
Attentive Training: A New Training Framework for Speech 
Enhancement

Ashutosh Pandey [Student Member, IEEE],
Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 
43210 USA

DeLiang Wang [Fellow, IEEE]
Department of Computer Science and Engineering and the Center for Cognitive and Brain 
Sciences, The Ohio State University, Columbus, OH 43210 USA

Abstract

Dealing with speech interference in a speech enhancement system requires either speaker 

separation or target speaker extraction. Speaker separation has multiple output streams with 

arbitrary assignments while target speaker extraction requires additional cueing for speaker 

selection. Both of these are not suitable for a standalone speech enhancement system with one 

output stream. In this study, we propose a novel training framework, called Attentive Training, 

to extend speech enhancement to deal with speech interruptions. Attentive training is based on 

the observation that, in the real world, multiple talkers very unlikely start speaking at the same 

time, and therefore, a deep neural network can be trained to create a representation of the first 

speaker and utilize it to attend to or track that speaker in a multitalker noisy mixture. We present 

experimental results and comparisons to demonstrate the effectiveness of attentive training for 

speech enhancement.

Index Terms—

speech enhancement; speaker extraction; speaker separation; talker-independent; attentive training

I. Introduction

Speech signals in the real world are degraded by acoustic interferences, such as background 

noise, interfering talkers, and room reverberation. Acoustic interferences degrade the 

intelligibility and quality of speech for both human and machine listeners. For example, 

the performance of speech based applications, such as automatic speech recognition (ASR), 

hearing aids, and telecommunications, deteriorates when dealing with degraded speech. 

Speech enhancement aims at improving the intelligibility and quality of a degraded signal 

by removing acoustic interference from it. Monaural speech enhancement utilizes recordings 

from a single microphone to provide a versatile and cost efficient solution to the problem. 
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This study is focused on monaural speech enhancement that can deal with both speech and 

nonspeech interference.

Speech enhancement has been widely studied in the signal processing community for 

decades. Some of the traditional methods include spectral subtraction, Wiener filtering and 

statistical-model-based methods [1]. The rise of deep learning and its application to speech 

enhancement has led to dramatic advances over the last decade, and it is firmly established 

as the mainstream methodology today [2].

Popular approaches to speech enhancement utilize time-frequency representations, such as 

short-time Fourier transform (STFT), to represent input features and training targets, and 

aim at enhancing only the spectral magnitude [3], [4], [5], [6], [7], [8], [9], [10], [11]. A 

recent trend has been to jointly enhance the spectral magnitude and phase by using either 

complex spectrogram enhancement [12], [13], [14], [15], [16], [17], [18], [19], [20] or 

time-domain speech enhancement [21], [22], [23], [24], [25], [26], [27], [28], [29].

Speech enhancement is generally formulated as the problem of removing nonspeech 

interferences from a speech signal. However, in the real world, interfering signals can 

also be speech from interfering talkers. How to deal with interfering talkers in a speech 

enhancement system? Dealing with interfering talkers requires two steps: speaker selection 

and speaker extraction. Human listeners have the amazing ability of auditory perception 

attending to (hence extracting) a single speaker in a multitalker scenario. This ability is 

widely referred to as the cocktail party effect [30], and has inspired the perceptual theory 

of selective attention [31]. For humans, speaker selection is dependent on listener attention 

as well as intention. For machine separation so far, we either separate all speakers from 

a mixture or provide a cueing signal for speaker selection followed by speaker extraction. 

The former is called speaker separation and the latter is commonly known as target speaker 

extraction.

Speaker separation is the task of reconstructing all the speakers from a multitalker mixture. 

Early works on speaker separation were extended from speech enhancement and talker-

dependent, i.e., systems that extract speech signals from only a given speaker and cannot 

generalize to untrained speakers. When extending to talker-independent speaker separation, 

these models suffer from a well known permutation ambiguity problem, where a DNN 

is not able to consistently assign output streams to different speakers during training. 

Deep clustering [32] and permutation invariant training (PIT) [33] are two representative 

approaches to resolving the permutation ambiguity problem. Deep clustering and its variants 

[34] employ a DNN to map each T-F unit of the input mixture to an embedding space, where 

embeddings are trained to be closer for the units corresponding to a single speaker and far 

for different speakers. Finally, embedding vectors are clustered into groups corresponding to 

the different speakers in the mixture to obtain a T-F mask for each speaker. In contrast, PIT 

allows for end-to-end optimization to separate speech signals by dynamically assigning the 

best matching permutation of the ground-truth signals with the output signals. In particular, 

the simplicity of PIT has led to many subsequent models for speaker separation [35], [36], 

[37], [38], [39].
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Speaker separation can separate all underlying speakers but it assigns output streams 

arbitrarily, which is not suitable for speech enhancement systems that need to attend to 

one output stream. For example, if we design a system that always picks a fixed output 

stream, it will correspond to either silence or sporadic interruptions when the main speech 

stream goes to one of the other outputs.

