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Extracellular DNA enhances biofilm integrity and mechanical 
properties of mucoid Pseudomonas aeruginosa
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ABSTRACT Pseudomonas aeruginosa is one of the most common biofilm-forming 
pathogens responsible for lung infections of individuals with cystic fibrosis (CF). P. 
aeruginosa becomes tolerant to antimicrobials in the biofilm state and is difficult to treat. 
Production of extracellular polymeric substances (EPS), such as alginate and extracellular 
DNA (eDNA), can allow adherence to abiotic and biotic surfaces, antimicrobial evasion, 
and resilience to environmental pressures. Alginate-producing mucoid variants of P. 
aeruginosa are frequently isolated from CF airway samples and are associated with 
worsening patient outcomes. While eDNA is a major structural component of nonmucoid 
P. aeruginosa biofilms, the potential role of eDNA in mucoid biofilms is unclear. Here, we 
investigate how eDNA contributes to clinical mucoid biofilm physiology and integrity. 
We predicted that eDNA plays a structural and mechanical role in mucoid biofilms. 
To test this, we quantified biofilm eDNA in mucoid biofilms and used microscopy and 
rheology to visualize eDNA and detect changes in biofilm structure and mechanics upon 
DNaseI treatment. We showed that biofilm eDNA abundance is diverse across clinical 
mucoid strains and observed a temporal increase in foci of eDNA within intact mucoid 
biofilms. Increased cell dispersal and reduced biomass were also observed following 
DNaseI treatment of mucoid biofilms. Degradation of eDNA also impacted the mechani
cal integrity of mucoid biofilms by increasing the stiffness and decreasing the cohesion 
of the biofilm. These findings advance our understanding of clinical mucoid P. aerugi
nosa biofilms and facilitate the development of new approaches to target biofilms by 
exploiting the functions of EPS components.

IMPORTANCE Understanding the role of eDNA in mucoid Pseudomonas aeruginosa 
biofilms will lead to therapeutic strategies that combat the biophysical and structural 
function of EPS for the eradication of bacteria in mucoid biofilms during chronic 
infections. This knowledge can be used to further identify unknown matrix component 
interactions within pathogenic biofilm-forming clinical isolates.

KEYWORDS alginate, cystic fibrosis, DNaseI, extracellular polymeric substances

B iofilms, which are aggregates of microbial communities encased by an extracellu
lar polymeric substance (EPS), are highly resilient (1–4). The EPS provides microor

ganisms within the biofilm with properties including enhanced attachment to abiotic 
(i.e., surgical implants) and biotic surfaces (i.e., epithelial cells and mucosal layers) 
and tolerance to host antimicrobial defenses and antibiotics (2, 5). Therefore, biofilm 
formation is considered a virulence factor and is a leading cause of chronic infection 
(5–7). Pseudomonas aeruginosa is a significant biofilm-forming pathogen, and it is 
one of the foremost Gram-negative bacteria responsible for nosocomial infections (8). 
This opportunistic pathogen is also the leading cause of mortality in immunocompro
mised individuals, such as those with cystic fibrosis (CF) (7, 9–11). In the CF lung, due 
to an abnormally thick mucus layer, microorganisms are not properly cleared. This 
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consequentially causes a build-up of microorganisms, and toxins and virulence factors 
produced by these organisms (12). In chronic conditions, the CF lung environment 
promotes the emergence of patho-adapted P. aeruginosa variants (2, 13). Mucoid variants 
of P. aeruginosa are associated with chronic infection and worsening patient outcomes 
(14–16). Mucoid variants predominate and become the main P. aeruginosa isolates from 
sputum samples (9, 17). Mucoid P. aeruginosa variants arise due to the acquisition of 
mutations in muc genes (most common being mucA22), resulting in overproduction of 
the exopolysaccharide, alginate (18, 19).

