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Abstract

Arsenic is ubiquitous in soil and water environments and is consistently at the top of the Agency 

for Toxic Substances Disease Registry (ATSDR) substance priority list. It has been shown to 

induce toxicity even at low levels of exposure. One of the major routes of exposure to arsenic 

is through drinking water. This review presents current information related to the distribution of 

arsenic in the environment, the resultant impacts on human health, especially related to diabetes, 

which is one of the most prevalent chronic diseases, regulation of arsenic in drinking water, 

and approaches for treatment of arsenic in drinking water for both public utilities and private 

wells. Taken together, this information points out the existing challenges to understanding both 

the complex health impacts of arsenic and to implementing the treatment strategies needed to 

effectively reduce arsenic exposure at different scales.
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1. Introduction—Water Quality and Importance

Safe and affordable drinking water is a prerequisite for prosperity and sustainable 

development. The 2021 World Economic Forum report [1] lists natural resources crises, 

which includes water, as the fifth-highest existential threat globally. According to the 2017 

WHO and UNICEF reports, more than 785 million people that year did not have access to 

basic water services [2]. While substantial progress has been made worldwide to provide 

access to clean drinking water, many regions have limited surface-water supplies and rely 

on groundwater resources. This has led to an increased risk of developing health issues 

in many parts of the world [3]. Metal(loid)s such as zinc (Zn), selenium (Se), copper 

(Cu), molybdenum (Mo), chromium (Cr), manganese (Mn), nickel (Ni), cobalt (Co), iron 
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(Fe), magnesium (Mg), and arsenic (As) rank among the top priority metals that act 

as environmental toxicants in drinking water worldwide [4–10]. This review focuses in 

particular on As, a ubiquitous element that has been at the top of the Agency for Toxic 

Substances Disease Registry (ATSDR) substance priority list since 1997 [11], as it has been 

shown to induce toxicity even at low levels of exposure, thus representing a continuously 

growing public health concern.

Exacerbating the issue is the fact that exposure are not equal. Environmental racism and 

injustices result in people of color and low-income community members living in closer 

proximity to sources of environmental pollution (e.g., [12,13]). As a case in point, on 31 

May 2022, the Biden–Harris Administration established a Department of Health and Human 

Services Office of Environmental Justice. As stated in the press release by HHS Secretary 

Xavier Becerra: “The blunt truth is that many communities across our nation—particularly 

low-income communities and communities of color—continue to bear the brunt of pollution 

from industrial development, poor land use decisions, transportation, and trade corridors” 

[14]. Social determinants of health (SDH), the nonmedical factors that influence health, 

are a primary indicator of one’s health and can account for 30–55% of health outcomes 

[15]. SDH factors can impact arsenic exposure, and in turn, influence the incidence of 

disease and morbidity. These factors are related to economic stability, education, health 

and health care, neighborhood and build environment, and social and community contexts 

and include, for example, access to healthy foods, quality of housing and infrastructure, 

environmental conditions, civic participation, and early childhood development [15,16]. 

These aforementioned SDH and others are influencing health disparities and inequities, 

thus creating vulnerabilities—the degree to which people and places can be harmed due to 

external stresses on human health (e.g., [17–20].

This review presents current information related to the distribution of arsenic in the 

environment, the resultant impacts on human health, especially related to diabetes, 

regulation of arsenic in drinking water, and approaches for treatment of arsenic in drinking 

water for both public utilities and private wells. Understanding these different perspectives 

is important for the prevention and mitigation of arsenic exposure. This review is presented 

in the context of diabetes—almost half a billion people worldwide live with this disease 

and the prevalence is projected to continue increasing [21]. The objective of this review is 

to delineate the existing challenges to understanding both the complex health impacts of 

arsenic and to implementing the treatment strategies needed to effectively reduce arsenic 

exposure at different scales.

2. Health Impacts of Arsenic in Drinking Water

Arsenic is a naturally occurring ubiquitous metalloid, the inorganic forms of which (iAs) 

are predominantly found in soil, sediment, and surface and groundwater reservoirs [22]. 

Depending on the pH, redox state, temperature, and solution composition, arsenic is 

generally soluble in groundwater [22,23]. Major sources of As contamination in drinking 

water include waste products from gold mining and mineral extraction, agricultural 

pesticides, and thermal springs, all of which contribute to As accumulation in groundwater 

[24]. While the gastrointestinal tract readily absorbs the inorganic forms of arsenic, resulting 
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in their distribution throughout the body, they are mainly metabolized via methylation 

in the liver by arsenic methyltransferase (AS3MT) to their organic counterparts, namely, 

monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), then excreted primarily 

in urine. More than 200 million people worldwide are exposed to iAs at concentrations 

above the EPA- and WHO-designated safe limit of 10 μg/L [25]. Based on data compiled 

from the mid- to late 1990s by the USGS from wells used throughout the US as public 

drinking water sources, it is estimated that 8% of the public drinking water supply may 

exceed 10 μg/L [26]. Importantly, consumption of arsenic-contaminated drinking water 

is associated with numerous disease states, including cancer, cardiovascular disease, skin 

lesions, nephrotoxicity, neurological disorders, and diabetes [8,27]. As such, investigations 

on how arsenic promotes disease progression, including diabetes, have garnered much 

attention over the past few decades, particularly because chronic exposure to arsenic in 

drinking water has been associated with an increased risk of type 2 diabetes in arsenic-rich 

areas worldwide [28].

Within the context of diabetes, understanding and mitigating the impact of SDH are 

priorities. For example, those of lower socioeconomic status are more likely to develop 

type 2 diabetes mellitus, experience more complications, and die sooner than those of higher 

socioeconomic status [29]. Furthermore, disadvantaged communities can experience several 

routes of arsenic exposure that are compounded by SDH factors [30–33]. For example, 

American Indians/Alaskan Natives (15.9%) and Hispanics (12.8%) have a greater prevalence 

of diabetes when compared to non-Hispanic whites (7.6%) across the US [34]. In addition to 

the years of life lost, $237 billion is spent in direct medical costs and $90 billion is lost in 

reduced productivity due to diabetes [35].

Finally, it is important to note that arsenic exposure can occur from food consumption 

as well as from drinking water. In general, food exposure is primarily from purchased 

foods, such as store-bought rice, cereals, and fruit juices. Meat, poultry, dairy products, 

cereals, and vegetables contain higher proportions of inorganic arsenic forms (e.g., [36–39], 

and food preparation practices can influence the concentration of arsenic in foods. For 

example, several studies have highlighted how cooking in arsenic-laden water, specifically 

boiling foods, such as maize grains, cereals (e.g., rice and quinoa), and vegetables that 

hold a noteworthy amount of water during boiling, can lead to arsenic exposure via the 

consumption of the cooked foods [40–43]. Since food type and preparation are tied to 

culture, place, geography, and race/ethnicity, it is critical to acknowledge how culturally 

relevant foods and cooking practices can influence individual/family/community arsenic 

exposure.

3. Arsenic Distribution in the Environment

Arsenic is naturally occurring and ubiquitous, distributed in the environment by both natural 

and anthropogenic processes [44]. It is present, at least in trace amounts, in nearly all 

crustal rocks and sediments. Arsenic is listed in 7133 minerals, inclusive of nonessential 

stoichiometries, and occurs as a principal structural constituent in 728 validated mineral 

species, including elemental arsenic (As0), arsenides (As3−), sulfides (As2+,3+,5+), oxides 

(As3+,5+), arsenites (As3+), and arsenates (As5+) [45]. While mineral specimens are rare in 

Shakya et al. Page 3

Water (Basel). Author manuscript; available in PMC 2023 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



nature, arsenic occurs with ore minerals or alteration products, the most important being 

arsenian pyrite (Fe(S,As)2), arsenopyrite (FeAsS), and scorodite (FeAsO4·2H2O) [46,47]. 

Since the 1983 discovery of elevated dissolved arsenic in the Bangladeshi tube wells 

installed for pathogen-free drinking water, there has been widespread recognition of the 

large-scale global health problems resulting from chronic exposure, which has placed high 

priority on understanding the mobility, bioavailability, and toxicity of arsenic in the aqueous 

environment [48–51].

Geological processes concentrate arsenic in the Earth’s crust through magmatic and 

hydrothermal processes, becoming enriched most commonly in chalcophile metallic ore 

deposits [52]. In depositional systems, arsenic accumulates in aquifer sediments comprising 

geologically young (Cenozoic) alluvium, commonly hydrologically down-gradient of 

geothermally and magmatically enriched zones [53]. Leaching of arsenic into drinking water 

sources results in serious and extensive human and ecosystem health risks. Natural processes 

that mobilize arsenic to contaminate ground and surface waters from its primary geogenic 

sources include (i) redox-driven weathering, principally oxidative weathering of (arsenian) 

sulfides and reductive dissolution (arsenic sorbed) ferric hydroxides, (ii) volcanism, and (iii) 

biological activity. Elevated concentrations of arsenic in groundwater aquifers have been 

observed along the Pacific Ring of Fire [54] and reported in hot spots with arsenic at levels 

problematic to health in the Bengal delta [55,56], Red River delta (China) [57], Mekong 

delta (Vietnam) [58], Indus delta (Pakistan) [59], Taiwan [48,60], the western United States 

[61], Canada [62], and Argentina [63–65]. Anthropogenic activities also mobilize arsenic 

into the environment from extraction and beneficiation of ore, fossil fuel combustion, and 

the application of arsenic-containing pesticides, herbicides, and fertilizers [66–68].

Arsenic is unlike many other inorganic contaminants in that processes of environmental 

biogeochemical cycling in the range of pH and Eh common to the shallow subsurface 

can alter its speciation, which in turn affect its solid–aqueous phase partitioning [68,69]. 

That elevated levels of arsenic in groundwater threaten human health in widespread 

areas is known; however, dissolved arsenic concentrations are commonly spatially 

unpredictable [56]. The variable character of dissolved arsenic has been attributed to 

its redoximorphic speciation, electronic structure, and bonding properties, which result 

in dynamic transformation of its chemical form and phase stability [70]. The processes 

governing arsenic mobility in aquifers and through sediments are sorption, precipitation, 

and dissolution. These sequestration and release mechanisms are affected by pH, Eh, and 

concentrations of competing ions and are generally tied directly to coupled environmental 

redox reactions with iron and sulfur [69–72]. Arsenic is removed from the aqueous phase 

by two primary mechanisms—methylation and subsequent volatilization—and sequestration 

to the solid phase by (i) sorption at mineral surface sites [73–76], (ii) (co)precipitation 

with metal (hydr)oxides [69,77,78], or (iii) precipitation as arsenic sulfide under sulfur-

reducing conditions [69,79,80]. The reverse reaction of arsenic mobilization is controlled by 

dissolution of host sulfides or metal hydroxide sorption sites, driven by geochemical redox 

[81,82]. Recently, nearly 80 studies of arsenic in groundwater around the world, aggregating 

over 200,000 measurements, were evaluated with machine learning to build a predictive 

model of arsenic exposure risk [83]. The authors examined 52 environmental variables and 

found that texture (clay and sand content), pH, and climate showed the greatest statistical 
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importance for predicting elevated dissolved arsenic in aquifers. Model results indicate that 

94 to 220 million people are potentially exposed to high levels of arsenic in groundwater, 

with 85–90% in South Asia.

