Skip to main content
. 2023 May 22;19(20):6933–6991. doi: 10.1021/acs.jctc.3c00182

Table 1. Parameters of the Anisotropic Magnetic Exchange (in cm–1) Extracted from Calculation of the DyMn Binuclear Systema.

kA qA kB qB Real Part Imaginary Part
1 0 1 0 –1.657 2.696 × 10–18
1 0 1 –1 2.076 × 10–2 –1.278 × 10–3
1 0 1 1 –2.076 × 10–2 –1.278 × 10–3
1 0 3 0 –5.864 × 10–3 –4.397 × 10–19
1 0 3 –2 7.061 × 10–4 1.746 × 10–5
1 0 3 2 7.061 × 10–4 –1.746 × 10–5
1 –1 1 1 –4.702 × 10–4 1.987 × 10–4
1 1 1 –1 –4.702 × 10–4 –1.987 × 10–4
1 0 3 –1 7.228 × 10–5 3.249 × 10–4
1 0 3 1 –7.228 × 10–5 3.249 × 10–4
1 –1 1 –1 –7.385 × 10–5 9.054 × 10–5
1 1 1 1 –7.385 × 10–5 –9.054 × 10–5
1 0 3 –3 7.169 × 10–5 –7.316 × 10–5
1 0 3 3 –7.169 × 10–5 –7.316 × 10–5
1 –1 3 3 1.936 × 10–5 –4.496 × 10–5
a

The active space of the CASSCF method included 4f9 and 5d5 shells of the DyIII and MnII, respectively, amounting to 14 electrons in 12 orbitals. All roots arising from the coupling of the ground 6H term of DyIII and ground spin SB = 5/2 of Mn2+ were explicitly optimized and mixed by spin–orbit interaction in RASSI. The ANO-RCC-VTZP basis set was used for closer atoms, while smaller VDZP contractions were used for distant atoms. The first 15 parameters are shown in descending order of importance.