Although there are many studies regarding the role of alginate in mucoid biofilms, 
the function of other P. aeruginosa biofilm EPS components in mucoid biofilms is limited, 
largely due to the abundance of alginate within the EPS. Previous work has shown how 
alginate interaction with calcium impacts the structure and cell organization of mucoid 
biofilms (20, 21). In addition, another EPS exopolysaccharide produced by P. aeruginosa, 
Psl, enhances mucoid biofilm attachment and host immune evasion (22). Extracellular 
DNA (eDNA) is an important EPS component of nonmucoid P. aeruginosa biofilms and 
is considered a conserved EPS component across microbial biofilms (23). Nonmucoid 
P. aeruginosa biofilms have abundant eDNA that promotes cell surface attachment 
and maintains 3D architecture and biophysical properties (23–27). In this study, we 
tested the hypothesis that eDNA will play a significant structural and biophysical role 
in P. aeruginosa clinical mucoid biofilms. We quantified the eDNA concentration of 
biofilms formed by several clinical mucoid strains and performed correlative compari
sons to alginate production. Fluorescent microscopy and rheology were used to analyze 
structural and mechanical changes of DNaseI-treated P. aeruginosa mucoid biofilms. We 
discovered that biofilm eDNA abundance is diverse across clinical mucoid isolates and 
positively correlates with alginate production. We also showed that eDNA, in the form 
of punctate foci, temporally increases in clinical mucoid biofilms. Our results show that 
when eDNA is abundant, DNaseI treatment can disperse cells in clinical mucoid biofilms, 
as well as decrease biofilm thickness and EPS cohesion, and increase stiffness.

RESULTS AND DISCUSSION

eDNA abundance is diverse across clinical mucoid isolates

To quantify the abundance of eDNA in mucoid biofilms, we isolated eDNA from colony 
biofilms of nonmucoid PAO1 (positive eDNA control), PAO1∆lys that has impaired 
eDNA release (28) (negative eDNA control), and mucoid (∆mucA22) strains PDO300 
(lab derived) and FRD1 (clinical isolate) (22, 29). eDNA concentration was quantified 
by fluorometric analysis. Results show that nonmucoid PAO1 has a high abundance of 
eDNA, which aligns with previous studies (30). eDNA abundance of the isogenic mucoid 
PDO300 was lower compared to the parent PAO1 and comparable to the eDNA mutant, 
PAO1∆lys (Fig. 1A). Although non-isogenic, mucoid clinical isolate FRD1 had higher 
biofilm eDNA than what was produced by PDO300 and the eDNA mutant (Fig. 1A). To 
further corroborate these observations, hydrated nonmucoid and mucoid biofilms were 
visualized by widefield microscopy, and eDNA stained using TOTO-1. Images show that 
the abundance of eDNA found in colony biofilms reflects the observed level of eDNA in 
corresponding hydrated biofilms of each strain (Fig. 1B). Since FRD1 is a well-described 
clinical mucoid isolate (31), it was used as the reference mucoid strain for subsequent 
experiments.

As PDO300 and FRD1 mucoid biofilms produced differing eDNA concentrations (Fig. 
1A and B), this implies that there may be differing amounts of eDNA produced by 
biofilms of divergent mucoid strains. Therefore, we measured the eDNA concentration 
from biofilms of nine other P. aeruginosa mucoid isolates derived from CF sputum 
samples (Table 1). Quantification of eDNA in these clinical isolates confirmed diversity in 
the abundance of eDNA across various clinical mucoid strains. Biofilms of six clinical 
isolates contained high amounts of eDNA, while biofilms of four clinical isolates had 
similar levels as the eDNA mutant (Fig. 1C). Although the eDNA amount varied, there was 
no significant difference in the number of cells from the colony biofilms of each clinical 
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strain (Fig. S1). Based on comparison to the eDNA mutant, the clinical mucoid isolates 
were grouped into those with low eDNA (LE) and high eDNA (HE) abundance (Fig. 1C). 
Mucoid isolates in the HE group were designated as those that produce eDNA at 
concentrations reaching 3 standard deviations above the eDNA mutant average 
concentration, and in contrast, isolates in the LE group produce eDNA at concentrations 
below this standard (Fig. 1C, dotted line). We also investigated how mucoid reversion 
(algT/U and algD mutants) could impact eDNA levels in biofilms formed by these isolates. 
There was no significant difference in the eDNA levels of the mucoid revertant biofilms 
compared to the mucoid parental clinical isolate, indicating that alginate production or 
regulation does not appear to be involved in eDNA release (Fig. S2). Collectively, this 
suggests that eDNA abundance is intrinsic to the parental mucoid strain background of 
the clinical isolates.