The solid and aqueous speciation of arsenic directly affects its solubility, mobility, and 

possibly toxicity [84–86]. In the absence of high sulfide activity, dissolved arsenic in 

interstitial and surface water is generally present in two oxidation states: arsenite (the 

trivalent species, HxAsO3
x−3) under suboxic environments, or arsenate (the pentavalent 

species HxAsO4
x−2) in oxic zones (Figure 1). To a lesser extent, arsenic is found as aqueous 

organic metabolites [87,88]. Arsenate has dissociation constants of pKa1 of 2.2, pKa2 of 

7.0, and a pKa3 of 11.5 [89], and in aerobic waters it is generally found as a combination 

of the mono- and divalent oxyanions H2AsO4
− and HAsO4

−2. Under reducing conditions, 

dissolved arsenic is present as arsenite with pKa1 = 9.2 and pKa2 = 13.4 (Figure 1).

Arsenate has been shown to strongly adsorb to positively charged surface sites of metals 

(oxy)hydroxides and phyllosilicates [73,77,90–92]. Iron, Earth’s most abundant redox active 

element, is commonly found as solid-phase ferric (oxy)hydroxide, which is insoluble under 

all but very low pH and Eh ranges and exerts strong control over arsenic cycling in the 

environment. Positively charged ferric surface coatings in sediments or suspended colloidal 

particles act as excellent sorbents of oxyanion arsenic (e.g., [75,93]). Therefore, arsenate is 

significantly immobilized in well-oxygenated sediments rich in iron. When organic matter 

is broken down through a series of electron transfer reactions in flooded sediments, oxygen 

is depleted, conditions become suboxic, and redox conditions favor the dissolution of ferric 

solids [81,94]. This reduction of iron (and arsenic) in suboxic environments is recognized 

as a primary mechanism of arsenic contamination of groundwater, especially sedimentary 

aquifers [95].

Groundwater flow, coupled with spatially variant gradients of redox potential and iron and 

sulfur activities, moves arsenic into and out of solution and thereby through pore spaces in 

aquifer sediments. Arsenic lability is a function of speciation and the biogeochemical redox 

characteristics of the subsurface environment controlled by molecular-scale interactions of 

arsenic at the sediment–water interface. In conditions where microbial activity, including 

metabolic and detoxification mechanisms, promote a transition from aerobic to anoxic 

porewaters, arsenate can be reduced to arsenite [88,96]. At the pH of most natural waters, 

arsenite does not dissociate, is neutral in solution, and the uncharged dissolved species is not 

as readily adsorbed at metal hydroxide surface sites. Therefore, arsenic phase partitioning in 

aquifer sediments is generally a function of redox potential and pH [66,71,88,97].

4. Diabetes and Arsenic

4.1. Diabetes Types and Risk Factors

Not only epidemiological but also a large body of experimental evidence supports the 

potential role of arsenic in promoting the development of diabetes mellitus (DM). Diabetes 

mellitus, a metabolic disorder characterized by hyperglycemia and dyslipidemia, is classified 

into insulin-dependent diabetes mellitus (type 1 diabetes, T1D) and non-insulin-dependent 

diabetes mellitus (type 2 diabetes, T2D) [98]. T2D, which makes up 90% of all diabetes 
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cases, involves disruptions in whole-body glucose homeostasis due to resistance of 

peripheral tissue to insulin and decreased insulin production by pancreatic β-cells [99]. 

In T1D, the immune system destroys the pancreatic β-cells, leading to insulin deficiency 

[100]. Several toxic metals, such as cadmium, chromium, zinc, mercury, nickel, and 

arsenic, are known to adversely affect key metabolic pathways, which ultimately plays a 

role in promoting the development of metabolic disorders, including T1D and T2D [8]. 

Pathologically, these toxic metals accumulate in the liver, kidney, and pancreas to alter 

or impair the activity of critical enzymes, organelles, and signaling pathways, leading 

to adverse effects on metabolism. Critically, these pathological metabolic shifts result in 

significant increases in blood glucose levels, dyslipidemia, and eventually impaired organ 

function as a result of constant disruption of physiological homeostasis [101]. While 

genetics, diet, and lifestyle are established risk factors for developing DM, there is an 

increased interest in understanding the role of environmental exposure, including arsenic, as 

a causative factor in driving the diabetes epidemic.

4.2. Epidemiological Link between iAs Exposure and Diabetes

The 2011 National Toxicology Program workshop to assess the link between diabetes and 

the environment found an association between iAs exposure in drinking water and enhanced 

risk of developing DM, at least at concentrations ≥150 μg/L [102]. Epidemiologically, there 

are several indicators that exposure to iAs in drinking water causes diabetogenic effects. 

For example, a positive correlation between urinary iAs and its methylated metabolite DMA 

and increased fasting blood glucose, glycated hemoglobin, and fasting plasma insulin levels, 

was identified in a patient cohort from northern Mexico. Interestingly, insulin resistance 

was negatively correlated with iAs exposure in this same cohort, which may shed light on 

the differential regulation of T2D depending on other confounding variables (i.e., climate, 

diet, genetic predispositions) [103]. Assessment of the relationship between ingestion of 

iAs and prevalence of DM in 891 adults in southern Taiwan also showed a positive 

correlation between iAs exposure and increased blood glucose levels [104]. Another study 

conducted in four townships in Taiwan where people consumed iAs-containing well water 

between the 1900s and 1970s indicated an increase in mortality as a result of diabetes 

[105]. Reports have also indicated a significant increase in the number of individuals with 

elevated cholesterol and triglyceride levels in areas with higher iAs concentrations in the 

drinking water (56 μg/L) compared to an unexposed population (2 μg/L) in Serbia [106]. 

Furthermore, there was a 9% increase in blood glucose levels (>130 mg/dL) in individuals 

who consumed iAs-contaminated drinking water for a period of 6 months in Bangladesh 

[107]. Reports also indicated that a mean iAs concentration of 11 μg/L caused an elevated 

standardized mortality rate due to diabetic kidney disease and cerebrovascular disease in 

southeastern Michigan [108].

The number of epidemiological studies examining the relationship between diabetes and 

arsenic in drinking water has risen in recent years. These studies, which also include follow-

up studies, have consistently found evidence linking arsenic in drinking water to diabetes 

[109–112]. In addition, more recent studies have utilized larger sample sizes, refined 

measures of exposure and outcome, and advanced statistical techniques, while also adjusting 

for potential confounding factors including, but not limited to, age, sex and lifestyle. 
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These and other examples of the epidemiological evidence supporting arsenic promotion 

of diabetes are summarized in Table 1. Despite the wealth of epidemiological evidence, 

additional research is still needed to elucidate the underlying biological mechanisms by 

which arsenic exposure might contribute to the onset and progression of diabetes, which is 

discussed in more detail below.

4.3. Mechanisms Associated with iAs-Induced Diabetogenesis

Epidemiological studies have revealed a greater incidence of diabetes among residents in 

areas highly contaminated with iAs, including Bangladesh [107], Taiwan [133], and Mexico 

[103]. These epidemiological studies in iAs-exposed populations clearly demonstrate 

an association between iAs and the pathological progression of DM. Along with the 

epidemiological evidence, laboratory studies have also shown that exposure to iAs can 

produce effects that correspond to diabetic phenotypes.

Despite a vast wealth of epidemiological correlations, as well as in vivo and in vitro 

experimental determinations of iAs-promoted diabetic phenotypes, mechanistic insight 

has remained limited. A variety of mechanisms for arsenic’s diabetogenic effects have 

been proposed and demonstrated across a variety of tissue types and diabetic contexts. 

However, the exact mechanism for iAs-induced diabetic effects is still a matter of debate. 

Studies conducted thus far have implicated inhibition of insulin-dependent glucose uptake, 

pancreatic β-cell damage and/or dysfunction, and stimulation of hepatic gluconeogenesis 

as some of the major mechanisms involved in iAs-induced diabetes [125]. At the 

transcriptional level, other potential mechanisms of iAs-induced dysfunction include 

modulation of expression of genes involved in insulin signaling [149,150], as well as 

influencing adipocyte differentiation [151,152] (Figure 2). Thus, arsenic exerts its pro-

diabetogenic effects by affecting multiple organ systems, diminishing their function over 

time.

Specifically, in vitro and in vivo studies have shown iAs-dependent inhibition of glucose 

transporter 4 (GLUT4) recruitment to the plasma membrane either directly or through 

inhibition of Akt, a key signaling enzyme required for GLUT4 translocation [153,154]. 

Arsenic can also play a role in decreasing the phosphorylation of mechanistic target of 

mTOR and p70, key regulators of insulin-stimulated glucose uptake [155]. In addition 

to inhibiting insulin signaling, iAs also stimulates hepatic gluconeogenesis by inducing 

the increased expression of phosphoenolpyruvate carboxykinase (PEPCK), a rate-limiting 

enzyme in gluconeogenesis, thus resulting in hyperglycemia even under fasted conditions 

[156,157]. Studies have also linked chronic iAs exposure to impaired pancreatic β-cell 

function, as higher blood glucose levels result in an increased demand on β-cells to 

produce more insulin, leading to their dysfunction over time [158]. Arsenic exerts its 

diabetogenic effects on skeletal muscle function through induction of oxidative stress 

and disruption of calcium homeostasis [159,160]. Arsenic induces oxidative stress in 

skeletal muscle by inhibiting enzymes involved in oxidative phosphorylation, resulting in 

decreased ATP production and increased oxidative stress [161]. This increases production 

of reactive species inhibits GLUT4 translocation, and interferes with the Akt pathway, 

leading to decreased glucose uptake in skeletal muscle [162]. In adipose tissue, chronic iAs 
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exposure is also known to contribute to the development of obesity and other metabolic 

disorders through induction of oxidative stress, as well as disruption of adipokine signaling, 

and dysregulation of lipid metabolism [163]. Arsenic exposure can also decrease PDE3b 

(phosphodiesterase 3b) expression and activity, an enzyme that regulates lipolysis and 

glucose uptake in adipocytes, resulting in hyperglycemia and insulin resistance [164]. In 

addition, SREBP (a transcription factor that regulates lipid metabolism) and PPARg (a 

nuclear receptor that regulates adipogenesis and glucose metabolism) have both been shown 

to be activated by iAs in adipocytes, resulting in increased expression of lipogenic genes 

and adipogenesis, eventually leading to the development of obesity, insulin resistance, and 

hyperglycemia [164–166].

In the liver, iAs exposure can have harmful effects on hepatocytes by altering hepatic gene 

expression and signaling pathways involved in liver metabolism. For example, prolonged, 

non-canonical activation of the transcription factor NRF2 (nuclear factor erythroid 2-related 

factor 2), which results from autophagy inhibition, and p62-dependent sequestration of 

Keap1, the negative regulator of NRF2, has been shown to mediate insulin resistance 

and glucose intolerance in wild-type mice exposed to 25 ppm iAs for 20 weeks [167]. 