Target speaker extraction is the task of extracting a single speaker from a multitalker 

mixture, where the target speaker is cued using additional information in the form of audio 

[40], [41], [42], [43], [44], [45] or image [46], [47], [48]. Recent studies have also explored 

other kinds of cues, such as spatial location [49], [50], speech activity [51], and onset 

[52]. Target speaker extraction is similar to auditory selective attention, but requires a priori 

cueing that may not be available in many applications of speech enhancement.

How to extend a speech enhancement system to deal with speech interruptions without 

requiring speaker cues? This requires designing an intrinsic speaker selection mechanism. 

Attention is a major part of perception, and this has inspired us to leverage auditory 

selective attention to address the problem. If a person is listening (attending) to a talker, 

he would typically continue listening to that talker irrespective of other speech interruptions, 

particularly when the interruptions are short. Based on this, we propose a new training 

framework, which we name attentive training, for speech enhancement. In real-world 

environments, it is very unlikely that multiple talkers start speaking at the same time; such 

a case would lead to their grouping into the same auditory stream on the basis of common 

onsets [53]. Therefore, we can assume that a given multitalker mixture has nonoverlapping 

speech intervals at the beginning. With attentive training, a model presented with a 

multitalker mixture will start attending to (extracting) nonoverlapping speech segments in 

the beginning and then continue attending to it while ignoring other speakers. In other 

words, attentive training treats the speech signals of the first speaker as target speech, and 

the utterances of other speakers plus environmental sounds as background interference.

The attentive training framework is consistent with the dominant feature integration theory 

of attention [54]. According to this perceptual account, attention serves to integrate 

perceptual features extracted in separate analyses into an object. The attended object forms 

the target (or foreground), and the remaining objects in a scene become the background. 

Furthermore learning and attending are integral parts of perception.

Note that attentive training uses the onset of the first speaker as a cue for intrinsic speaker 

selection. In the context of ASR, a similar idea of using speaker onsets as a cue has been 

proposed in serialized output training (SOT) [55]. The idea of SOT is to output speaker 

transcriptions from an ASR system in the order of speaker onsets in the input mixture. 

The proposed attentive training is fundamentally different from SOT as it is designed for a 

speech enhancement system that aims at extracting only the first speaker from a mixture.

We create a multitalker dataset in a controlled way, where the first speaker is set to start 

slightly ahead of the rest of the speakers. Next, we train a recently proposed time-domain 

attentive recurrent network (ARN) [29] with attentive training to estimate the first speaker 

from a multitalker mixture. We show that ARN is effective in extracting the first speaker 
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and generalizes well to different test conditions, such as an untrained number of speakers, 

mixtures with larger gaps between the consecutive segments of the target speaker, and 

smaller speaker overlaps. For instance, a model trained using mixtures with a maximum of 3 

speakers obtains strong results for mixtures with 5 speakers.

We compare attentive training with PIT for speaker separation. We find that attentive 

training obtains substantially better results than PIT when compared on the enhancement 

metric of the first speaker. We also investigate a decoupled approach to attentive training in 

which the nonoverlapping speech of the first speaker in the beginning of a mixture is used to 

create a speaker representation to be used as a cue for target speaker extraction. We observe 

that end-to-end attentive training obtains better results than decoupled attentive training. We 

also train a target speaker extraction model using independent enrollment utterances. We 

find that target speaker extraction with independent enrollment utterances performs slightly 

better than attentive training. When contrasting target speaker extraction and decoupled 

attentive training, we conclude that target speaker extraction is slightly better than attentive 

training only because of additional information in the form of clean enrollment utterances.

We also examine an attentive training model trained with onset differences of more than 1 

second between the first and the second speaker, and show that it generalizes well to an 

onset difference of 0.5 seconds. Also, we train speaker verification systems on top of the 

hidden layers in ARN to demonstrate that a few of them encode speaker information, which 

verifies that ARN learns speaker representations implicitly for selection and extraction.

Along the way we introduce a novel data generation technique for mixing an arbitrary 

number of speakers in a controlled way. Given a set of speakers, their corresponding 

utterances, and a set of noises, our technique can mix any number of speakers with specified 

overlaps and speaker orders. Also, mixtures are generated dynamically during training which 

provides an additional advantage of data augmentation [39]. Our data generation technique 

should be a useful tool for speaker separation and diarization research, as it can utilize 

speakers from any corpora and generate mixtures in a flexible way. We provide our data 

generation script online.

This study focuses on extracting the first speaker from a mixture to illustrate the 

effectiveness of attentive training. A straightforward and useful extension of attentive 

training would be to develop a speech enhancement system that aims at removing interfering 

speech only from the interval of speaker overlaps. The preserved speaker should be the 

one that enters into the overlapping interval from the past. It will reduce to a speech 

enhancement system handling nonoverlapping speech signals from multiple speakers in the 

output stream. Designing such a system will require a careful consideration into fixing 

hyperparameters, such as gaps between consecutive segments of different speakers, to output 

a perceptually meaningful signal.