We then investigated whether there was any correlation between eDNA and alginate 
concentrations across clinical mucoid isolates. Alginate produced by colony biofilms 
of the 10 mucoid clinical isolates was quantified, and the concentration was plotted 
against the corresponding eDNA concentration. Indeed, alginate abundance positively 
correlated with eDNA levels in these clinical mucoid biofilms (r-squared value of 0.75; 
Fig. 1D). This indicates that two major EPS components of P. aeruginosa biofilms are 
coordinately produced. Low EPS-producing P. aeruginosa clinical isolates may utilize 
other evasive mechanisms for protection, whereas high eDNA and alginate-producing 
isolates may rely on protection mechanisms attributed to the biofilm EPS. Location, 
antibiotic exposure, and even co-existing pathogens can influence the diversification of 
P. aeruginosa strains in CF lung infections (15, 35). In future studies, it will be important to 

FIG 1 eDNA abundance is diverse across clinical mucoid isolates. Fluorometric quantification of eDNA isolated from colony 

biofilms of nonmucoid (dark gray) PAO1, eDNA mutant PAO1∆lys, and mucoid (light gray) laboratory-derived PDO300 and 

clinical strain FRD1 (A). Representative images of TOTO-1 eDNA stained 48 h static biofilms of corresponding mucoid and 

nonmucoid strains; 20x objective, scale bar: 100 µm (B). Quantification of eDNA isolated from colony biofilms of 10 clinical 

mucoid isolates. The dashed line indicates +3 standard deviations above the eDNA mutant (PAO1∆lys) average (345 ng/mL). 

The “ns” bar indicates strains with eDNA concentrations comparable to the eDNA mutant, hence, low eDNA (LE). The “*” 

bar indicates strains with eDNA levels significantly higher than the eDNA mutant, hence, high eDNA (HE) (C). R2 correlation 

measurement of alginate and eDNA concentrations of the 10 clinical mucoid strains. (D). Each dot represents the average of 

three technical from three biological replicates of each strain. Analyzed using one-way ANOVA **P < 0.005, ***P < 0.0005, ****P 

< 0.0001.
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reveal the possible correlation between antimicrobial tolerance, infection duration, and 
extent of ciliary clearance, with biofilm eDNA levels of clinical isolates.

eDNA abundance increases temporally and is present as punctate foci in 
early clinical mucoid biofilms

eDNA is important in nonmucoid biofilms at the early stages of biofilm formation (27, 
28, 36). However, there are limited studies regarding eDNA abundance during mucoid 
biofilm formation. To examine the significance of eDNA during early mucoid biofilm 
formation, static mucoid, and nonmucoid biofilms, grown for 8, 16, 24, and 48 h, were 
stained with FM4-64 and TOTO-1 to label the cell membrane and eDNA, respectively, and 
imaged by widefield fluorescent microscopy. As previously reported (27), eDNA appears 
in nonmucoid PAO1 biofilms during initial attachment and increasingly at later stages 
(Fig. 2A). eDNA in the mucoid FRD1 biofilms also increased over the course of 48 h (Fig. 
2B). Comparable amounts of bacterial cells in nonmucoid and mucoid biofilms were 
observed at the various timepoints. The abundance of eDNA in the biofilms was elevated 
after 16 h (monolayer biofilm). Noticeably, at 24 h, punctate eDNA foci began to appear 
in mucoid and nonmucoid biofilms (Fig. 2A and B). The presence of these eDNA foci is 
consistent with previous observations visualizing eDNA and its influence on organization 
patterns within nonmucoid P. aeruginosa biofilms (37). By 48 h, nonmucoid biofilms had 
both punctate foci and fibrous eDNA forms (Fig. S3A), while the mucoid biofilm still 
predominately had punctate eDNA foci (Fig. S3B).

There are several mechanisms of eDNA release by P. aeruginosa, including phage lysin, 
PQS signaling, and cell death (38). In our future work, we will investigate mechanisms of 
eDNA release to get more insight on eDNA accumulation and staining patterns in 
mucoid biofilms. Previous reports suggest that the formation of fibrous eDNA strands in 
P. aeruginosa biofilms is the result of surface motility and migration through eDNA foci 
(28, 37). In contrast to nonmucoid, mucoid P. aeruginosa are often nonmotile, and 
alginate production becomes favorable in environments of selective pressure, like in CF 
lung infections (2, 19, 39). The suppressed motility in mucoid biofilms may explain the 
lack of eDNA strands in clinical mucoid biofilms. In addition, a prior study showed how 
eDNA release via cell death from antibiotic treatment enhanced FRD1 biofilm formation 
and structure (40). Cell death in clinical mucoid biofilms like FRD1 could be a mechanism 
of eDNA release. Mucoid biofilms may have evolved to utilize this route of eDNA release 
in an inflammatory host environment, where the bacteria are subjected to antimicrobials 