Besides NRF2, iAs has also been shown to influence the expression of other transcription 

factors that may be related to enhanced diabetes risk [168,169]. Chronic iAs exposure 

increased the gene expression of PEPCK (phosphoenolpyruvate carboxykinase) and G6PC1 
(glucose-6-phosphatase), two key gluconeogenic enzymes that promote hepatic glucose 

synthesis and thus contribute to hyperglycemia, via prolonged activation of the transcription 

factor FOXO1 (forkhead box O1) [170]. Exposure to iAs also increased SORD (sorbitol 

dehydrogenase), TKFC (transketolase-like protein 1), and KHK (ketohexokinase) expression 

in the liver, leading to increased hepatic glucose production via the polyol pathway, 

ultimately contributing to hyperglycemia in mice [167]. Overall, iAs exposure has been 

shown to induce diabetogenesis through multiple tissue-specific mechanisms.

In terms of acute arsenic iAs toxicity, including its effects on glucose metabolism, 

the binding of iAs to thiol (SH) groups has been shown. The reactivity of iAs on 

sulfhydryl groups can inactivate over 200 enzymes, and thus could be responsible, at 

least in part, for the widespread pathogenic effects of iAs on different organ systems 

[171,172]. Arsenic, in its trivalent form (As3+), is also known to inhibit pyruvate 

and α-ketoglutarate dehydrogenase during acute poisoning, both of which are essential 

enzymes for gluconeogenesis and glycolysis [171]. In its pentavalent form (As5+), it can 

substitute for phosphate, disrupting protein phosphorylation and oxidative phosphorylation 

[173]. However, whether this occurs in a chronic exposure context, as well as at more 

physiologically relevant concentrations, has yet to be determined.

Increasing iAs levels in the blood correlated with increasing levels of ROS and decreased 

antioxidant capacity in the plasma of iAs-exposed individuals in Taiwan, suggesting the 

influence of the iAs-ROS axis on promoting diabetes [174]. Oxidative stress, inflammation, 

and apoptosis have all been implicated as pathways that could converge to link iAs exposure 

with DM onset and progression [175]. These mechanisms fit arsenic’s effects on systemic 

metabolism, as in normal mice, iAs exposure has been shown to result in prediabetic 

effects via alterations to lipid metabolism, gluconeogenesis, and insulin secretion, while also 
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worsening diabetic outcomes in a diabetic mouse model [156]. Thus, the ability of arsenic to 

dysregulate these processes involved in both early and later outcomes associated with DM, 

establishes iAs as a relevant diabetogen.

Finally, iAs is also known to impact various components of the epigenetic machinery. 

Exposure to iAs has been linked to varied gene expression of AS3MT [153], CAPN10 [158], 

GSTO1 [136] and NOTCH2 [176]. Differences in genotype, as well as single-nucleotide 

polymorphisms (SNPs) in any of these critical genes, can dictate the risk of developing DM, 

as the iAs metabolite profile, as well as glucose metabolism, can vary greatly. Supporting 

this notion, studies in both human cohorts and in vivo experimental models have shown 

iAs-induced changes in epigenetic regulation of glucose homeostasis, specifically DNA 

methylation and miRNA suppression of DM-related genes involved in glycemic regulation 

[177,178]. Furthermore, iAs-associated changes in DNA methylation of DM-related genes 

were observed in the peripheral blood leukocytes of individuals consuming high levels of 

iAs in the drinking water in Mexico [179]. At the miRNA level, a study examining newborn 

umbilical cord blood samples for miRNA expression following in utero iAs exposure 

indicated altered expression of miR-107 and miR-20b, both of which have been associated 

with DM [180]. Similar in vivo studies in the liver tissue of mice exposed to various 

concentrations of sodium arsenite also revealed altered miRNA expression profiles [181].

4.4. Future Research Needs

Based on the evidence described above, it is clear that arsenic toxicity is dependent on 

exposure dose, frequency, duration, and species involved, as well as the age, gender, 

and individual genetic susceptibilities of the exposed individual, amongst many other 

variables [182]. Several of these parameters should be further explored in future studies 

to determine the association between iAs toxicity in drinking water and the progression 

of DM. Specifically, the epigenetic aspect of iAs-controlled diabetes induction remains 

understudied, which could provide key insight into understanding this aspect of iAs 

promotion of diabetes, particularly when changes in diabetes-relevant gene expression 

are observed. Dietary influences and genetic polymorphisms in response to iAs exposure 

should also be further studied, as they could provide key insight into how different 

regional populations are affected during exposure. Investigating the role of iAs in dictating 

diabetogenic changes at the cellular level also requires more experimental evidence using 

consistent and exposure-relevant doses of iAs. Improved consistency and dose relevance, 

coupled with the identification of appropriate biomarkers for iAs-induced DM, will allow for 

a better comparison amongst exposed and unexposed groups.

Another important issue moving forward is that the conditions of exposure to iAs in humans 

overall need to be more fully characterized so that better biomarkers can be developed 

and the separation of relevant forms of iAs and their level of toxicity at the tissue vs. 

systemic level can be better defined. The bioaccumulation of various forms of iAs in 

cellular versus animal models and their relevance to human physiological settings is also 

therefore considered an important area for further research. Gender and age differences in 

susceptibility to iAs and their relation to development of diabetes are also poorly defined. 

In addition, metal–metal interactions should also be studied to define the consequences 
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of iAs interaction with other harmful metals, as arsenic is not the only toxic component 

present during exposure. Altogether, while much is known epidemiologically regarding the 

increased risk of diabetes associated with chronic arsenic exposure, a great deal still needs 

to be done at the experimental level to increase our understanding of arsenic’s diabetogenic 

effects and generate relevant therapies for this subset of diabetic patients.

5. Regulation of Arsenic in Drinking Water

Disrupting exposure to arsenic requires understanding of water sources that may contain 

elevated levels, whether naturally occurring or as a result of contamination. Monitoring 

arsenic in drinking water is critical, especially for those who are on private wells. 

Private well-water quality outreach and sampling campaigns have been conducted across 

the country to protect human health and address arsenic exposure. For example, the 

collaborative public health project “All About Arsenic,” was initiated in 2015 by researchers 

at Mount Desert Island Biological Laboratory and Dartmouth College’s Toxic Metals 

Superfund Research Program to “to expand private well water testing for arsenic and 

other elements and to build data literacy among students and the wider public” [183,184]. 

A key factor to ensure the success of these monitoring and educational programs is 

public participation, research conducted with nonprofessionals, who may contribute to the 

research question, generation of theory or hypothesis, data collection, data analysis, data 

interpretation, and/or translating research to action (e.g., [185]). Public participation in 

research is a valuable model for investigations across disciplines and can connect science 

and practice to people and policy (e.g., [186]). Practices led by institutions only have 

been critiqued for their lack of accessibility, diversity, justice, equity, and inclusion [187]. 

Community-based participatory research and community science efforts that champion 

placed-based topics and local experts and address community questions are strongly 

recommended and can increase the rigor and relevance of the effort (e.g., [187–189]). For 

example, Gardenroots [31,190–193], established in 2010, revealed that in one community, 

the local water utility was serving water that exceeded the arsenic drinking water standard 

(0.010 mg L−1) [190]. Gardenroots participants worked together to identify and notify 

additional households that were connected to the public water supply. They also reported 

their test results to USEPA and Arizona Department of Environmental Quality, advocating 

that this issue needed to be addressed (Gardenroots also notified and sent the results to the 

USEPA). As a result, the municipal water suppler was issued seven notices of violation by 

the ADEQ, one for exceeding the arsenic drinking water standard. Additionally, arsenic 

concentrations in private well water exceeded the drinking water standard for several 

participants who relied solely on this water source. University of Arizona researchers 

worked closely with those households to provide information regarding water treatment 

technologies that could be implemented to reduce their arsenic concentrations [190].

6. Approaches to Removal of Arsenic from Drinking Water

The present USEPA national primary drinking water regulations (NPDWS) limit for arsenic 

is 10 μg/L. This is a compromise between consumer health protection and water treatment 

costs, as the USEPA has set a public health goal of arsenic in drinking water at “zero.” 

Arsenic is found in drinking water in two forms of inorganic arsenic, although organic forms 
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of arsenic also exist and can be found in aquatic environments such as benthic sediments. 

The common forms of inorganic arsenic include arsenate (As+5) and arsenite (As+3) (Figure 

1). The more oxidized arsenate ions predominate in moderately to well-aerated water 

sources, whereas arsenite forms predominate in organic matter-rich, oxygen-limited waters. 

A 2014 study of 65 drinking water wells from 28 states in the US [194] showed that either 

arsenate or arsenite predominated in 91% of the wells, while the remaining wells had a 

combination of the two arsenic forms. The 91% of wells with a dominant arsenic form were 

distributed approximately evenly between arsenic and arsenate.

Although arsenate and arsenite are known to have different toxicities, the USEPA only 

monitors and regulates arsenic cumulatively in its elemental form (As). The amount of 

arsenic in surface and groundwater depends primarily on the surrounding geology, as well as 

industrial activity, including, among others, mining and oil extraction. Arsenic is commonly 

associated with pyritic (iron- and sulfur-containing) minerals, which when exposed to 

oxidizing–acidic conditions release arsenic in the water environment as arsenate and/or 

arsenite ions. A common arsenic mineral is arsenopyrite, often found with other pyritic 

minerals rich in copper, lead, cadmium and other metals.

Lowering the levels of arsenic in drinking water is difficult due to the complex chemistry 

of this element. Although the arsenic in arsenic-rich minerals is relatively insoluble in 

natural waters (except in extreme redox and pH conditions), areas with high amounts 

of arsenic-containing minerals often have naturally high levels of dissolved arsenic in 

groundwater. Lowering the levels of this element to drinking water standards can be difficult 

and expensive due to its shifting chemical forms. For example, changing the water redox 

potential or pH conditions can lead to the precipitation of arsenate and arsenite with iron, 

calcium and other cations leading to the formation of secondary arsenic-rich minerals. The 

pH range of most potable water sources is 6 to 9, which when combined varying oxygen 

levels can lead to the presence of arsenate or arsenite as previously described. These arsenic 

species have difference sizes, charge (−), and reactivity, complicating their removal from 

water using precipitation, absorption, ion exchange, and nanofiltration processes used in 

today’s best available water treatment technologies. The next sections present a summary of 

treatment technologies that can be used to lower arsenic levels for both public utilities and 

home water treatment systems.

The USEPA has guidelines and recommendations for the selection of best-available 

technology (BAT) to mitigate arsenic in water, given variables such as the number of 

connections (consumers), water quality, levels of arsenic in water, location, infrastructure, 

etc. [195]. Public water utilities should follow these guidelines in the selection and testing of 

the BAT or BATs to ensure consistent compliance to the arsenic standard at the lowest cost 

to the consumer. There is sometimes tension between the choice of arsenic levels and cost of 

treatment [194].