We believe that the simple and effective mechanism of attentive training has the potential to 

be applicable to a variety of selection, tracking, and related tasks, such as multitalker speaker 

separation and speaker diarization. For speaker separation and diarization, a straightforward 
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extension would be to use an iterative strategy where the first speaker is extracted first, then 

second, and so on, as in [56].

A preliminary study on attentive training has been published in [57] where a smaller ARN 

is trained on a smaller dataset and compared only with speaker separation using PIT. 

The remainder of the paper is organized as follows. A definition and different methods 

of attentive training are discussed in Section II. Section III describes the data generation 

algorithm. Section IV] details employed DNN models. Experimental settings are given in 

Section V and results and comparisons are presented in Section VI. Concluding remarks are 

given in Section VII.

II. Speaker Tracking and Attentive Training

A multitalker mixture y with N samples is modeled as

y =
i = 1

C
si + n (1)

where y, si ∈ ℝN × 1, C is the total number of speakers, si is the itℎ speaker, and n is 

the background noise. Let oi denote the time sample when itℎ speaker starts speaking. We 

assume that speaker indices i = 1,2, …, C are sorted in the increasing order of onset times. In 

other words, i < j implies oi < oj. The goal of attentive training is to separate the first speaker 

s1 from y.

We can extract the first speaker from a mixture using the following methods.

A. Speaker Separation

A speaker separation system has no selection mechanism and reconstructs all the speakers in 

a mixture. Speaker separation can be utilized to extract the first speaker by first separating 

all the speakers and then selecting the first speaker using speech onset. Speaker separation is 

illustrated in Fig. 1a, and modeled as

ŝ1, ⋯, ŝC = fSS y (2)

where fSS represents a DNN for speaker separation. The speaker separation model is trained 

using an utterance-level PIT loss defined as

ℒ =
i = 1

C
D sϕ* i , ŝi (3)

where D a, b  is a distance measure between signals a and b and ϕ* is a permutation of 

target signals with the minimum cost, i.e.,

ϕ* = argmin
P i = 1

C
D sϕ* i , ŝi (4)
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where P represents the set of all possible permutations. We use an utterance-level negative 

signal-to-noise ratio (SNR) as the distance measure, defined as

D s, ŝ = − 10 ⋅ log10
∥ s ∥2

∥ s − ŝ ∥2 (5)

B. Target Speaker Extraction

Target speaker extraction extracts a single speaker from a mixture with the help of an 

additional cue for target selection. The speaker selection mechanism is not intrinsic to model 

training. We assume that we are given additional information in the form of an enrollment 

utterance e1 corresponding to the first speaker. Target speaker extraction is illustrated in Fig. 

1b. First, a speaker embedding is computed from e1 as

v1 = ℎ e1 (6)

where v1 ∈ ℝB × 1, B is the size of the embedding vector, and ℎ is a DNN-based speaker 

embedding model. Next, v1 and y are used together to estimate s1 as

ŝ1 = fTSE y, v1 (7)

where fTSE represents a DNN for target speaker extraction. It is trained using a distance 

between the estimated and the ground-truth signal of the first speaker as defined below.

ℒ = D s1, ŝ1 (8)

C. Attentive Training

Attentive training aims at estimating s1 directly from y as shown in Fig. 1c. It is defined as

ŝ1 = fAT y (9)

where fAT represents a DNN for attentive training. It is trained using the loss in Eq. 8.

C. Decoupled Attentive Training

Decoupled attentive training decouples end-to-end attentive training in two parts. First, it 

assumes that we are provided with the nonoverlapping speech segment s1
no in the beginning 

of y, defined as

s1
no = y 0:M − 1 = s1 0:M − 1 + n 0:M − 1 (10)

where M is the length of s1
no. Next, s1

no is used to generate a speaker embedding of the first 

speaker

v1
no = ℎ s1

no
(11)

Finally, v1
no and y are used together to estimate s1 as
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ŝ1 = fDe − AT y, v1
no

(12)

where fDe − AT represents a DNN for decoupled attentive training. Fig. 1d depicts decoupled 

attentive training. The loss in Eq. 8 is used to train a decoupled attentive training model.

III. Data Generation

This section describes our technique for generating multitalker mixtures. Given a set 

S = S1, …, SJ  of speakers, their corresponding utterances USj = s1
j, …, sQj

j , and a set of 

noise segments N = n1, …, nR , where Qj denotes the number of utterances of speaker Sj

and R is the number of noise segments, we create a multitaker noisy mixture by adding 

together speech segments of multiple speakers and a noise segment. First, we sort a given 

set of speech segments in an increasing order of their onset times. Based on this, we 

define a concept called interaction pattern representing the order of speaker segments in a 

mixture. For example, an interaction pattern of 1212 represents a mixture created by adding 

4 segments sorted in the increasing order of their onset times, where the first and the third 

segments are from the first speaker and the second and the fourth segments are from the 

second speaker. We also define two parameters A and B, where A is the minimum initial gap 

between the onset of the first and the second speaker, and B is the gap between two adjacent 

nonoverlapping segments (regardless of speakers). We illustrate two interaction patterns in 

Fig. 2. For data generation, we use interaction patterns from a predefined set P = p1, …, pP .