TABLE 1 Pseudomonas aeruginosa strains and sources

P. aeruginosa strains Description Source or reference

mPAO1
PAO1Δlys
PDO300
FRD1, Isolate 6
FRD1ΔalgD
FRD1ΔalgT/U
Isolate 1
Isolate 2
Isolate 3
Isolate 4
Isolate 5
Isolate 7
Isolate 8
Isolate 9
Isolate 10
Isolate 11
Isolate 12

Nonmucoid, WT, Parent
Nonmucoid, eDNA deficient, lys (PA0629) transposon mutant
Mucoid, PAO1 mucA22
Clinical mucoid, mucA22
Nonmucoid variant of FRD1
Nonmucoid variant of FRD1
Clinical mucoid
Clinical mucoid
Clinical mucoid
Clinical mucoid
Clinical Mucoid
Clinical mucoid
Clinical mucoid
Clinical mucoid
Clinical mucoid
Clinical mucoid
Clinical mucoid

Manoil transposon (32)
Manoil transposon (28, 32, 33)
Lab derived (22)
CF sputum (29)
CF sputum (34)
CF sputum (34)
CF sputum #3003 (22)
CF sputum #2902 (22)
CF sputum #2999 (22)
CF sputum #2966 (22)
CF sputum #2957 (22)
CF sputum #2965 (22)
CF sputum #2920 (22)
CF sputum #3001 (22)
CF sputum #2959 (22)
CF sputum #2963 (22)
CF sputum #2992 (22)
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from host cells. As a positive feedback loop, increased cell death and the resulting eDNA 
could augment biofilm integrity and antimicrobial tolerance.

DNaseI disrupts mucoid biofilms and disperses bacterial cells

Nonmucoid P. aeruginosa early biofilms, where attachment and microcolonies are first 
established, are easily disrupted by DNaseI (27, 28). The impact of DNaseI on mature 
or later-stage biofilms is quite variable (27, 36). Recent studies suggest that this DNaseI 
resistance is due to the transformation of eDNA to the stable supercoiled Z-DNA form 
(36, 38). We therefore hypothesized that DNaseI can similarly degrade eDNA in early 
clinical mucoid biofilms when eDNA is still suspectable to enzymatic degradation. To 
test this, 16-h static FRD1 mucoid biofilms and PAO1 nonmucoid biofilms were treated 
with DNaseI. After DNaseI treatment, eDNA level and cell dispersal were assessed using 

FIG 2 eDNA abundance increases temporally and is present as punctate foci in early clinical mucoid biofilms. Representative 

images and corresponding image analysis (bottom) using NIS-elements software of static nonmucoid PAO1 (A) and clinical 

mucoid FRD1 (B) biofilms labeled with FM4-64 (bacterial membrane; orange) and TOTO-1 (eDNA; green). The left panel depicts 

merged images of FM4-64 and TOTO-1 channels, the right panel depicts the TOTO-1 channel alone; scale bar: 20 µm. Data are 

depicted as stacked bars of mean ± STDV, N = 3.
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fluorescent image analysis and quantifying cells in the biofilm supernatant. DNaseI 
treatment decreased bacterial cells in PAO1 and FRD1 biofilms (Fig. 3A and B). Image 
analysis revealed a significant reduction of bacteria and eDNA staining of DNaseI-treated 
mucoid and nonmucoid biofilms, compared to nontreated biofilms (Fig. 3B and C). The 
eDNA signal of PAO1 biofilms was significantly decreased, implying adequate degrada
tion by DNaseI. The eDNA signal of FRD1 biofilms was also reduced after treatment, 
although to a lesser degree than PAO1 (Fig. 3C). Since total bacterial cells decreased in 
the biofilms after DNaseI treatment, bacterial cell dispersal was assessed by quantifying 
the bacteria remaining in the supernatant after DNaseI treatment. Biofilm supernatant 
of both PAO1 and FRD1 contained more bacterial cells when biofilms were treated with 
DNaseI, compared to nontreated controls (Fig. 3D).