6.1. Technologies for Public Water Utilities

6.1.1. Blending—Mixing two water sources to produce water with arsenic levels below 

the NPDWS is an acceptable technology available to water utilities with diverse sources of 

potable water such as surface water and groundwater [196].
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6.1.2. Coagulation/Filtration—The addition of iron salts such as ferric chloride or 

sulfate to well-aerated water leads to the formation of insoluble amorphous ferric hydroxides 

that adsorb preferably arsenate anions entrapping them into a coagulant that can settle and 

be filtered out of the water. The efficiency of the treatment process can be optimized up to 

95% by adjusting the pH with the proper selection of iron salts and the addition of oxidizing 

agents such as chlorine and permanganate to oxidize arsenite to arsenate. This treatment 

technology produces significant amounts of potentially hazardous arsenic-contaminated 

residues that must be disposed of (usually landfilled) following federal and state guidelines 

[195].

6.1.3. Oxidation/Filtration—Oxygen-free groundwater may have significant amounts 

of soluble iron and/or manganese present, often accompanied by soluble arsenite. In this 

case, water aeration or the addition of an oxidizing chemical leads directly to the formation 

of both arsenate and insoluble ferric hydroxides that can sorb the arsenate. This is followed 

by filtration to remove iron–manganese–arsenic particles. The efficacy of this approach 

depends on the initial ratio of iron to arsenic present in the water. This technology also 

requires the proper disposal of arsenic-contaminated residues [195].

6.1.4. Metal Oxides—Since arsenic anions have a high affinity for positively charged 

metal oxides, adsorptive materials composed of solid porous media such as aluminum 

oxides (activated alumina) and many types of ferric hydroxy-oxides (GFH) (alone or coated 

onto inert solid media) are options for closed water treatment systems. These approaches 

can efficiently filter out arsenate with up to 95% removal, provided that all forms of arsenic 

are present as arsenate. This again may require the conversion of arsenite, if present, to 

arsenate with the addition of oxidants as well as pH adjustment to optimize arsenic removal 

efficiencies. Since there are many manufacturers of these materials and varying costs, pilot 

studies are usually required to test materials and determine best pre- and posttreatment(s) 

needed to optimize arsenic removal and lower costs. Importantly, knowledge of the water 

chemistry (e.g., salinity, pH, alkalinity, redox potential, and the concentrations of other 

potentially competing ions) is also needed [195]. The presence of other ions such as 

fluoride, silica, and sulfate can also interfere with the adsorption of arsenate. Once spent, 

these porous media must be disposed of as potentially hazardous arsenic contaminated 

residues.

Innovative particle coatings and nanoparticles made of and with carbon, alumina, iron, 

titanium, zirconium and other elements are being explored for As removal from water [197] 

with varying degrees of success, higher costs and remaining challenges associated with the 

disposal of spent materials.

6.1.5. Anion Exchange Resins—Porous synthetic organic polymer beats populated 

with positively charged sites saturated with a common anion such as chloride (Cl−) can be 

used to efficiently remove arsenate ions from water. These resins can be manufactured to 

preferentially remove arsenate anions over other common anions as mentioned previously. 

Ion exchange resins are more expensive than inorganic porous media but have the advantage 

that they can be reused after regeneration with alkali solutions. Resin regenerant wastes 

containing arsenic must be disposed of as hazardous waste. As with other treatment 
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technologies, pre- and posttreatment(s) may be necessary to oxidize any reduced arsenic 

forms to arsenate [195].

6.1.6. Enhanced Lime Softening—The addition of lime [Ca(OH)2] to water is 

commonly used to reduce hardness through precipitation of calcium and magnesium. This 

technology can also be used to remove arsenic [198,199]. Lime is added to bring the pH 

of the system to higher than 10.5. This results in precipitation of carbonates (CaCO3) and 

hydroxides [Mg(OH)2], and when arsenate is present, it too will precipitate. Magnesium 

additions may be needed if not present in the water and posttreatment is required for pH 

adjustment. This process is quite efficient for arsenate, but less efficient for arsenite. The 

technology requires large amounts of lime, which in turn generates large amounts of waste 

sludge. In addition, the high operating pH can be problematic and the treated water needs pH 

adjustment following treatment [195].

6.1.7. Nanofiltration and Reverse Osmosis—These similar types of membrane 

filtration (adsorption of ions onto a semiporous membrane) processes are best suited and 

most cost-effective for treatment of water with total dissolved solids (TDS) greater than 

500 mg/L and when other ions besides arsenic must be lowered to meet drinking water 

standards. A complete analysis of all major and minor water quality parameters must be 

performed for the initial evaluation and testing of these processes, since implementing either 

technology just to reduce arsenic levels in water would not be cost-effective. Note that 

reverse osmosis (RO) systems are more expensive to operate than nanofiltration, but are 

more efficient at lowering arsenate. Pressures from 50 to over 200 psi may be used to 

force influent water through a semiporous membrane, which produces scaling and fouling 

requiring periodic flushing. This membrane cleaning step can produce significant volumes 

of brackish water that must be disposed appropriately. Up to 70% of the influent water may 

be lost during the membrane cleaning cycle, depending on the levels of particulates, bacteria 

and salts present in the water [197]. For example, very hard water can increase membrane 

scaling significantly. As with previous technologies, the arsenate forms are preferentially 

adsorbed (RO > 95%). Therefore, if arsenite is present in the influent, it must be converted 

to arsenate with pretreatment oxidation [195].

6.2. Home Treatments

Point of use (POU) devices are typically used by homeowners that have elevated levels 

of arsenic in their well water [200]. Today, homeowners have an increasing array of point 

of entry (POE) water systems to lower arsenic and other contaminants in water including 

water softeners, alkali, permanganate, chlorination, activated carbon, GFH, and RO systems, 

costing thousands of dollars to install and maintain. In the next sections we will summarize 

three low cost POU systems available to homeowners to lower arsenic levels in water.

6.2.1. Distillation—This process is straightforward, requiring the use of a steam-

distilling unit that generates steam that when condensed produces contaminant-free, 

disinfected water. Tabletop steam-distillation units are slow and energy-intensive, producing 

enough water for daily drinking and cooking. During the distillation process, all arsenic 

forms and other ions present in water concentrate and precipitate, forming a scale in the 
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distillation vessel that must be periodically cleaned out. Modern distillation units also have 

activated carbon filters that can trap volatile contaminants [200].

6.2.2. Reverse Osmosis—Small, under-the-sink, home water treatment systems that 

use the reverse osmosis process are widely available for do-it-yourself and professional 

installation. These small systems are fully automated and make use of the existing household 

water pressure (40–60 psi) to force water through a semipermeable membrane, storing it in 

a reservoir for later use. As with industrial systems, membrane fouling and scaling require 

periodic (and more frequent) washing. Up to nine volumes of water may be lost during 

this cycle for every volume of water produced depending on the influent water quality. 

High water TDS and hardness decrease RO system performance, significantly increasing 

household water consumption. In areas of the US with very hard water, a softening 

pretreatment may be needed. When used to lower arsenic or other primary contaminants, 

homeowners should test their water before and after RO treatment and regularly thereafter to 

make sure that arsenic or any other primary drinking water standards are met.

6.2.3. Iron Filters—Small POU in-line GFH filters are slowly becoming available to 

homeowners to filter arsenic out of water. However, their arsenic-filtering capacity is very 

much dependent on the concentrations of several other water ions commonly present in 

water, such as silica, sulfate, and fluoride, and other anions, as previously mentioned. 

Therefore, the homeowner should test arsenic levels in the treated water periodically to 

check the arsenic-removal efficiency of these filters over time. These filters do not generate 

any waste while in use, but they cannot be regenerated. Thus, when exhausted, they should 

be handled and disposed of as potentially hazardous materials [200].

6.3. Summary—Challenges to Removal of Arsenic from Drinking Water

The EPA lowered the arsenic drinking water standard of arsenic in 2001 from 50 μg/L to 

10 μg/L. Ideally, drinking water should not have any arsenic, but reducing the levels of 

this element below 10 μg/L is difficult and expensive. This is because, as discussed above, 

arsenic exists in several forms in water and complex multistep treatments are often required 

to reduce arsenic levels in water. Because of its geological origins and arsenic’s affinity 

for iron hydroxides and aluminum oxides (alumina), large-scale treatment has traditionally 

focused on the use of coagulation, coprecipitation, and sorption of arsenic using iron-based 

chemicals and alumina. Although new iron, other metal-based, and hybrid nanomaterials 

(silica and activated charcoal with metal coatings and Fe, Ti, and Zr nanoparticles for 

example) are being developed for arsenic capture, their high cost and varying efficacies 

remain a challenge. Anion exchange resins remain an expensive but efficient method to 

lower arsenic concentrations in water. Membrane filtration systems such as nanofiltration 

are increasing in performance, with lower energy costs and lower levels of other water 

contaminants, such as salts, nitrate, metals, and many organic contaminants in addition to 

arsenic. For most of these approaches, an added concern is that the environmentally safe 

and cost-effective disposal of arsenic-contaminated solid and liquid residues, sorbents, and 

brines remains a challenge. Small-scale treatment systems such as POUs are increasing in 

popularity, in particular home RO systems. These systems also have associated costs due to 

maintenance requirements, increased water use, and water testing costs.
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Figure 1. 
Eh-pH activity diagram of arsenic species at 25 °C, 1 bar, (S, Fe, As) = 10−3 M (left). 
Dashed lines bound the stability field of water, arsenate (AsV) species are shown in red, 

arsenite (AsIII) species are shown in blue italics, solid phases are shown with a darkened 

background. The distribution of pH-dependent dissolved arsenic species are shown (right) 
with arsenate as red solid lines and red text and arsenite in dashed blue lines with blue 

italic text. Dissolved arsenic species become protonated at low pH and the charge on the 

oxyanion decreases. Under environmental conditions (pH ≈ 5–9), arsenate generally exists 

as H2AsO4
− and HAsO4

2−, while arsenite is the uncharged molecule H3AsO3
0. Under 

highly reducing conditions and in the presence of high sulfur activity, solid-phase arsenic 

sulfides (e.g., AsS) are stable.
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Figure 2. 
A variety of mechanisms have been proposed for the diabetogenic effects of arsenic. 

Shown here are (top left) stimulation of hepatic gluconeogenesis; (top right) a decrease 

in insulin secretion from beta cells; (bottom left) decreased glucose uptake and lipolysis 

in adipocytes; and (bottom right) decreased glucose uptake due to increased mitochondrial 

dysfunction.

Shakya et al. Page 27

Water (Basel). Author manuscript; available in PMC 2023 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Shakya et al. Page 28

Ta
b

le
 1

.

E
pi

de
m

io
lo

gi
ca

l e
vi

de
nc

e 
su

pp
or

tin
g 

ar
se

ni
c 

pr
om

ot
io

n 
of

 d
ia

be
te

s.