Similar to the LibriCSS dataset [58], we generate mixtures in a way that a given mixture can 

have an arbitrary number of speakers, but at a given time instant, only a maximum of two 

speakers can overlap. Algorithm (Algo.) 1 describes the steps used in generating a sample 

mixture from S, U, N, and P . In the algorithm, Len x  represents the length of x, and Unique 

p  denotes the set of unique elements in p.

In Algo. 1, the list E is used to keep track of allowed overlap intervals and E − k  denotes 

the ktℎ element in E from the end. The allowed interval spans from E − 2  to E − 1 , which 

indicate the ending time samples of the last two segments. The set E1 is used to make 

sure that two different segments from the same speaker do not overlap (line 27 in Algo. 

1). We remove silences from all utterances and then pad zeroes in the beginning to shift a 

given segment. We use no padding for the first speaker, the second speaker has a minimum 

padding of A, and the remaining speakers use zero padding in a way that a maximum of two 

speakers overlaps at a time.

IV. DNN Models

We employ a recently proposed ARN model for time-domain speech enhancement [29]. 

The model architecture is shown in Fig. 3. It comprises an input linear layer followed by 

four ARN layers and an output linear layer. An input mixture y is first converted to frames 

Y ∈ ℝT × L, where T  is the number of frames and L is the frame size. Next, frames in Y  are 

projected to size D, processed by a stack of four ARN layers, and projected back to size L
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using the output linear layer. Finally, an overlap-and-add (OLA) is used to get the enhanced 

waveform. An ARN layer comprises an RNN block, a feedforward block, and an attention 

block. A more detailed description of these blocks can be found in [29]. For speaker 

separation, we use C linear layers at the output. For decoupled attentive training and target 

speaker extraction, we utilize a strong speaker embedding model called ECAPA-TDNN 

[59], which is shown in Fig. 4. The output from ECAPA-TDNN is projected to size D using 

a linear layer and then multiplied elementwise to the output of the second ARN. We also 

investigated multiplying to the output of other or all ARNs but observed worse results. We 

utilize a pretrained ECAPA-TDNN model provided in the SpeechBrain toolkit [60] as it 

exhibits strong speaker verification performance.
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V. Experimental Settings

A. Datasets

We generate training and evaluation data from the LibriSpeech corpus [61]. We use all 

the speakers from train-clean-100, train-clean-360, and train-other-500 for training. All the 

speakers from test-clean and dev-clean are used respectively for testing and validation. The 

training set consists of 960 hours of speech data, which is much larger than the set of 100 

hours used in the preliminary study [57].

Noises used are from the WHAM! corpus [62]. First, we split training noises into 10-s 

chunks, and validation and test noises into 15-s chunks. All chunks shorter than 3 seconds 

are omitted. We use LKFS based loudness [63] for controlling the SNR. We sample 

sound levels from − 25, − 30 dB for speaker segments and from − 35, − 40 dB for noise 

segments. We provide our dataset generation script along with the test and validation 

metadata files at https://github.com/ashutosh620/AttentiveTraining

For target speaker extraction, each multitalker mixture is paired with a randomly sampled 

enrollment utterance of the first speaker in the mixture. We trim silences from the beginning 

and the end of an enrollment utterance and truncate longer utterances to a length of 4 

seconds.

We also train and evaluate speaker verification systems to examine the speaker information 

encoded in the hidden layers of the ARN model trained with attentive training. For this, 

we create a speaker verification dataset using speech from LibriSpeech and noises from 

WHAM! as in other experiments. We generate training data dynamically by randomly 

sampling a speech utterance and mixing it with a randomly sampled noise segment. For test 

and validation, we randomly sample a list of 10000 pairs of noisy speech utterances from 

different speakers. We sample positive and negative speaker pairs with equal probability.

B. Training Methodology

All the utterances are resampled to 16 kHz. A frame size of 16 ms, frame shift of 4 ms, and 

D = 1024 is used for ARN. A smaller ARN model with D = 512 was used in the preliminary 

study [57]. ARN uses BLSTMs with 512 hidden units in both directions. All the models 

are trained [60] as it exhibits strong speaker verification performance. on interaction patterns 

with 4 segments with a maximum of 3 speakers. In other words, a randomly generated 

multitalker mixture contains either 1, 2, or 3 speakers. For the PIT model, we use 3 linear 

layers at the output, and for an input with K K < = 3  speakers, we select the minimum loss 

assignment from all possible CK
3  assignments.

All the training samples are randomly and dynamically generated during training, and an 

episode of 281k samples (total number of speech utterances) is considered as one epoch. We 

use poverlap = 0.75 and A = 1 second. B is sampled from [0.25, 0.50] seconds. Segment length, 

T , is sampled from [2, 3] seconds for training and from [2, 4] seconds for validation and test. 