FIG 3 DNaseI disrupts mucoid biofilms and disperses bacterial cells. Representative images of bacterial membrane 

and eDNA-stained nonmucoid PAO1 and clinical mucoid FRD1 biofilms, nontreated (left) or treated (right) with DNaseI 

(200 µg/mL) after 16-h biofilm formation. The left panel depicts merged images of FM4-64 and TOTO-1 channels, the right 

panel depicts the TOTO-1 channel alone; the scale bar is 20 µm (A). Quantification of FM4-64 (bacterial membrane; orange) 

(B) and TOTO-1 (eDNA; green) (C) fluorescence using NIS-elements image analysis software comparing DNaseI treated (gray) 

counterparts for each strain. CFU quantification of bacterial cells from supernatant of biofilms treated with or without DNaseI 

(D). N = 6, Analyzed using student t-test *P < 0.05, **P < 0.005, ***P < 0.0005.
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As eDNA is degraded, bacterial cells are able to disperse from the early biofilm or 
detach from the surface. This dispersal was more enhanced in nonmucoid biofilms, 
compared to clinical mucoid biofilms. This may be due to the diffusion barrier of alginate, 
the same anti-diffusion mechanisms proposed for antimicrobial agents (41–45). This 
could hinder the effectiveness of DNaseI in mucoid biofilms, in comparison to nonmu
coid biofilms which produce minimal amounts of alginate (46). As expected, the reduced 
impact of DNaseI on mucoid PDO300 biofilms containing low eDNA was observed 
(Fig. S4). In nonmucoid biofilms, eDNA binds with other EPS components, for example, 
polysaccharides and DNA-binding proteins that can reinforce and strengthen biofilm 
structure (36, 47, 48). Degrading eDNA in the biofilm should, therefore, compromise the 
interactions or bonds with eDNA and other EPS components, and bacterial cells disperse 
because of the disrupted structural integrity, accounting for our observations here (Fig. 
3D).

eDNA in mucoid and nonmucoid biofilms impacts mechanical properties

Recent studies suggest that viscoelastic properties of mucoid biofilms augment the 
persistence of chronic P. aeruginosa infection and challenge lung clearance (49, 50). 
However, the involvement of bacterial eDNA in influencing the mechanical properties 
of biofilms formed from clinical mucoid isolates is unknown. To investigate this, uniaxial 
mechanical indentation (49) was performed on nonmucoid, and clinical mucoid colony 
biofilms, grown with or without DNaseI treatment. For this analysis, a normal force is 
applied to the biofilm, and the force required to compress the biofilm is measured. 
Young’s modulus was used to quantify the stiffness of each biofilm. With this assay, 
biofilm thickness was also measured. As a control, nonmucoid colony biofilms of PAO1, 
grown with or without DNaseI, and eDNA mutant (PAO1∆lys) were tested to reveal 
a benchmark phenotype of eDNA contribution to biofilm mechanics. Results show 
that eDNA-deficient nonmucoid biofilms (DNaseI treated and eDNA mutant) have an 
increased Young’s modulus compared to wild-type or nontreated PAO1 biofilms (Fig. 
4A). This indicates that eDNA contributes to the stiffness of nonmucoid P. aeruginosa 
biofilms. Results also show that eDNA-deficient biofilms were thinner than nontreated 
PAO1 biofilms. In addition, the stiffness and thickness of the DNaseI treated and eDNA 
mutant biofilms were comparable, also confirming the adequate activity of the DNaseI 
(Fig. 4A).

We predict that, like nonmucoid biofilms, if a clinical mucoid strain has abundant 
eDNA in the biofilm EPS, then removing this eDNA, through enzymatic degradation, 
should alter the biophysical properties. Therefore, uniaxial mechanical indentation was 
performed on DNaseI-treated and nontreated clinical HE (Isolate 9), LE (Isolate 3) mucoid 
biofilms, and the reference FRD1 mucoid biofilm (which is also considered HE) (Fig. 1C). 
Like nonmucoid biofilms, results show that DNaseI-treated FRD1 and HE biofilms had 
an increased Young’s modulus and reduced biofilm thickness compared to nontreated 
controls (Fig. 4B). Although not statistically significant, we also observed a slight increase 
in Young’s modulus and decreases in the thickness of LE biofilms, compared to nontrea
ted (Fig. 4B). The impact of DNaseI on LE biofilms is reduced likely due to the low 
abundance of eDNA, suggesting minimal involvement of eDNA in biofilm mechanics 
compared to HE mucoid biofilms.