C
ou

nt
ry

St
ud

y 
P

op
ul

at
io

n
A

ge
A

dj
us

tm
en

ts
D

ur
at

io
n

A
s 

C
on

ce
nt

ra
ti

on
 (

In
 p

pb
 

or
 p

pm
)

D
ia

be
ti

c 
A

ss
es

sm
en

t/
M

et
ho

ds
 o

f 
D

et
ec

ti
on

R
ef

.

B
an

gl
ad

es
h 

14
0 

di
ab

et
ic

 v
s.

 1
80

 n
on

-d
ia

be
tic

 
co

nt
ro

ls
 r

ec
ru

ite
d 

w
ith

 H
bA

lc
 le

ve
l 

>
 7

%
≥2

0 
ye

ar
s

A
ge

, s
ex

, f
am

ily
 h

is
to

ry
 o

f 
di

ab
et

es
, s

m
ok

in
g 

ha
bi

t, 
be

te
l 

nu
t c

he
w

in
g,

 e
du

ca
tio

n
20

10
69

.3
–1

00
.9

 p
pm

 in
 d

ri
nk

in
g 

w
at

er
 f

or
 9

.8
–1

3.
6 

ye
ar

s
FB

G
 ≥

 2
00

m
g/

dL
[1

13
]

11
5 

ex
po

se
d 

su
bj

ec
ts

 d
ia

gn
os

ed
 a

s 
ar

se
ni

co
si

s 
pa

tie
nt

s 
(>

50
 μ

g/
L

 A
s 

w
at

er
 c

on
su

m
pt

io
n 

an
d 

sk
in

 le
si

on
s)

 
an

d 
12

0 
un

ex
po

se
d 

vo
lu

nt
ee

rs

14
–8

5 
ye

ar
s

A
ge

, h
ei

gh
t a

nd
 b

od
y 

w
ei

gh
t

20
01

–2
00

3
dr

in
ki

ng
 w

at
er

 (
0.

21
8 

pp
m

) 
an

d 
sp

ot
 u

ri
ne

 (
20

.2
35

 p
pm

)
FB

G
 ≥

 1
40

 m
g/

dL
[1

14
]

16
3 

su
bj

ec
ts

 w
ith

 k
er

at
os

is
 e

xp
os

ed
 

to
 a

rs
en

ic
 a

nd
 8

54
 u

ne
xp

os
ed

 
in

di
vi

du
al

s
>

30
 y

ea
rs

A
ge

, s
ex

 a
nd

 b
od

y 
m

as
s 

in
de

x
N

R
0.

01
–2

.1
 p

pm
 in

 d
ri

nk
in

g 
w

at
er

hi
st

or
y 

of
 s

ym
pt

om
s:

 p
re

vi
ou

sl
y 

di
ag

no
se

d 
di

ab
et

es
, g

ly
co

su
ri

a 
an

d 
bl

oo
d 

su
ga

r 
le

ve
l a

ft
er

 g
lu

co
se

 in
ta

ke
 

(O
G

T
T

)

[1
15

]

15
95

 s
ub

je
ct

s 
de

pe
nd

in
g 

on
 d

ri
nk

in
g 

w
at

er
 f

ro
m

 w
el

ls
: 1

84
1 

dr
an

k 
ar

se
ni

c-
co

nt
am

in
at

ed
 d

ri
nk

in
g 

w
at

er
 

bu
t 1

14
 h

ad
 n

ot

≥3
0 

ye
ar

s
A

ge
, s

ex
 a

nd
 b

od
y 

m
as

s 
in

de
x

N
R

w
el

l w
at

er
 >

 0
.0

5 
pp

m
G

ly
co

su
ri

a
[1

16
]

40
 w

or
ke

rs
 o

cc
up

at
io

na
lly

 e
xp

os
ed

 
to

 a
rs

en
ic

, 2
6 

w
ith

ou
t a

ny
 k

no
w

n 
A

s 
ex

po
su

re
 a

nd
 6

 w
ho

 d
ir

ec
tly

 h
an

dl
e 

A
s 

co
nt

ai
ni

ng
 p

ro
du

ct
s

20
–6

0 
ye

ar
s

Se
x,

 o
cc

up
at

io
n,

 a
ge

, s
m

ok
in

g 
ha

bi
t

N
R

22
.3

–2
94

.5
 n

m
ol

 p
er

 m
m

ol
 

of
 c

re
at

in
in

e 
in

 u
ri

ne
 s

am
pl

e 
of

 th
e 

ex
po

se
d 

gr
ou

p

gl
yc

os
yl

at
ed

 h
em

og
lo

bi
n 

(H
bA

1c
) 

5.
4%

 c
om

pa
re

d 
to

 r
ef

er
en

ce
 g

ro
up

 
4.

4%
[1

17
]

C
hi

le
 

po
pu

la
tio

n 
ba

se
d 

ca
nc

er
 c

as
e-

co
nt

ro
l 

st
ud

y 
of

 1
30

1 
pa

rt
ic

ip
an

ts
 in

 
N

or
th

er
n 

C
hi

le
≥2

5 
ye

ar
s

A
ge

, s
ex

, r
ac

e,
 h

yp
er

te
ns

io
n,

 
ca

nc
er

, s
oc

io
ec

on
om

ic
 s

ta
tu

s,
 

sm
ok

in
g 

st
at

us
20

07
–2

01
0

>
0.

8 
pp

m
 a

rs
en

ic
 w

at
er

 
co

nc
en

tr
at

io
n

ph
ys

ic
ia

n 
di

ag
no

se
d 

di
ab

et
es

 o
r 

or
al

 
hy

po
gl

yc
em

ic
 m

ed
ic

at
io

n 
us

e
[1

18
]

C
hi

na
 

20
90

 w
om

en
 w

ith
 s

in
gl

et
on

 
pr

eg
na

nc
y 

fr
om

 th
e 

To
ng

ji 
M

at
er

na
l 

an
d 

C
hi

ld
 H

ea
lth

 C
oh

or
t (

T
M

C
H

C
)

≥2
5 

ye
ar

s
Pr

eg
na

nc
y,

 e
du

ca
tio

n,
 in

co
m

e,
 

et
hn

ic
ity

, f
et

al
 s

ex
20

13
0.

3 
pp

b
U

ri
ne

 s
am

pl
es

 a
nd

 o
ra

l g
lu

co
se

 
to

le
ra

nc
e 

te
st

, F
B

G
 ≥

 9
2 

m
g/

dL
[1

19
]

33
5 

ge
st

at
io

na
l d

ia
be

te
s 

m
el

lit
us

 a
nd

 
34

3 
co

nt
ro

ls
 w

ith
ou

t G
D

M
 b

as
ed

 o
n 

a 
pr

os
pe

ct
iv

e 
co

ho
rt

 e
st

ab
lis

he
d 

in
 

B
ei

jin
g,

 C
hi

na

<
35

–≥
35

 
ye

ar
s

A
ge

, e
th

ni
ci

ty
, e

du
ca

tio
n,

 
oc

cu
pa

tio
n,

20
17

–2
01

8
22

0 
pp

m
FB

G
 ≥

 5
.1

 m
m

ol
/L

, m
at

er
na

l h
ai

r 
sa

m
pl

es
[1

20
]

15
27

 p
re

gn
an

t w
om

en
 d

ra
w

n 
fr

om
 

M
ot

he
r 

an
d 

C
hi

ld
 M

ic
ro

bi
om

e 
C

oh
or

t (
M

C
M

C
) 

st
ud

y

<
30

–≥
30

 
ye

ar
s

E
du

ca
tio

n,
 B

M
I

20
17

–2
01

8
0.

83
 p

pb

75
-g

 o
ra

l g
lu

co
se

 to
le

ra
nc

e 
te

st
 

(O
G

T
T

),
 F

B
G

 ≥
 5

.1
 m

m
ol

/L
, 1

 h
 

po
st

pr
an

di
al

 ≥
 1

0.
0 

m
m

ol
/L

, o
r 

2 
h 

po
st

pr
an

di
al

 g
lu

co
se

 ≥
 8

.5
 m

m
ol

/L

[1
21

]

34
74

 w
om

en
 w

ho
 w

er
e 

pa
rt

 o
f 

th
e 

M
a’

an
sh

an
 B

ir
th

 C
oh

or
t (

M
A

B
C

) 
St

ud
y 

co
nd

uc
te

d 
fr

om
 th

e 
C

ity
 

of
 M

a’
an

sh
an

, A
nh

ui
 P

ro
vi

nc
e 

of
 

C
hi

na

≤ 
24

 
ye

ar
s,

 
25

–2
9 

ye
ar

s,
 ≥

 
30

 y
ea

rs

M
at

er
na

l a
ge

, B
M

I,
 g

ra
vi

di
ty

, 
pa

ri
ty

, i
nc

om
e,

 e
du

ca
tio

n
20

13
–2

01
4

0.
00

47
 p

pb
FB

G
 ≥

 5
.1

 m
m

ol
/L

; 1
 h

, ≥
10

.0
 

m
m

ol
/L

; o
r 

2 
h,

 ≥
8.

5 
m

m
ol

/L
[1

22
]

C
ro

at
ia

 
20

2 
ad

ul
t u

rb
an

 p
ar

tic
ip

an
ts

 f
ro

m
 

th
e 

ci
ty

 o
f 

O
si

je
k 

in
 e

as
te

rn
 C

ro
at

ia
 

≥4
5 

ye
ar

s
A

ge
, g

en
de

r, 
ed

uc
at

io
n,

 
sm

ok
in

g,
 f

am
ily

 h
is

to
ry

 if
 

20
18

0.
5–

36
1 

pp
b 

to
ta

l u
ri

ne
 A

s
FB

G
 ≥

 3
.5

 m
m

ol
/L

, H
bA

1c
 ≥

 3
7 

m
m

ol
/L

, i
ns

ul
in

 ≥
 1

5 
pm

ol
/L

[1
23

]

Water (Basel). Author manuscript; available in PMC 2023 October 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Shakya et al. Page 29

C
ou

nt
ry

St
ud

y 
P

op
ul

at
io

n
A

ge
A

dj
us

tm
en

ts
D

ur
at

io
n

A
s 

C
on

ce
nt

ra
ti

on
 (

In
 p

pb
 

or
 p

pm
)

D
ia

be
ti

c 
A

ss
es

sm
en

t/
M

et
ho

ds
 o

f 
D

et
ec

ti
on

R
ef

.

an
d 

ci
ty

 o
f 

Z
ag

re
b 

in
 w

es
te

rn
 

C
ro

at
ia

di
ab

et
es

, p
hy

si
ca

l a
ct

iv
ity

, 
di

et
ar

y 
co

ns
um

pt
io

n,
 o

ri
gi

n 
of

 
w

at
er

 u
se

d 
fo

r 
dr

in
ki

ng

In
di

a 

N
at

iv
es

 to
 N

al
la

m
pa

tti
, a

n 
ag

ri
cu

ltu
ra

l v
ill

ag
e 

in
 s

ou
th

 I
nd

ia
 

an
d 

pa
rt

 o
f 

th
e 

K
M

C
H

-N
N

C
D

 
cr

os
s-

se
ct

io
na

l s
tu

dy

≥2
0 

an
d 

≤8
5 

ye
ar

s

A
ge

, s
ex

, a
lc

oh
ol

 in
ta

ke
, 

sm
ok

in
g,

 to
ba

cc
o 

us
e,

 B
M

I,
 

ed
uc

at
io

n,
 o

cc
up

at
io

n,
 f

am
ili

al
 

di
ab

et
ic

 h
is

to
ry

20
15

4.
10

–6
3.