The input and the output are scaled by 25.
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All the training utterances longer than 10 seconds are trimmed to 10 seconds. All the models 

are trained for 100 epochs with a batch size of 32 utterances using the Adam optimizer [64]. 

The learning rate is initialized with 0.0004 and scaled by 0.98 every two epochs.

Models are evaluated on interaction patterns from {1111, 1212, 1221, 122221, 1231, 

123231, 12341, 123451} and three overlap types: {Max, Half, None}. Following Algo. 1, 

Max uses the maximum allowed overlap, Half uses half of the allowed regions for overlap, 

and None uses no overlap. We generate 3000 evaluation utterances for each combination 

of the interaction pattern and overlap type. The pattern 1212 is used to assess performance 

for an alternating pattern of the target and interfering speaker, 1221 is used to assess 

performance with a larger gap between two consecutive segments of the target speaker. 

The pattern 122221 is used to assess performance with an even larger gap not used during 

training. Similarly, patterns 1231 and 123231 are used to assess performance for 3 speakers 

with different gaps, where 123231 is not used during training. Patterns 12341 and 123451 

are used to assess performance for untrained numbers of 4 and 5 speakers. We use the 

interaction pattern 1231 with Max overlap for validation.

The ECAPA-TDNN model is trained using a set of 7.2k speakers from the VoxCeleb1 

[65] and VoxCeleb2 [66] corpora. Data augmentation techniques, such as additive noise, 

room reverberation, speed perturbation, and SpecAugment [67] are also utilized. An additive 

angular margin loss with a margin of 0.2 and scale of 30 is used [68], [69]. A more detailed 

description can be found in the SpeechBrain toolkit [60].

We also evaluate attentive training for sporadic speech interruptions, which occur often in 

daily environments. For this, we generate a test dataset with longer interaction patterns from 

{1211111, 1112111, 1111121}. Each of these patterns comprises 7 segments, 6 of which 

correspond to the target speaker and 1 corresponds to the interfering speaker.

For training speaker verification systems on top of the hidden layers of the pretrained ARN 

model, we use a 1-layered ARN model with D = 256 followed by a statistical pooling 

borrowed from ECAPA-TDNN. The pooling layer uses 128 channels for attention [59], [60]. 

The embedding size is set to 32. A batch of training data comprises 32 pairs of 3 seconds 

long utterances, where a pair consists of one noisy and one clean utterance from the same 

speaker. We trim silences from the beginning and the end. All models are trained with a 

cyclical learning rate varying between 0.00004 and 0.0004 using the triangular policy as 

described in [70] in conjunction with the Adam optimizer [64].

We develop all the models in PyTorch [71] and exploit automatic mixed precision training 

to expedite training [72]. Two NVIDIA Volta V100 32GB GPUs are utilized to train all 

attentive training models.

We use scale-invariant SNR (SI-SNR), extended short-time objective intelligibility (eSTOI) 

[73], and perceptual evaluation of speech quality (PESQ) [74] as evaluation metrics. 

Objective scores are computed for the first speaker and eSTOI is reported in percentage.
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C. Baseline Models

We also evaluate the effectiveness of attentive training for two widely used models for 

speaker separation: convolutional time-domain audio separation network (Conv-TasNet) [36] 

and dual-path recurrent neural network (DPRNN) [37]. We train these models using the 

four methods shown in Fig. 1. We modify these models to use one output stream for 

AT, De-AT and TSE, and 3 output streams for speaker separation. For Conv-TasNet, we 

utilize the best performing model in [36] which uses R = 3 repeats of X = 8 convolutional 

blocks. For De-AT and TSE, speaker embeddings are fused after the first repeat using 

elementwise multiplication. Similarly, we utilize the best performing DPRNN architecture in 

[37], which uses a stack of 6 dual-path blocks including intra-chunk and intra-chunk RNN. 

To train DPRNN for De-AT and TSE, we fuse speaker embeddings after the third dual-path 

block using elementwise multiplication. We also train a time-domain model called SpEx+ 

proposed specifically for TSE [75].

VI. Results and Comparisons

We denote speech enhancement as SE, attentive training as AT, speaker separation as PIT, 

decoupled attentive training as De-AT, and target speaker extraction as TSE in the results. A 

speech enhancement model is trained only on the interaction pattern 1111, i.e., single-talker 

utterances with background noise. Background noise is present in all of the following 

evaluations.

A. Comparing Different Methods

We start by comparing different methods for the interaction pattern 1111. Results are given 

in Table I We observe that SE is the best, PIT is the worst, and AT, De-AT, and TSE obtain 

similar results. We expect SE to obtain best results for this case as it is trained specifically 

for the matched interaction pattern of 1111. This result suggests that a model capable of 

dealing with interfering speech performs worse at removing noise than a model trained 

specifically for removing noise. In other words, the capability of handling interfering speech 

comes at the expense of noise removal.