We next determined whether eDNA has a role in the cohesion of clinical mucoid 
biofilms. DNaseI-treated and nontreated nonmucoid (for benchmark comparison) and 
clinical FRD1, as well as representative HE (Isolate 9) and LE (Isolate 3) mucoid biofilms, 
were analyzed by a squeeze pull-off assay (49). In this assay, biofilms are compressed, 
and the force required to raise the probe of the biofilm is measured. The area under the 
curve (AUC) of the resulting force-displacement curves represents the work required by 
the probe to raise off the biofilm, indicating the cohesion of the biofilm EPS. Nonmucoid, 
eDNA-deficient, PAO1 biofilms had low AUC compared to wild type, nontreated PAO1 
biofilms, indicating a clear role for eDNA in biofilm EPS cohesion (Fig. 4C). DNaseI-treated 
FRD1 and HE mucoid biofilms also had significantly lower AUC, than corresponding 
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nontreated biofilms. The effect of DNaseI on LE mucoid biofilms was less pronounced 
compared to HE biofilms (Fig. 4C). Together, this indicates that eDNA increases the 
cohesion of biofilm EPS, as eDNA deficiency resulted in reduced cohesiveness of clinical 
mucoid biofilms.

Viscoelastic properties of various EPS components can influence the mechanics of a 
biofilm and theoretically impede clearance in the CF lung (51–56). Moreover, host eDNA 
increases the viscoelasticity of CF sputum (57, 58). However, it is uncertain if bacterial 
eDNA plays any role in the ineffective mechanical clearance of the lung in chronic 
infections. Collectively, we provide evidence that P. aeruginosa mucoid isolates from 
chronic lung infection are thicker, softer, and more cohesive when eDNA is abundant 
and intact (Fig. 5). A thick, flexible, and cohesive biofilm would likely further complicate 
clearance of the biofilms embedded in thick dehydrated mucus. Aerosolized treatment 
containing saline and human recombinant DNaseI (Pulmozyme) is commonly used as a 
mucolytic to promote mucus clearance of infected lungs in individuals with CF (59). Here, 
we show that DNaseI can impact the mechanical properties of clinical mucoid biofilms 
outside of whole sputum. We presume that in CF lung infections, mucoid strains evolve 
to produce either low or high eDNA which is influenced by the extent of mechanical 
stressors in the inflammatory environment. Moreover, previous studies show that most 
of the eDNA of in vivo P. aeruginosa biofilm infections is derived from the host and 
can be used as protection for the biofilm against antimicrobials (60). eDNA, exogenous 
to the bacteria, could impact the mechanical strength of the biofilm and potentially 
influence the level of eDNA release from the bacteria (61). Bacterial eDNA release may 
be reduced if the host eDNA is preferentially utilized to enhance biofilm mechanics and 
protection. Bacterial eDNA may also be increased to compensate for reduced host eDNA 

FIG 4 eDNA in mucoid and nonmucoid biofilms impacts mechanical properties. Nonmucoid PAO1 with (purple) or without (blue) DNaseI (200 µg/mL), and 

eDNA mutant PAO1∆lys (red) biofilms were analyzed by uniaxial mechanical indentation. From these analyses, the biofilm thickness and Young’s modulus were 

quantified (A). Mucoid biofilms of FRD1, high eDNA (HE; Isolate 9), and low eDNA (LE; Isolate 3) clinical strains with or without DNaseI treatment were also 

analyzed by uniaxial mechanical indentation where biofilm thickness and Young’s modulus was quantified (B). Squeeze pull-off assay performed on nonmucoid 

(dark gray bars) PAO1 with or without DNase I, eDNA mutant PAO1∆lys, and mucoid (light gray bars) FRD1, HE, and LE biofilms treated with or without DNase I. 

Measurements recorded using area under the curve (AUC) (C). Data are depicted as mean ± STDV. N = 8, Analyzed using Student t-test. *P < 0.05, **P < 0.005, ***P 

< 0.0005, ****P < 0.0001.
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in the matrix environment. This could further explain the diversity in eDNA abundance in 
clinical mucoid biofilms of CF lung infections.