30
 p

pm
 c

re
at

in
in

e 
un

its
 o

f 
ar

se
ni

c

bl
oo

d 
in

ve
st

ig
at

io
n 

in
cl

ud
ed

 a
 

ra
nd

om
 g

lu
co

se
, H

bA
1c

, c
ys

ta
tin

-c
, 

no
n-

fa
st

in
g 

lip
id

 p
ro

fi
le

, u
ri

c 
ac

id
 

an
d 

he
m

og
lo

bi
n

[1
24

]

It
al

y 
33

90
 a

rt
 g

la
ss

 w
or

ke
rs

 e
m

pl
oy

ed
 in

 
17

 in
du

st
ri

al
 f

ac
ili

tie
s 

fo
r 

at
 le

as
t 1

 
ye

ar

<
40

, 4
0–

65
 a

nd
 

>
65

 y
ea

rs

A
ge

, s
ex

, h
is

to
ry

 o
f 

di
se

as
e/

m
or

ta
lit

y
19

50
–1

98
5

3.
26

 p
pb

 in
 g

la
ss

w
or

ks
 (

>
10

 
μg

/m
3  

in
 g

la
ss

w
or

ks
)

A
ll 

ca
us

es
 o

f 
de

at
h 

co
de

d 
ac

co
rd

in
g 

to
 th

e 
8t

h 
re

vi
si

on
 o

f 
th

e 
IC

D
[1

25
]

25
8 

su
bj

ec
ts

w
ith

 a
 m

in
im

um
 o

f 
tw

o-
ye

ar
 r

es
id

en
cy

 in
 th

e 
re

gi
on

s 
an

d 
w

ith
ou

t o
cc

up
at

io
na

l e
xp

os
ur

e 
to

 A
s

≥5
 y

ea
rs

A
ge

, s
ex

, s
ou

rc
e 

of
 d

ri
nk

in
g 

w
at

er
19

93
–2

00
8

3–
21

5 
pp

b 
iA

s 
in

 d
ri

nk
in

g 
w

at
er

, 2
.3

–2
33

.7
 n

g/
m

L
 tA

s 
in

 U
ri

ne

FB
G

 ≥
 1

26
 m

g/
dL

, O
G

T
T

 ≥
 2

00
 

m
g/

dL
, H

bA
1c

 le
ve

ls
 >

 7
%

, s
el

f-
re

po
rt

ed
 d

ia
gn

os
is

, o
r 

m
ed

ic
at

io
n

[1
03

]

20
0 

di
ab

et
ic

 c
as

es
 a

nd
 2

00
 c

on
tr

ol
s

≥3
0 

ye
ar

s

A
ge

, h
ei

gh
t, 

w
ei

gh
t, 

bo
dy

 
m

as
s 

in
de

x,
 s

m
ok

in
g 

ha
bi

t, 
fa

m
ily

 h
is

to
ry

 o
f 

di
ab

et
es

, 
em

pl
oy

m
en

t, 
lo

ca
tio

n

19
60

in
te

rm
ed

ia
te

 to
ta

l A
s 

co
nc

en
tr

at
io

n 
in

 u
ri

ne
 (

63
.5

–
10

4 
μg

/g
 c

re
at

in
in

e)

FB
G

 ≥
 1

26
 m

g/
10

0 
m

L
 (

>
 o

r 
=

7.
0 

m
m

ol
/l)

 o
r 

a 
hi

st
or

y 
of

 
di

ab
et

es
 tr

ea
te

d 
w

ith
 in

su
lin

 o
r 

or
al

 
hy

po
gl

yc
em

ic
 a

ge
nt

s

[1
26

]

11
60

 a
du

lts
 w

ith
 a

 m
in

im
um

 5
 y

ea
r 

re
si

de
nc

y 
in

 s
tu

dy
 a

re
a

≥1
8 

ye
ar

s

A
ge

, g
en

de
r, 

et
hn

ic
ity

, 
ed

uc
at

io
n/

oc
cu

pa
tio

n,
 

sm
ok

in
g 

st
at

us
, a

lc
oh

ol
 

co
ns

um
pt

io
n,

 r
ec

en
t s

ea
fo

od
 

in
ta

ke
, d

ri
nk

in
g 

w
at

er
 s

ou
rc

es
 

(w
el

l, 
tr

ea
tm

en
t p

la
nt

 o
r 

ot
he

r)
 

an
d 

us
e 

an
d 

m
ed

ic
al

 h
is

to
ry

20
08

–2
01

3
<

0.
01

–4
19

.8
 p

pb
 A

s 
in

 
dr

in
ki

ng
 w

at
er

, t
A

s 
0.

52
–

49
1.

5 
pp

b 
in

 u
ri

na
ry

 A
s.

FB
G

 ≥
 1

26
 m

g/
dL

, 2
H

PG
 ≥

 2
00

 
m

g/
dL

, s
el

f-
re

po
rt

ed
 d

ia
gn

os
is

, o
r 

m
ed

ic
at

io
n

[1
27

]

49
 h

ea
lth

y 
in

di
vi

du
al

s 
an

d 
77

 
pa

tie
nt

s
N

R
A

ge
, s

ex
, g

eo
gr

ap
hi

ca
l 

lo
ca

tio
n 

hi
st

or
y 

of
 d

is
ea

se
N

R
0.

32
–9

.8
2 

pp
b 

A
s 

in
 d

ia
be

tic
 

pa
tie

nt
s,

 m
ea

n 
A

s 
3.

44
 p

pb
U

ri
ne

 s
am

pl
es

 o
f 

di
ab

et
ic

 p
at

ie
nt

s 
to

 
te

st
 A

s 
co

nc
en

tr
at

io
n

[1
28

]

14
51

 r
an

do
m

ly
 s

el
ec

te
d 

pa
rt

ic
ip

an
ts

 
fr

om
 S

pa
in

 (
re

pr
es

en
ta

tiv
e 

sa
m

pl
e 

of
 

a 
ge

ne
ra

l p
op

ul
at

io
n)

≥2
0 

ye
ar

s
A

ge
, s

ex
, s

om
ki

ng
 

st
at

us
, e

du
ca

tio
n,

 s
ea

fo
od

 
co

ns
um

pt
io

n
20

01
–2

00
3

3.
8 

pp
b 

of
 to

ta
l p

la
sm

a 
A

s,
 

10
6,

00
0 

pp
b 

of
 to

ta
l u

ri
ne

 
A

s,
 1

4,
90

0 
pp

b 
μg

/g
 o

f 
iA

s 
an

d 
66

,5
00

 p
pb

 o
f 

A
sb

 in
 

pa
rt

ic
ip

an
ts

 w
ith

 d
ia

be
te

s

FB
G

 ≥
 1

26
 m

g/
dL

 a
nd

 g
ly

co
sy

la
te

d 
he

m
og

lo
bi

n 
(H

bA
1c

) 
le

ve
l >

 6
.5

%
 

or
 p

hy
si

ci
an

 d
ia

gn
os

is
 o

r 
gl

uc
os

e 
lo

w
er

in
g 

m
ed

ic
at

io
n 

us
e

[1
29

]

Sw
ed

en
 

43
 s

m
el

te
r 

w
or

ke
rs

 e
xp

os
ed

 to
 iA

s 
du

st
 f

or
 1

3–
45

 y
ea

rs
44

–7
0 

ye
ar

s
ag

e,
 h

ei
gh

t, 
sm

ok
in

g 
ha

bi
t, 

al
co

ho
l c

on
su

m
pt

io
n

19
87

1.
6–

63
 p

pb
 A

s 
in

 w
or

k-
ro

om
 

ai
r 

at
 th

e 
sm

el
te

r
se

lf
-r

ep
or

te
d 

ty
pe

 2
 d

ia
be

te
s

[1
30

]

12
 c

as
es

 w
ith

 D
M

 o
n 

de
at

h 
ce

rt
if

ic
at

e 
an

d 
31

 c
on

tr
ol

s 
em

pl
oy

ed
 

in
 a

 S
w

ed
is

h 
co

pp
er

 s
m

el
te

r

30
–7

4 
ye

ar
s

A
ge

, h
is

to
ry

 o
f 

di
se

as
/d

ea
th

19
60

–1
97

6
<

0.
5–

>
0.

5 
pp

b 
A

s
de

at
h 

ce
rt

if
ic

at
e,

 m
ed

ic
al

 r
ec

or
d

[1
31

]

54
98

 a
rt

 g
la

ss
 w

or
ke

rs
 in

 
so

ut
he

as
te

rn
 S

w
ed

en
≥4

5 
ye

ar
s

A
ge

, o
cc

up
at

io
n 

(g
la

ss
w

or
ke

rs
 

vs
. g

la
ss

bl
ow

er
s,

 o
th

er
 

fo
un

dr
y 

w
or

ke
rs

 a
nd

 
un

sp
ec

if
ie

d 
gl

as
s 

w
or

ke
rs

)

19
50

–1
98

2
<

1.
9 

pp
b 

A
s 

in
 S

w
ed

is
h 

gl
as

sw
or

ks
; <

6 
μg

/m
3  

A
s 

in
 

Sw
ed

is
h 

gl
as

sw
or

ks

A
ll 

ca
us

es
 o

f 
de

at
h 

co
de

d 
ac

co
rd

in
g 

to
 th

e 
8t

h 
re

vi
si

on
 o

f 
th

e 
IC

D
[1

32
]

Ta
iw

an
 

89
1 

ad
ul

ts
 in

 s
ou

th
er

n 
Ta

iw
an

 
vi

lla
ge

 w
he

re
 a

rs
en

ia
si

s 
if

 
hy

pe
re

nd
em

ic
≥3

0 
ye

ar
s

A
ge

, s
ex

, b
od

y 
m

as
s 

in
de

x,
 

ac
tiv

ity
 le

ve
l a

t w
or

k
19

60
–1

97
0

0.
1–

15
 p

pm
-y

ea
r 

or
 h

ig
he

r
or

al
 g

lu
co

se
 to

le
ra

nc
e 

te
st

 (
O

G
T

T
) 

or
 s

el
f-

re
po

rt
ed

 h
is

to
ry

 o
f 

di
ab

et
es

 
tr

ea
te

d 
w

ith
 s

ul
fo

ny
lu

re
a 

or
 in

su
lin

[1
04

]

Water (Basel). Author manuscript; available in PMC 2023 October 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Shakya et al. Page 30

C
ou

nt
ry

St
ud

y 
P

op
ul

at
io

n
A

ge
A

dj
us

tm
en

ts
D

ur
at

io
n

A
s 

C
on

ce
nt

ra
ti

on
 (

In
 p

pb
 

or
 p

pm
)

D
ia

be
ti

c 
A

ss
es

sm
en

t/
M

et
ho

ds
 o

f 
D

et
ec

ti
on

R
ef

.