Next, we compare different methods for the multitalker case with 2 and 3 speakers and the 

trained number of speakers. Results are given in Table II. We can observe that a general 

order of performance among different methods is PIT < De-AT < AT < TSE. In particular, 

the performance of PIT is far worse than the other methods for all the cases. This highlights 

a major issue with PIT when dealing with a varying number of speakers and varying degrees 

of overlaps [58], [39]. We also observe that AT is similar or better than De-AT. This is 

encouraging because it implies that end-to-end training can better learn the joint task of 

speaker selection and tracking than a decoupled approach. As expected, TSE obtains the best 

results since it is provided with additional cueing in the form of an enrollment utterance. It 

is worth mentioning that De-AT also uses cueing, but the cueing signal comes from the input 

mixture itself, and hence, it does not provide additional information on top of the input. 

Also, TSE uses a clean cueing signal in contrast to a noisy one in De-AT.
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Finally, we present evaluation result for the untrained numbers of 4 and 5 speakers in Table 

III We observe similar performance trends to 2 and 3 speakers except for PIT which is 

much worse because it is not designed to separate the number of speakers not used during 

training. It is worth noting that AT obtains an SNR improvement of around 15 dB on higher 

numbers of untrained speakers. This implies that AT does not require training with more 

than 3 speakers to obtain good generalization.

We plot spectrograms of a sample multitalker mixture enhanced using different methods in 

Fig. 5. Notice that not only PIT introduces leakage from interfering talkers in the silence 

intervals but also removes high-frequency speech components. Plots of AT and TSE look 

very similar with much reduced leakage and well-retained high-frequency components.

B. Comparison with Baselines

Fig. 6 plots the performance of Conv-TasNet, DPRNN, ARN and SpEx+ on interaction 

pattern 123231. First, we observe a general trend that TSE is the best and AT is better 

than PIT and De-AT, except for Conv-TasNet with overlap type None where AT is worse 

than PIT and De-AT. This may be due to the fact that Conv-TasNet is a fully convolutional 

model and it does not have a mechanism to store and propagate speaker identity over time. 

Additionally, ARN is the best performing model for AT, De-AT and TSE. It is encouraging 

to observe that ARN outperforms SpEx+, the baseline model proposed specifically for TSE. 

It is interesting to note that the performance differences between Conv-TasNet and DPRNN 

are not as significant as observed on WSJ0-2mix and WSJ0-3 mix datasets with full overlap. 

Finally, we notice that even though ARN has the best performance for the cases with a single 

output stream, it has worst performance for PIT, which uses 3 output streams.

C. Importance of Attentive Training for Speech Enhancement

We have reported in Table I that SE obtains better results than AT when dealing with 

single-talker input. What happens when a SE model is presented with an input mixture with 

sporadic speech interruptions? Now, we present results to assess this aspect. We compare 

AT and SE in Table IV on interaction patterns 1211111, 1112111, and 1111121, which are 

designed to simulate sporadic interruption scenarios.

We observe that AT obtains much better scores in most of the cases, which suggests 

that speech enhancement fails when presented with speech interruptions. Attentive training 

enables speech enhancement to deal with speech interruptions, and this is an important 

advantage of AT. We notice that AT is better for eSTOI for overlap type Max and Half 
but worse for None. We believe this is because the computation of eSTOI ignores silence 

intervals in the target signal, hence favoring SE in nonoverlapping intervals.

Next, we analyze behaviors of AT and SE in different segments of interaction patterns with 

sporadic interruptions. An interaction pattern of 12111111 contains 7 segments including 6 

segments from the target and 1 from an interfering speaker. In Fig 7, we plot objective scores 

of AT and SE in 6 segments of the target speaker from the beginning to the end. We notice 

that SE obtains better results than AT in all the segments except for the one before and the 

one after the interfering talker. Particularly, the performance of SE for the segment before 

the interfering talker is much worse, implying that it fails in those segments. This establishes 
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that AT is a more robust method than SE and does not fail when presented with speech 

interruptions.

D. Effects of Speech Onset Differences

The results discussed so far are on test sets in which the onset difference between the first 

and the second speaker is no smaller than A = 1 second. Now, we analyze the behavior 

of different methods when onset difference is gradually decreased. We plot results for 

interaction patterns 1221 and 123231 with overlap type Max in Fig. 8 The onset difference is 

gradually decreased from 1 second to 0.25 seconds with a step of 0.25 seconds. We consider 

two cases of TSE. TSE-1 uses enrollment utterances as specified in the original test set. 

TSE-2 sets the length of enrollment utterances to the length of onset difference.

We notice that there is a gradual decrease in the performance of all the models as the onset 

difference is decreased. TSE-2 and De-AT are the most unstable as the performance drops 

drastically below 0.75 seconds. AT outperforms PIT up to an onset difference of 0.5. The 

performance of AT drops drastically only for the case of small onset difference of 0.25 s. 

TSE-1 is the most stable for all the cases. These comparisons indicate that even though AT 

is sensitive to the onset difference, it generalizes well to smaller onset differences not used 

during training.

Next, in an attempt to improve the robustness of AT to smaller onset differences, we train 

ARN with AT using gradually decreasing values of A from {1, 0.75, 0.5, 0.25, 0.0} seconds. 