EPS produced by P. aeruginosa biofilms strengthens the protection of bacteria 
continuously faced with selective pressures in the CF lung environment. eDNA is a 
known EPS produced by nonmucoid P. aeruginosa biofilms. Therefore, the current study 
evaluated the impact of eDNA in the persistent mucoid biofilms that exacerbate CF lung 
infections. In this study, we found that biofilm eDNA levels are diverse among CF clinical 
mucoid strains. We also elucidated the impact of removing biofilm eDNA by enzymatic 
degradation. DNaseI treatment disrupted clinical mucoid biofilms with abundant eDNA 
and consequently promoted bacterial cell dispersal. Furthermore, this study revealed a 
function of eDNA in the mechanical properties of clinical mucoid biofilms, as eDNA in 
the EPS allows for a softer and more cohesive biofilm. Overall, the function of eDNA is 
important for the structural and mechanical integrity of clinical mucoid biofilms. Future 
work will explore if there is a dominant mechanism of eDNA release utilized by mucoid 
strains isolated from CF lung infections. Future investigation on eDNA levels in relation
ship to antibiotic and host antimicrobial exposure and infection severity and duration is 
needed to understand the role of bacterial eDNA in P. aeruginosa fitness during infection.

MATERIALS AND METHODS

P. aeruginosa nonmucoid and mucoid strains

P. aeruginosa strains used are listed in Table 1. PAO1 and PAO1Δlys (eDNA mutant) strains 
were used for positive and negative eDNA controls, respectively. PDO300 was used as 
the standard laboratory-derived mucoid strain. FRD1, originally isolated from CF sputum, 
was used as the reference mucoid strain for experiments. The other 11 clinical mucoid 
isolates were from CF sputum samples from Nationwide Children’s Hospital (22).

Biofilm formation assays

Luria-Bertani medium, without NaCl (LBNS), was used to culture P. aeruginosa. Pseudo
monas isolation agar (PIA) was used throughout experiments for colony biofilms to 
maintain mucoid phenotype and minimize reversion to nonmucoid.

Static biofilms for microscopy

Mid-log cultures of each strain were grown and normalized to OD600nm0.1 in 10% LBNS. 
In total, 140 µL of culture was added to each channel of uncoated Ibidi channel slides. 

FIG 5 Summary of the mechanical role of eDNA in clinical mucoid and PAO1 nonmucoid biofilms. This collectively shows the 

relationship between eDNA abundance (gray) and biofilm thickness, cohesion (upper triangle spectrum) and stiffness (lower 

triangle spectrum). Stiffness is on the opposite end as it is inversely related to thickness and cohesion. The blue side of the 

spectrum indicates thick, cohesive, and flexible biofilms, while the red indicates a stiff, thin biofilm with limited cohesion.
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Channel slides were placed in a humidified box at 37°C and incubated for 8, 16, 24, and 
48 h. Media was replenished after 24 h. Static biofilms were treated with or without 
DNaseI (200 µg/mL) for 2.5 h.

Colony biofilms for rheology

Mid-log cultures of strains grown in LBNS were diluted to OD600nm0.5 in a final volume 
of 10 mL. In total, 10 mL of culture of each strain was poured into a sterile petri dish. 
Nitrocellulose filter membranes (25 mM, 0.45 µm pores from Millipore) were floated on 
top of the culture in the petri dish for 60 s to seed the filter with bacteria. Filters were 
placed, seeded side facing up, onto PIA supplemented with or without DNaseI (200 µg/
mL), and dried for 2 min prior to incubation. Mucoid biofilms were grown for 24 h at 37°C. 
Nonmucoid biofilms were grown at 37°C and transferred to new plates every 24 h for 5 
days to allow appropriate thickness to be reached for rheology assays.

eDNA isolation and quantification

Sterile inoculation loops were dipped in the mid-log culture of each strain grown in 
LBNS, normalized to OD600nm0.1. 1 cm streaks were made on PIA and then grown 
for 24 h at 37°C. Mucoid phenotype maintenance of colony patches was confirmed 
with brightfield microscopy and reverted strains were discarded. eDNA isolation and 
quantification was performed using a previously established protocol (28). 24-h biofilms 
(three biological and three technical replicates) were scraped from PIA and suspended 
in 1 mL of PBS. In all, 100 µL was drawn for plating CFUs. Suspension was treated with 
Proteinase K (5 µg/mL) and PNGase F (10 µg/mL) and subjected to vortex pulses to break 
down biofilm enzymatically and mechanically. Bacterial cells and debris were removed 
with 13,000 rpm centrifugation, and the supernatant containing eDNA was collected. 
eDNA was quantified using the fluorometric assay, Qubit.