C
an

ce
r 

an
d 

no
nc

an
ce

r 
di

se
as

es
A

ll 
ag

e 
gr

ou
p

Se
x,

 A
ge

19
71

–1
99

4
0.

25
–1

.1
4 

pp
m

 A
s 

in
 

ar
te

si
an

 w
el

l w
at

er
A

ll 
ca

us
es

 o
f 

de
at

h 
co

de
d 

ac
co

rd
in

g 
to

 th
e 

8t
h 

or
 9

th
 r

ev
is

io
n 

of
 th

e 
IC

D
[1

05
]

44
6 

no
nd

ia
be

tic
 r

es
id

en
ts

 in
 a

 
vi

lla
ge

 in
 T

ai
w

an
≥3

0 
ye

ar
s

A
ge

, b
od

y 
m

as
s 

in
de

x 
an

d 
cu

m
ul

at
iv

e 
ar

se
ni

c 
ex

po
su

re
19

88
–1

98
9

m
ed

ia
n 

A
s 

of
 a

rt
es

ia
n 

w
el

l 
w

at
er

 f
ro

m
 0

.7
 to

 0
.9

3 
pp

m

FB
G

 ≥
 7

.8
 m

m
ol

/L
 a

nd
/o

r 
a 

2 
h 

po
st

-l
oa

d 
gl

uc
os

e 
le

ve
l >

 o
r 

=
 1

1.
1 

m
m

ol
/L

.
[1

33
]

66
,6

67
 r

es
id

en
ts

 li
vi

ng
 in

 e
nd

em
ic

 
ar

ea
s 

an
d 

63
9,

66
7 

in
 n

on
en

de
m

ic
 

ar
ea

s
≥2

5 
ye

ar
s

A
ge

, s
ex

19
99

–2
00

0
ar

te
si

an
 w

el
l w

at
er

 >
 0

.3
5 

pp
m

A
ll 

ca
us

es
 o

f 
de

at
h 

co
de

d 
ac

co
rd

in
g 

to
 th

e 
9t

h 
re

vi
si

on
 o

f 
th

e 
IC

D
 (

IC
D

-9
 

co
de

 2
50

 a
nd

 A
18

1)
[1

34
]

4 
to

w
ns

hi
ps

 in
 s

ou
th

w
es

te
rn

 T
ai

w
an

 
w

he
re

 b
la

ck
fo

ot
 d

is
ea

se
 is

 e
nd

em
ic

N
R

A
ge

, S
ex

19
71

–2
00

0

ar
se

ni
c 

co
nc

en
tr

at
io

n 
of

 
ar

te
si

an
 w

el
l w

at
er

 r
an

ge
d 

fr
om

 0
.3

5 
to

 1
.1

4 
pp

m
 w

ith
 

a 
m

ed
ia

n 
of

 0
.7

8 
pp

m

A
ll 

ca
us

es
 o

f 
de

at
h 

co
de

d 
ac

co
rd

in
g 

to
 th

e 
8t

h 
or

 9
th

 r
ev

is
io

n 
of

 th
e 

IC
D

 
(I

C
D

-9
 c

od
e 

25
0)

.
[1

35
]

12
97

 s
ub

je
ct

s 
fr

om
 a

n 
ar

se
ni

co
si

s 
en

de
m

ic
 a

re
a 

in
 s

ou
th

w
es

te
rn

 
Ta

iw
an

≥4
0 

ye
ar

s
A

ge
, s

ex
, s

m
ok

in
g 

st
at

us
, 

ed
uc

at
io

n,
 e

xe
rc

is
e,

 a
lc

oh
ol

 
co

ns
um

pt
io

n,
 b

et
el

 n
ut

 in
ta

ke

19
90

, 2
00

2–
20

03
0.

7–
0.

93
 p

pm
 A

s 
in

 w
el

l 
w

at
er

FB
G

, c
ho

le
st

er
ol

, t
ri

gl
yc

er
id

es
, l

ow
 

an
d 

hi
gh

 d
en

si
ty

 li
po

pr
ot

ei
ns

, 
ur

in
e 

ac
id

 a
nd

 u
ri

ne
 c

re
at

in
in

e 
le

ve
ls

, a
rs

en
ic

 m
et

hy
la

tio
n 

pa
tte

rn
s 

an
d 

G
ST

O
1 

ge
no

ty
pe

s 
lin

ke
d 

to
 

m
et

ab
ol

ic
 s

yn
dr

om
e 

as
 a

n 
ea

rl
y 

fa
ct

or
 f

or
 d

ia
be

te
s

[1
36

]

U
K

 

32
 in

su
lin

 tr
ea

te
d 

(I
T

D
M

),
 5

5 
no

n-
in

su
lin

 tr
ea

te
d 

(N
IT

D
M

) 
di

ab
et

ic
 

pa
tie

nt
s 

an
d 

30
 n

on
di

ab
et

ic
 

in
di

vi
du

al
s 

(C
-D

N
M

) 
fr

om
 O

xf
or

d,
 

E
ng

la
nd

18
–7

8 
ye

ar
s

A
ge

, b
od

y 
m

as
s 

in
de

x,
 

gl
uc

os
e,

 in
su

lin
N

R
0.

01
8–

0.
2 

pp
m

 A
s

G
lu

co
se

 le
ve

ls
 a

nd
 in

su
lin

 tr
ea

tm
en

t
[1

37
]

U
SA

 
45

49
 A

m
er

ic
an

 I
nd

ia
n 

pa
rt

ic
ip

an
ts

45
–7

5 
ye

ar
s

A
ge

, s
oc

io
de

m
og

ra
ph

ic
, 

sm
ok

in
g 

an
d 

al
co

ho
l s

ta
tu

s,
 

he
ig

ht
, w

ei
gh

t, 
bl

oo
d 

pr
es

su
re

19
89

–1
99

1,
 

19
98

–1
99

9

5.
9–

14
 p

pm
 iA

s 
14

.3
 p

pb
 in

 
A

ri
zo

na
, 1

1.
9 

pp
b 

in
 D

ak
ot

a,
 

7 
pp

b 
in

 O
kl

ah
om

a

FB
G

 ≥
 1

26
 m

g 
=

 d
L

, 2
H

PG
 ≥

 2
00

 
m

g 
=

 d
L

, s
el

f-
re

po
rt

ed
 d

ia
gn

os
is

, o
r 

m
ed

ic
at

io
n

[1
38

]

13
93

 s
m

el
te

r 
w

or
ke

rs
<

20
–4

0+
A

ge
, s

ex
, r

ac
e,

 o
cc

up
at

io
n

19
46

–1
97

7
0.

5–
5 

pp
b 

A
s 

of
 a

ir
 

co
nc

en
tr

at
io

n 
in

 th
e 

in
se

ct
ic

id
e 

bu
ild

in
g

A
ll 

ca
us

es
 o

f 
de

at
h 

co
de

d 
ac

co
rd

in
g 

to
 I

C
D

[1
39

]

80
14

 c
op

pe
r 

sm
el

te
r 

w
or

ke
rs

 in
 

M
on

ta
na

<
20

–≥
30

Se
x,

 R
ac

e
<

19
57

,1
93

8–
19

89
0.

29
–1

1.
3 

pp
b 

of
 a

ir
bo

rn
e 

A
s

A
ll 

ca
us

es
 o

f 
de

at
h 

co
de

d 
ac

co
rd

in
g 

to
 th

e 
8t

h 
or

 9
th

 r
ev

is
io

n 
of

 th
e 

IC
D

 
(I

C
D

-8
 c

od
es

 4
60

–5
19

)
[1

40
]

18
27

 b
oy

s 
an

d 
13

05
 g

ir
ls

2–
14

 
ye

ar
s

A
ge

, s
ex

19
07

–1
93

2
14

0–
16

00
 p

pm
 s

oi
l A

s 
co

nc
en

tr
at

io
n

A
ll 

ca
us

es
 o

f 
de

at
h 

co
de

d 
ac

co
rd

in
g 

to
 d

ea
th

 r
ec

or
ds

 f
ro

m
 th

e 
N

at
io

na
l 

D
ea

th
 I

nd
ex

, ≥
47

 a
nd

 f
ro

m
 

W
as

hi
ng

to
n 

St
at

e 
(1

90
0–

19
90

),
 

O
re

go
n 

St
at

e 
(1

97
1–

19
79

),
 a

nd
 

C
al

if
or

ni
a 

St
at

e 
(1

96
0–

19
90

),
 to

 
lo

ca
te

 d
ea

th
s 

of
 c

oh
or

t m
em

be
rs

[1
41

]

H
is

to
ri

ca
l w

ar
d 

m
em

be
rs

hi
p 

re
co

rd
s 

of
 th

e 
C

hu
rc

h 
of

 J
es

us
 C

hr
is

t o
f 

L
at

te
r-

da
y 

Sa
in

ts
 (

L
D

S)
 (

al
so

 k
no

w
n 

as
 th

e 
M

or
m

on
s)

<
50

–8
0+

A
ge

, s
ex

19
77

m
ea

n 
A

s 
15

0 
pp

b,
 m

ed
ia

n 
A

s 
14

 to
 1

66
 p

pb
D

ea
th

 c
er

tif
ic

at
e,

 m
or

ta
lit

y 
fr

om
 

hy
pe

rt
en

si
ve

 h
ea

rt
 d

is
ea

se
[1

42
]

Water (Basel). Author manuscript; available in PMC 2023 October 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Shakya et al. Page 31

C
ou

nt
ry

St
ud

y 
P

op
ul

at
io

n
A

ge
A

dj
us

tm
en

ts
D

ur
at

io
n

A
s 

C
on

ce
nt

ra
ti

on
 (

In
 p

pb
 

or
 p

pm
)

D
ia

be
ti

c 
A

ss
es

sm
en

t/
M

et
ho

ds
 o

f 
D

et
ec

ti
on

R
ef

.

11
85

 r
es

po
nd

en
ts

 f
ro

m
 1

9 
to

w
ns

hi
ps

 
in

 a
rs

en
ic

 c
on

ta
m

in
at

ed
 a

re
a

≥3
5 

ye
ar

s
A

ge
19

92
–1

99
3

2–
>

10
 p

pb
 A

s,
 w

ith
 a

 
m

ed
ia

n 
of

 2
 p

pb
 A

s
Se

lf
 r

ep
or

te
d

[1
43

]

78
8 

ad
ul

ts
 a

ge
d 

20
 y

ea
rs

 o
r 

ol
de

r 
w

ho
 p

ar
tic

ip
at

ed
 in

 th
e 

20
03

–
20

04
 N

at
io

na
l H

ea
lth

 a
nd

 N
ut

ri
tio

n 
E

xa
m

in
at

io
n 

Su
rv

ey
 (

N
H

A
N

E
S)

 
an

d 
ha

d 
ur

in
e 

ar
se

ni
c 

de
te

rm
in

at
io

ns

≥2
0 

ye
ar

s

A
ge

, s
ex

, r
ac

e,
 e

th
ni

ci
ty

; 
ed

uc
at

io
na

l, 
sm

ok
in

g 
an

d 
al

co
ho

l c
on

su
m

pt
io

n 
st

at
us

; 
an

d 
di

et
ar

y 
re

ca
ll

20
03

–2
00

4
7.