Note that A = 0 does not imply an onset difference of 0, but the minimum allowed onset 

difference of 0. We plot the performance of these ARN models in Fig. 9 for interaction 

pattern 123231 and compare it with PIT and TSE (the better-performing TSE-1) plotted 

in Fig. 8. We see a gradual improvement in the performance with decreasing value of A. 

Notable, the performance with A = 0 matches that of TSE and considerably outperforms PIT. 

This implies that the robustness of AT to smaller onset differences is easily improved by 

setting A = 0.

E. Speaker Encoding in ARN

The key idea of attentive training is to generate a speaker representation of the first speaker 

and use it to track this target speaker over the whole mixture. This implies that the hidden 

layers of the ARN model should have speaker information encoded in them. To investigate 

this, we present results on training speaker verification models on top of the hidden layers 

in the pretrained ARN model with frozen parameters. Speaker verification performance in 

terms of Equal Error Rate (EER) is given in Table V. We observe that training a speaker 

verification model from raw waveform obtains an EER of 4.5%. The output from the linear 

layer at the input improves the performance to 4.2%. Layers 2 and 4 do not provide any 

improvement. However, layers 1 and 3 respectively improve EER to 3.8% and 3.4%, which 

represents substantial relative EER improvements of 15.6% and 24.4% respectively. This 

demonstrates that the ARN model is implicitly creating a speaker representation to track the 

target speaker. We believe that the speaker recognition performance would be even better if 

we utilized an ARN trained with A = 0 instead of A = 1.
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VII. Concluding Remarks

We have proposed a novel attentive training framework for speech enhancement. The key 

idea of attentive training is to attend to a single talker in a given multitalker mixture. 

Based on the principles of auditory selective attention, attentive training starts attending to 

(extracting) a speaker based on speech onset and continues attending to it irrespective of 

other interfering talkers. Attentive training is the first study, to our knowledge, to propose 

an intrinsic selection mechanism for speaker extraction. We have demonstrated that attentive 

training has the capability to extend a speech enhancement system to deal with speech 

interruptions as well as background noises.

We have compared attentive training with different methods of speaker extraction including 

speaker separation and target speaker extraction. Attentive training is found to be far better 

than PIT-based speaker separation, which does not have a speaker selection mechanism. 

Attentive training is competitive with target speaker extraction, which exploits cueing in 

the form of an enrollment utterance. We have also shown that an approach of decoupling 

attentive training into speaker selection and tracking obtains similar or worse results than 

end-to-end training.

Additionally, we have established the importance of attentive training for speech 

enhancement. We have shown that, when presented with speech interruptions, a speech 

enhancement system fails during these interruptions. An attentively trained model is found 

to be far more stable and performs enhancement well during interruptions.

Further, attentive training generalizes to untrained shorter onset differences. For example, 

a model trained with onset differences of more than 1 second generalizes well to an onset 

difference of 0.5 seconds. We have also verified that some of the hidden layers of the 

employed ARN model encode speaker information used for speaker tracking.

We plan to utilize attentive training to train a speech enhancement model to remove 

interfering speech only from the overlapping intervals instead of tracking the first speaker. 

Future research also includes investigating attentive training for speaker diarization and 

separation.
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Fig. 1: 
Different methods for extracting the first speaker from a multitalker mixture.
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Fig. 2: 
Examples of interaction patterns with 2 and 3 speakers, and an initial minimum onset gap of 

A between the first and the second speaker. In pair a, b  inside a box, a and b respectively 

index the speaker order and the segment order.
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Fig. 3: 
The model architecture used for attentive training.
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Fig. 4: 
The model architecture used for target speaker extraction and decoupled attentive training.
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Fig. 5: 
Spectrograms of a sample multitalker mixture enhanced using different methods.
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Fig. 6: 
Comparison of Conv-TasNet, DPRNN, ARN and SpEx+ on interaction pattern 123231 for 

three types of overlap.
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Fig. 7: 
Comparing AT and SE on 6 segments of the target speaker. Results are plotted for 

interaction patterns 1211111, 1112111, and 1111121 with overlap type Max.
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Fig. 8: 
Performance comparisons with gradually decreasing onset difference.
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Fig. 9: 
Comparing ARN trained with AT using a gradually decreasing value of A. AT, a denotes an 

ARN trained with AT using A = a.
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TABLE I:

Comparing different methods on the interaction pattern 1111.

Metric Mix. PIT AT De-AT TSE SE

SI-SNR 9.5 15.2 17.5 17.4 17.3 19.1

PESQ 2.33 3.24 3.40 3.38 3.38 3.61

ESTOI 72.2 87.6 89.8 89.2 89.3 92.6
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TABLE II:

Comparing different methods for trained numbers of speakers. (a) number of speakers, (b) interaction pattern, 

(c) whether trained on interaction pattern.

