a more focused response 

[53••]. In contrast to exhaustion and decline over time with most viruses, HCMV-specific 

T cells in healthy individuals undergo a significant expansion of CD4+ and CD8+ T cells 

as an individual ages [52••]. Although HCMV, like other chronic infections, specifically 

manipulates subsets of T cells in distinct ways including controlled differentiation and/or 

expansion [54–56], HCMV has unique immune manipulation properties that make it an ideal 

case study for understanding the complexity of these processes.

In HCMV, this diversity in T cell responses could be, in part, due to periodic episodes 

of subclinical reactivation, perhaps stimulated by the interplay between infected myeloid 

lineage cells and other cells in the immune system. For CD8+ Tem cells to continue 

expanding, the occasional presentation of antigen must occur which implicates the delicate 

balance between reactivation and latency [57]. Furthermore, the ability of CD8+ Tem to 

resist exhaustion suggests the regulation of gene expression patterns by CMV. Hertoghs 

et al. performed a longitudinal transcriptome profiling study in which they identified that 

CD8+ effector T cells exhibited different gene expression patterns in acute and chronic 

phases of HCMV [58]. These differences, in conjunction with the maintenance of an 

exhaustion-resistant CD8+ Tem cell pool, hint at the epigenetic modifications involved 

in T cell differentiation and exhaustion [59]. Optimizing our understanding and control 

of this expansion either through the use of humanized mice that can model HCMV 

immune responses [60] or support CD8 engraftment and model this specific expansion [61] 

combined with digital twin predictions can focus and clarify complex biological outcomes 

prior to human studies (Fig. 1).

Epigenetics in Immune Regulation and HCMV Latency

Epigenetic regulation refers to the modification of a phenotype without changing the 

DNA. These dynamic, inheritable modifications (e.g., methylation, acetylation, chromatin 

remodeling) regulate gene expression and thus can impact viral replication [62], nutrition 

status [63], and cancer progression [64]. Because epigenetic modifications can be influenced 

by a variety of factors, everyone may have their own unique epigenetic “signature” 
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which further complicates diagnosis and disease management strategies. The contribution 

of epigenetic signatures is shown in breast and lung cancers, where chromosomal 

rearrangements or mutations can impact patient response to anti-cancer drugs [65]. Despite 

the importance of the epigenome, relatively few attempts have been made to integrate this 

data into digital twins. In addition to the transcriptomic, cellular, and organ layers, Barbiero 

et al. propose the addition of an exposomic layer to capture the totality of an individual’s 

environmental exposure, serving as a proxy for epigenetic information [66]. This layer 

includes four types of exposure, namely dietary habits, physical activity, therapeutic 

treatment, and viral infections. Incorporating environmental exposures into the exposomic 

layer can increase the accuracy and comprehensiveness of DT predictions and thus improve 

patient health. As DT technology moves forward, the integration of epigenetic information 

must be prioritized to improve personalized treatments and diagnoses, especially in the 

context of HCMV and immunoregulation. Despite the robust immune response and memory 

inflation, the persistence of HCMV may be, in part, attributed to epigenetic regulation. 

Epigenetic information has the potential to be predictive for disease risk [67] and combining 

this information with data on HCMV regulation of these cellular pathways could predict 

which individuals are susceptible to reactivation following transplant or those at risk 

of immune dysregulation due to HCMV infection, for example, leading to preventative 

treatment or risk management.

During infection, viral genomes are often associated with histones where epigenetic 

modifications play a key role in regulating latency and reactivation [62]. Recent studies have 

shown that the epigenome plays a crucial role in development of hematopoietic cells and 

regulation of the viral life cycle of HCMV (reviewed by (9)). Specifically, the maintenance 

of viral latency may suggest an exploitation of the hosts’ epigenetic regulation to control 

viral gene expression, including activation of genes that prevent detection by the immune 

system and suppression of viral replication genes to establish latency. A proteomics study of 

HCMV-infected cells observed increased levels of histone proteins using a glioblastoma 

fibroblast model of latency [68]. Furthermore, models of murine CMV infection have 

demonstrated decreased RNA polymerase activity but increased histone abundance and 

repressive methylation during latency [69]. The viral genome is also heavily methylated, 

likely contributing to viral gene suppression during latency. Recent work by Groves et 

al. demonstrates that treatment of latently infected cells with inhibitors to acetylation and 

histone control proteins results in reactivation of HCMV and induction of T cell-mediated 

killing of infected cells [70]. Additionally, suppression of histone demethylases in a myeloid 

cell model suppresses viral replication [71]. Importantly, while epigenetic changes and 

histone modification can control immune responses [72, 73], especially in the context 

of viral infection [74, 75], changes in these responses can also be modified by immune 

responses [76, 77]. For example, HCMV-specific CD8+ T cells induce changes in the histone 

[58] which can control viral reactivation or latency.