Alginate isolation and quantification

Mid-log cultures of each strain were grown and normalized to OD600nm0.1 in 10% LBNS. 
An amount of 100 µL of the diluted culture was pipetted on top of PIA and spread plated 
evenly with a sterilized metal cell spreader. Plates were dried, inverted, and placed in 
37°C for 24-h incubation. Alginate from law-biofilms was isolated and quantified using 
a previously established protocol (62). Biofilms (three biological and three technical 
replicates) were resuspended in 1M NaCl and 100 µL was withdrawn for CFUs. Cells were 
removed via centrifugation (14,000 rpm for 30 min). 2% cetyl pyridinium was added to 
the supernatant to precipitate alginate in the samples. The precipitated alginate was 
then pelleted using centrifugation, and then precipitated again in cold isopropanol. After 
further centrifugation, the purified alginate pellet was resuspended in 1M NaCl overnight 
at 4°C. Alginate was quantified using a 96-well carbazole assay. Alginate samples and 
borate-sulfuric acid were heated at 100°C for 15 min. After cooling, 0.1% carbazole in 
ethanol was added to the wells, and then heated at 100°C for 10 min. Absorbance was 
detected with a plate reader at 550 nm. Alginate concentration was determined using 
seaweed alginate to produce a standard curve with r-squared >0.9.

Fluorescent microscopy

Static biofilms were washed with PBS and stained with TOTO-1 (1 µM) and FM4-64 
(5 μg mL−1) to label the eDNA and bacterial membrane, respectively. Biofilms were 
imaged using a Nikon Eclipse Ti2 widefield microscope fitted with 20× objective or 
60× oil objective and ORCA-Fusion digital camera. Images of three biological biofilm 
replicates with two technical images were analyzed. Bacterial cell and eDNA abundance 
of hydrated biofilms were quantified and analyzed using NIS-elements AR software 
based on fluorescence threshold and pixel count. Image J was used to process image 
type conversion, channel split, and scale bar (63).
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Rheological assays

TA Instruments Discovery Hybrid Rheometer-2 (HR-2) was used for all rheology 
experiments.

Uniaxial indentation assay

Indentation was performed using an 8 mM sand-blasted probe with the approach rate 
set at 1 μm/s. Initial contact between the probe and biofilm was determined at the 
point where the force began to continuously increase. This point was also determined to 
be the highest point of the biofilm, therefore the thickness of the biofilm. Eight colony 
biofilms were analyzed per treatment group of each strain.

Young’s modulus (E) was used to quantify biofilm stiffness, calculated using the 
forced-displacement relationship equated below (64).

E = slope ∙ 1 − v2
2r

where the slope is from the force-displacement curve (N/m). This slope was measured 
from the region of the curve where displacement corresponded to 0%–40% through the 
biofilm (R2 > 0.9). r is the radius of the probe used (4 mM), and v is the constant defined as 
Poisson’s ratio of a biofilm (v = 0.5) (65).

Squeeze pull-off assay

This assay was performed using a 25 mM sand-blasted probe. First, the probe was 
lowered onto the biofilm at an approach rate of 1 μm/s until 0.5N was reached (squeeze). 
Then, the probe was raised off the biofilm at a rate of 1 μm/s until a height of 850 μm 
was reached (pull-off). The AUC of the pull-off force-displacement curve was determined 
in the TRIOS software. One AUC measurement was collected per biofilm. Eight colony 
biofilms were analyzed per treatment group of each strain.

Statistical analysis

Analysis was performed using GraphPad Prism software. Mean ± STDV represents data 
bars. Comparisons were made using two-tailed Student’s t-test or one-way ANOVA with 
P value < 0.05 of normal distribution. Simple linear regression and correlation analysis 
were used to obtain the line of fit and R2 value from the alginate-eDNA concentration 
comparison.
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