1 
pp

b 
to

ta
l A

s,
 3

 p
pb

 
dm

A
s,

 0
.9

 p
pb

 a
rs

en
ob

et
ai

ne

FB
G

 ≥
 1

26
 m

g/
dL

, s
el

f-
re

po
rt

ed
 

ph
ys

ic
al

 d
ia

gn
os

is
 o

r 
us

e 
of

 in
su

lin
/

or
al

 h
yp

og
ly

ce
m

ic
 m

ed
ic

at
io

n
[1

44
]

39
25

 p
eo

pl
e 

on
 tr

ib
al

 to
lls

 in
 1

3 
A

m
er

ic
an

 I
nd

ia
n 

co
m

m
un

iti
es

<
55

-≥
65

A
ge

, s
ex

, e
du

ca
tio

n,
 b

od
y 

m
as

s 
in

de
x,

 s
m

ok
in

g 
st

at
us

, 
al

co
ho

l c
on

su
m

pt
io

n
19

89
–1

99
1

7.
9–

24
.2

 p
pb

 u
ri

ne
 A

s,
 

m
ed

ia
n 

ur
in

e 
A

s 
14

.1
 p

pb

G
ly

ca
te

d 
he

m
og

lo
bi

n 
an

d 
in

su
lin

 
re

si
st

an
ce

, f
as

tin
g 

gl
uc

os
e 

le
ve

l o
f 

12
6 

m
g/

dL
 o

r 
hi

gh
er

, 2
 h

 g
lu

co
se

 
le

ve
ls

 o
f 

20
0 

m
g/

dL
 o

r 
hi

gh
er

, 
he

m
og

lo
bi

n 
A

1c
 (

H
bA

1c
) 

of
 6

.5
%

 o
r 

hi
gh

er
, o

r 
di

ab
et

es
 tr

ea
tm

en
t

[1
45

]

co
ho

rt
 o

f 
A

m
er

ic
an

 I
nd

ia
ns

 in
 

A
ri

zo
na

, O
kl

ah
om

a,
 N

or
th

 D
ak

ot
a 

an
d 

So
ut

h 
D

ak
ot

a
≥3

0 
ye

ar
s

A
ge

, a
nc

es
tr

y,
 f

am
ily

 
re

la
tio

ns
hi

ps

19
98

–1
99

9,
 

20
01

–2
00

3,
 

20
05

–2
00

6,
 

20
14

–2
01

5

m
ed

ia
n 

ex
po

su
re

 o
f 

5.
93

 p
pb

FB
G

 ≥
 1

26
 m

g/
dL

, o
r 

us
e 

of
 in

su
lin

 
or

 o
ra

l h
yp

og
ly

ce
m

ic
 m

ed
ic

at
io

ns
[1

09
]

no
n-

in
st

itu
tio

na
liz

ed
 c

iv
ili

an
 

re
si

de
nt

 p
op

ul
at

io
n 

fr
om

 N
H

A
N

E
S

≥2
0 

ye
ar

s

B
od

y 
m

as
s 

in
de

x,
 a

ge
, g

en
de

r, 
ra

ce
/e

th
ni

ci
ty

, e
du

ca
tio

n,
 

in
co

m
e,

 c
ig

ar
et

te
 u

se
, a

lc
oh

ol
 

in
ta

ke
 a

nd
 p

hy
si

ca
l a

ct
iv

ity

20
11

–2
01

4
24

6–
26

0.
6 

ng
/h

Sp
ot

 u
ri

ne
 s

am
pl

es
, F

B
G

 ≥
 1

00
 

m
g/

dL
 o

r 
us

e 
of

 m
ed

ic
at

io
n 

to
 tr

ea
t 

hy
pe

rg
ly

ce
m

ia
[1

46
]

45
49

 m
em

be
rs

 o
f 

13
 tr

ib
es

 b
as

ed
 in

 
A

ri
zo

na
, O

kl
ah

om
a,

 N
or

th
 D

ak
ot

a 
an

d 
So

ut
h 

D
ak

ot
a

45
–7

5 
ye

ar
s

A
ge

, s
ex

, s
tu

dy
 r

eg
io

n,
 

m
ed

ic
al

 h
is

to
ry

, s
m

ok
in

g 
st

at
us

19
89

–o
ng

oi
ng

10
.2

–1
1.

2 
nm

ol
 p

er
 m

m
ol

 o
f 

cr
ea

tin
in

e 
in

 u
ri

ne
 s

am
pl

e 
of

 
th

e 
ex

po
se

d 
gr

ou
p

U
ri

na
ry

 a
rs

en
ic

 s
pe

ci
es

 m
ea

su
re

d 
us

in
g 

H
PL

C
 to

 id
en

tif
y 

di
ff

er
en

tia
lly

 
m

et
hy

la
te

d 
po

si
tio

n
[1

10
]

29
19

 p
ar

tic
ip

an
ts

 r
ec

ru
ite

d 
by

 
St

ro
ng

 H
ea

rt
 F

am
ily

 S
tu

dy
≥2

5 
ye

ar
s

A
ge

, s
ex

, e
du

ca
tio

n,
 s

m
ok

in
g 

hi
st

or
y,

 a
lc

oh
ol

 u
se

, m
ed

ic
al

 
hi

st
or

y

19
98

–1
99

9,
 

20
01

–2
00

3
m

ed
ia

n 
0.

52
 p

pb

U
ri

ne
 a

rs
en

ic
, F

B
G

 ≥
 1

26
 m

g/
dL

, 
se

lf
-r

ep
or

te
d 

ph
ys

ic
ia

n 
di

ag
no

si
s 

or
 

se
lf

-r
ep

or
te

d 
us

e 
of

 in
su

lin
 o

r 
or

al
 

di
ab

et
es

 tr
ea

tm
en

t

[1
11

]

Pr
eg

na
nt

 w
om

en
 w

ith
 a

nd
 w

ith
ou

t 
G

D
M

 w
ho

 r
ec

ei
ve

d 
pr

en
at

al
 c

ar
e 

at
 

th
e 

U
ni

ve
rs

ity
 o

f 
O

kl
ah

om
a 

H
ea

lth
 

Sc
ie

nc
es

 C
en

te
r 

(O
U

H
SC

) 
W

om
en

’s
 

C
lin

ic
 a

nd
 H

ig
h 

R
is

k 
Pr

eg
na

nc
y 

C
lin

ic

≥1
8 

ye
ar

s
M

at
er

na
l a

ge
, r

ac
e/

et
hn

ic
ity

, 
ed

uc
at

io
n,

 in
co

m
e,

 h
is

to
ry

 o
f 

G
D

M
 d

ia
gn

os
is

20
09

–2
01

0
1.

25
 p

pb
 to

ta
l a

rs
en

ic
B

G
 ≥

 1
35

 m
g/

dL
[1

47
]

68
8 

pa
rt

ic
ip

an
ts

 in
cl

ud
in

g 
ty

pe
 1

, 
ty

pe
 2

 a
nd

 c
on

tr
ol

 p
ar

tic
ip

an
ts

 f
ro

m
 

SE
A

R
C

H
, a

 s
tu

dy
 b

ei
ng

 c
on

du
ct

ed
 

in
 S

ou
th

 C
ar

ol
in

a,
 C

ol
or

ad
o 

an
d 

C
ol

um
bi

a

10
–2

2 
ye

ar
s

A
ge

, s
ex

, r
ac

e,
 e

du
ca

tio
n,

 
he

ig
ht

, w
ei

gh
t

20
03

–2
00

6
0.

04
29

–0
.0

50
2 

pp
b 

iA
s

C
lin

ic
al

 d
ia

be
te

s 
as

si
gn

ed
 b

y 
th

e 
he

al
th

 p
ro

vi
de

r
[1

48
]

51
14

 A
fr

ic
an

-A
m

er
ic

an
 a

nd
 w

hi
te

 
m

en
 a

nd
 w

om
en

 w
ho

 a
re

 p
ar

t 
of

 th
e 

C
R

A
D

IA
 s

tu
dy

 li
vi

ng
 in

 
B

ir
m

in
gh

am
, A

L
; C

hi
ca

go
, I

L
; 

M
in

ne
ap

ol
is

, M
N

; a
nd

 O
ak

la
nd

, C
A

≥2
5 

ye
ar

s

A
ge

, g
en

de
r, 

ra
ce

, e
du

ca
tio

n,
 

sm
ok

in
g 

st
at

us
, a

lc
oh

ol
 

co
ns

um
pt

io
n,

 p
hy

si
ca

l a
ct

iv
ity

, 
B

M
I,

 d
ie

ta
ry

 in
ta

ke

19
87

–8
8;

 2
01

5–
20

16
<

0.
05

93
–≥

0.
16

92
 p

pm
 

to
en

ai
l a

rs
en

ic
 le

ve
l

fa
st

in
g 

gl
uc

os
e 

≥ 
12

6 
m

g/
dL

, n
on

-
fa

st
in

g 
gl

uc
os

e 
≥ 

20
0 

m
g/

dL
, 2

 h
 

po
st

ch
al

le
ng

e 
gl

uc
os

e 
≥ 

20
0 

m
g/

dL
, 

he
m

og
lo

bi
n 

A
1c

 ≥
 6

.5
%

, o
r 

us
e 

of
 

gl
uc

os
e-

lo
w

er
in

g 
m

ed
ic

at
io

ns
.

[1
12

]

Water (Basel). Author manuscript; available in PMC 2023 October 26.


	Abstract
	Introduction—Water Quality and Importance
	Health Impacts of Arsenic in Drinking Water
	Arsenic Distribution in the Environment
	Diabetes and Arsenic
	Diabetes Types and Risk Factors
	Epidemiological Link between iAs Exposure and Diabetes
	Mechanisms Associated with iAs-Induced Diabetogenesis
	Future Research Needs

	Regulation of Arsenic in Drinking Water
	Approaches to Removal of Arsenic from Drinking Water
	Technologies for Public Water Utilities
	Blending
	Coagulation/Filtration
	Oxidation/Filtration
	Metal Oxides
	Anion Exchange Resins
	Enhanced Lime Softening
	Nanofiltration and Reverse Osmosis

	Home Treatments
	Distillation
	Reverse Osmosis
	Iron Filters

	Summary—Challenges to Removal of Arsenic from Drinking Water

	References
	Figure 1.
	Figure 2.
	Table 1.