While T cell responses to viral infections exhibit a common pattern following classic 

principles of adaptive immunology, the type, strength, and effectiveness of this response 

can vary due to the epigenetic regulation and extent to which the virus hijacks epigenetic 

processes. The impact of epigenetic modifications on the immune response has only begun 

to be appreciated. In innate immunity, epigenetic regulation has been demonstrated to 
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tailor the transcriptional program of progenitor, naïve immune cells (to establish cellular 

phenotype), and damage-associated molecular patterns to the appropriate immune response 

required for different pathogens [73]. Prediction of immune regulation in response to stimuli 

(whether pathogens, including HCMV, or drugs, or environmental conditions) in conjunction 

with genetic background differences and overlaying known modulators of cellular regulation 

would streamline drug development and allow prediction of responses to novel treatments.

During T cell development, epigenetic modifications contribute to lineage-specific gene 

expression programs, including differentiation of T cell subsets (e.g., Th1 vs Th2 [78], 

Th17, and CD8+ T cells [79]). Changes in DNA methylation also influence T cell 

activation and differentiation through control of transcription factor and cytokine expression 

and in response to antigenic stimulation (recently reviewed by [80–82]). Additionally, 

changes in DNA methylation and histone modification can, in turn, lead to cytokine and 

chemokine expression changes and functional outcomes, including the establishment of T 

cell memory and exhausted phenotypes [83]. Understanding the interplay between these 

factors, particularly the relationship between stemness and exhaustion in T cells [84] and 

immunosenescence [85], is key to understanding HCMV biology [56] and how HCMV 

manipulates the global immune environment.

Modeling Cell‑Specific Responses

Using mathematical and computational techniques to simulate T cell behavior, the 

researchers can elucidate the molecular mechanisms that govern T cell function, predict 

the outcome of T cell activation, and optimize the design of immunotherapies [86••, 87–

89]. The cross talk between T cells and dendritic cells (DCs) plays a pivotal role in 

the immune system responses since DCs act as surveillance cells that can be influenced 

by invading pathogens like HCMV [90]. Computational models of human DC-T cell 

communication enable researchers to perform in silico experiments for DC-derived signals 

and T cell responses [86••, 91, 92]. For example, Aghamiri et al. developed a model of 

human DCs that cover molecular interactions and cell-to-cell communication [86••]. This 

multicellular mechanistic logical model [93] accounts for interactions between DCs and 

their environment, signals transduction leading to cytokines/chemokines, and growth factor 

and integrates DC communication with other immune cells including T cells through direct 

and indirect interactions. It can be applied to study various aspects of DCs, including 

maturation, differentiation, and function as APCs and their interactions with other immune 

cells, aiding the study of diseases and the basic mechanisms of DC function. Specifically, 

myeloid lineage DCs are sites of HCMV reactivation. Virus in these cells is critically linked 

to differentiation-dependent chromatic remodeling [94], and combining this biological data 

with an IDT such as developed for DCs [86••] would represent a platform of understanding 

HCMV reactivation in a specific cell type. Future studies combining the complexity of 

HCMV reactivation in multiple cell types with a complete IDT is one example of how 

modeling these interactions in multiple ways would elucidate key biological functions.

In another example, Puniya et al. created a computational model of the signal transduction 

pathway that controls CD4+ T cell differentiation [88]. The authors analyzed the model 

under 511 different environmental conditions and found that it can predict classical and 
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novel mixed T cell phenotypes. These analyses suggest that the extracellular environment’s 

composition and dosage of signals determine the lineage decision. This study identified 

the specific patterns of extracellular environments that result in novel T cell phenotypes, 

predicted the inputs that can regulate the transition between canonical and complex T cell 

phenotypes, and identified the optimal input levels that can maximize the activity of multiple 

lineage-specifying transcription factors. The authors offer insights into the plasticity of 

CD4+ T cell differentiation and provide a tool to test hypotheses about generating complex T 

cell phenotypes using various input combinations and dosages. Puniya et al. also developed 

genome-scale models [95] for different subtypes of CD4+ T cells, including naïve, Th1, 

Th2, and Th17 cells to investigate metabolic changes in autoimmune disease such as 

rheumatoid arthritis, multiple sclerosis, and primary biliary cholangitis [96]. Through in 

silico simulations, the authors analyzed the responses of these models to FDA-approved 

drugs and compounds, identifying 68 potential drug targets. By integrating disease-specific 

gene expression and metabolic perturbations, this study validated the efficacy of 50% 

of these targets in suppressing CD4+ T cells suggesting their potential as therapeutic 

interventions. This approach can be applied to other diseases and these metabolic models 

offer further insights into CD4+ T cell metabolism.

To understand CD4 + T cell responses to infection, Wertheim et al. developed a multiscale-

approach framework [97], which integrated the modeling processes at three different spatial 

scales in various tissues using four modeling approaches [87]. This model is beneficial 

because it leverages four different computational properties (utilizing a logical model to 

describe signal transduction and gene regulation within each cell, constraint-based models 

to describe metabolism, an agent-based model to capture cell population dynamics, and 

ordinary differential equations are used to describe systemic cytokine concentrations), with 

three different spatial scales (to control of changes in, for example, cytokine concentration 

over time) and data from multiple tissues (infection site, lymphoid tissue, and circulatory 

system). This multifactorial approach was a significant improvement over individual 

small-scale models, was validated against known experimental results (including T cell 

differentiation data), and can be a powerful predictor of the dynamics of T cell function.

Overall, the application of mathematical and computational models has significantly 

advanced our understanding of cellular interactions, T cell function, and immune system 

behavior, offering valuable insights into the molecular mechanisms, predictive capabilities, 

drug target design, and optimization of immunotherapies for complex diseases. This 

approach provides a powerful means of gaining insights into the complex behavior of 

HCMV infection, particularly the immune responses governing disease protection, the 

control of latency and reactivation, and how inter- and intra-cellular communication 

influence and are influenced by both the host and viral factors.

Using CMV‑Specific Immune Responses as a Digital Twin “Stress Test”

The models described above have great potential to be expanded to model the immune 

response and evasion mechanisms during HCMV infection. A few examples/scenarios are 

described below:
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1. Diverse immune responses: HCMV infection triggers a wide range of immune 

responses involving both the innate and adaptive immune systems. By studying 

the immune system’s response to HCMV, researchers can gain insights into the 

complex interplay between various immune cell types, cytokines, and signaling 

pathways, helping to improve the accuracy and predictive power of immune 

digital twins.

2. Immune evasion strategies: HCMV has evolved numerous strategies to evade 

and manipulate the host immune system, including modulating the expression of 

major histocompatibility complex (MHC) molecules, interfering with cytokine 

signaling, and impairing immune cell function. Investigating these immune 

evasion mechanisms in the context of an immune digital twin can provide 

valuable insights into the regulatory mechanisms that govern immune system 

function and help to identify potential therapeutic targets for enhancing immune 

responses.

3. Immune system perturbation: As an insult to the immune system, HCMV 

infection can help researchers understand how the immune system transitions 

from a resting or surveillance state to an active state. Studying the immune 

response to HCMV can provide information on the dynamic changes in immune 

cell activation, recruitment, and function during infection, which can be used to 

improve the representation of immune system dynamics in digital twins.

In short, HCMV with its highly human-specific responses can serve as a model calibration 

approach, providing highly tuned biologic control of differentiation, immune perturbation, 

and regulation of key cellular pathways including epigenetic regulation.

Digital Twins for Precise Control of Latency and Prediction of Latent 

Outcomes

HCMV’s ability to establish a latent infection and reactivate provides a unique opportunity 

to study the immune system’s response to chronic and recurring insults. Modeling the 

immune response to HCMV reactivation in a digital twin can help researchers understand 

the dynamics of immune memory and tolerance, as well as the factors that influence the 

transition between latent and active infections.

DT technology also has the potential to improve our understanding of HCMV infection 

and facilitate the development of novel treatments. The diverse function of HCMV-target 

cells (e.g., hematopoietic stem cells vs mature DCs) even in their native state, combined 

with the distinct properties of HCMV (replication, latency establishment, ability to reactivate 

as seen in different cell types and model systems [98, 99]) at different timepoints are a 

few of the reasons why, despite its relevance, many aspects of HCMV biology are still 

unexplored. To create an HCMV DT, we propose repurposing and building upon existing 

models that incorporate both HCMV and relevant components of the immune system. 

Joslyn et al. developed a whole-host model for the immune response to Mycobacterium 
tuberculosis, called HostSim, which can track events at different physiological and time 

scales [100••]. Similarly, Masisona et al. presented a modular design for medical DTs and 
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applied this approach by creating a model of the innate immune response to the respiratory 

fungal pathogen Aspergillus fumigatus [101]. Although neither study addresses HCMV 

infection, they demonstrate the potential of DT technology to improve diagnosis, prognosis, 

and personalized treatment for a variety of medical conditions. An HCMV-specific IDT 

would combine known biological properties (transcription, translation, metabolism, cell–

cell signaling, etc.) of the relevant cell types (including those infected by HCMV during 

lytic and latent infection and responder immune cells) with what is known about HCMV-

mediated cellular changes in these cell types. By integrating this data, gaps in knowledge 

can be visualized and new hypotheses developed. These studies offer a well-documented 

approach that can be used as an example for the development of an HCMV DT.

Conclusion: Future Uses for Digital Twins and the Interplay Between 

Epigenetics, Latency, and Immune Control

Despite highly regulated control of HCMV by the immune system and HCMV’s tight 

regulation of immune responses, the advances in understanding the complex host-virus 

interactions, and broadly reactive, highly specific, and long-lasting immune responses, 

more progress has yet to be made to develop an HCMV vaccine either for congenital 

disease or for transplant conditions. Recent efforts to develop an HCMV vaccine have 

studied new technologies and utilized live and inactivated approaches, and yet no licensed 

vaccine is yet available (recently reviewed by [102–104]). Developing a vaccine has been 

challenging for several reasons, including the unique properties of HCMV itself and 

the immune responses it induces. For example, targeting a latency-establishing virus or 

clearing an already-established latent virus [105•] is challenging due to a lack of overt 

viral protein targets for clearance and the virus encodes multiple immune evasion strategies 

(discussed above). The location of HCMV infection including establishment of latency in 

the immune-privileged bone marrow and the unique aspects of fetal infection including the 

interaction between the maternal–fetal interface [106, 107] also complicate vaccine delivery. 

In addition, safety concerns of different vaccine platforms (including using live viruses that 

could establish latency and later reactivate) and the abundance of robust immune responses 

following natural infection do not result in protection from superinfection, infection with 

other HCMV strains nor from disease in immunosuppressed individuals. Digital twins are 

a groundbreaking new area that show promise for elucidating complex mechanisms in an 

integrated manner by combining data from diverse studies in one cohesive platform. When 

combined with in vivo models [60, 108, 109], DTs have demonstrated the power of unique 

CD8 + T cell responses [110] or antibody responses (111, 112) and show promise for 

development of new vaccines. The accuracy of DT predictions though is highly dependent 

on the quality and relevance of the data used to create them. HCMV, as an intricate cellular 

modulator of all major components of biological control, including epigenetics and immune 

responses, can serve as both a “stress test” for digital twin accuracy and a testing ground for 

hypothesis generation and clinical application.

The potential of IDT technology is vast and far-reaching. Its applications have the potential 

to improve current health inefficiencies that create daily impacts for many individuals, 

increase the effectiveness of interventions, develop new therapeutics in underexplored areas, 
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and ultimately save lives and reduce the adverse effects of chronic conditions. For chronic 

viral infections, including HCMV, DT technology has the potential to clarify the dynamics 

of immune memory and tolerance, as well as the factors influencing the transitions between 

latency and reactivation. More generally, the intentional integration of this technology into 

society shows great promise in revolutionizing our approach to individualized and holistic 

management of health.
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Fig. 1. 
HCMV and IDTs. (Left to right) Following primary HCMV infection, the virus establishes 

latency in hematopoietic stem (HSC) and progenitor (HPC) cells. Latency is lifelong and is 

interrupted by periodic episodes of reactivation throughout an individual’s lifetime. CMV 

disease occurs simultaneously with immunosuppression and can result from both latent 

virus and reactivating virus. The regulators of the balance between latency and reactivation 

and the mechanisms by which disease occurs are still understudied; however, the interplay 

between the virus and the host (specifically the hematopoietic system, including mature 

immune cells of the myeloid lineage (key cells for latency and reactivation) and lymphoid 

lineage (T and B cell-specific immune responses)) is key to understanding these processes. 

HCMV, like other CMVs, is also highly species-specific and this long-term evolution in 

parallel with the human hematopoietic systems and immune functions provides a novel 

platform to study immunology. Immune digital twins (IDTs) are new digital simulations that 

can incorporate data from numerous sources, including individualized measures of health, 

disease, immune profiling, and genetics, and can be integrated with laboratory studies 

using multi-omic (transcriptomic, proteomic, metabolomic, etc.) profiling. IDTs then allow 

prediction of individualized responses to pathogens, potential treatments and vaccines, and 

integration of this data in the complex environment of a human immune system. Leveraging 

the combined power of HCMV’s fine-tuned control of these cellular pathways as a model 

of test and validate IDTs and the new technology of IDTs to predict complex biological 
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mechanisms to develop new treatments for HCMV has significant potential to change 

individual treatment of chronic conditions. The figure was created using BioRender
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