Type Max Half None

(a) (b) (c) Metric SI-SNR PESQ ESTOI SI-SNR PESQ ESTOI SI-SNR PESQ ESTOI

2

1212 ✓

Mix. −0.6 1.67 51.4 −0.7 1.86 59.5 −1.0 2.28 71.9

PIT 11.4 2.64 76.4 12.4 2.79 80.3 14.2 3.04 86.4

AT 13.4 2.90 81.7 14.8 3.09 85.0 16.4 3.38 89.6

De-AT 12.6 2.86 80.3 14.5 3.06 84.3 16.4 3.39 89.1

TSE 13.8 2.97 82.7 15.0 3.12 85.4 16.9 3.43 89.3

1221 ✓

Mix. −0.6 1.77 51.2 −0.8 2.06 60.1 −1.0 2.31 71.6

PIT 11.3 2.71 76.0 12.5 2.92 80.5 14.3 3.06 86.0

AT 13.2 2.97 81.2 14.7 3.28 85.0 16.5 3.47 89.3

De-AT 12.5 2.95 80.0 14.5 3.25 84.4 16.7 3.49 88.9

TSE 13.9 3.07 82.8 15.1 3.32 85.6 17.1 3.55 89.1

122221 ✕

Mix. −3.7 2.00 51.1 −3.8 2.16 60.2 −3.9 2.32 71.6

PIT 11.2 2.83 76.1 12.5 2.94 80.5 14.1 3.03 85.7

AT 12.9 3.23 80.9 14.6 3.44 84.9 16.2 3.52 89.2

De-AT 12.4 3.22 80.0 14.5 3.40 84.5 16.6 3.53 89.0

TSE 13.8 3.33 82.7 15.2 3.49 85.9 17.1 3.62 89.5

3

1231 ✓

Mix. −0.6 1.86 55.3 −0.8 2.08 62.7 −1.0 2.32 71.7

PIT 10.3 2.66 76.0 12.5 2.90 81.5 13.3 3.04 86.4

AT 13.2 2.97 82.4 15.2 3.26 86.0 16.3 3.46 89.3

De-AT 12.2 2.93 80.8 14.7 3.23 85.1 16.2 3.48 88.9

TSE 14.0 3.08 83.8 15.4 3.31 86.4 16.8 3.54 89.3

123231 ✕

Mix. −3.6 1.98 55.6 −3.7 2.14 62.6 −3.9 2.32 71.6

PIT 9.5 2.68 75.8 11.6 2.87 81.0 12.2 2.97 85.7

AT 12.7 3.07 82.5 14.6 3.30 85.8 15.9 3.50 89.3

De-AT 11.3 3.03 80.5 14.2 3.31 84.9 15.8 3.50 89.1

TSE 13.6 3.18 83.8 15.3 3.40 86.5 16.6 3.60 89.5
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TABLE III:

Comparing different methods for the case of untrained number of speakers. (a) number of speakers, (b) 

interaction pattern.

Type Max Half None

(a) (b) Metric SI-SNR PESQ ESTOI SI-SNR PESQ ESTOI SI-SNR PESQ ESTOI

4 12341

Mix. −2.4 1.98 57.5 −2.5 2.12 62.6 −2.8 2.31 71.8

PIT 7.6 2.65 76.1 7.6 2.77 79.5 9.1 2.92 85.4

AT 13.0 3.07 83.3 14.7 3.28 85.9 16.0 3.49 89.3

De-AT 12.0 3.02 81.7 14.2 3.28 85.0 15.7 3.50 89.0

TSE 13.9 3.17 84.4 15.2 3.36 86.3 16.5 3.57 89.3

5 123451

Mix. −3.6 1.98 55.7 −3.7 2.14 62.8 −4.0 2.32 71.8

PIT 4.9 2.55 73.5 4.3 2.67 77.4 6.0 2.85 85.0

AT 12.2 3.04 82.4 14.4 3.31 86.1 15.8 3.51 89.6

De-AT 11.4 3.02 81.0 14.0 3.30 85.2 15.5 3.51 89.3

TSE 13.4 3.17 83.7 15.1 3.40 86.4 16.3 3.59 89.3
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TABLE IV:

Comparing SE and AT for sporadic speech interruptions. (a) interaction pattern.

Type Max Half None

(a) Metric SI-SNR PESQ eSTOI SI-SNR PESQ eSTOI SI-SNR PESQ eSTOI

1211111

Mix. 5.6 2.19 68.5 5.5 2.23 69.8 5.2 2.33 72.4

SE 8.7 3.07 85.8 8.2 3.12 87.9 7.7 3.29 92.5

AT 15.9 3.26 88.0 16.2 3.31 88.6 16.2 3.37 89.4

1112111

Mix. 5.5 2.18 68.5 5.5 2.21 69.4 5.2 2.33 72.5

SE 8.5 3.05 86.0 8.3 3.09 87.3 7.7 3.28 92.5

AT 16.0 3.29 88.4 16.5 3.33 88.9 16.9 3.42 90.0

1111121

Mix. 5.5 2.18 68.4 5.5 2.21 69.3 5.2 2.33 72.4

SE 8.5 3.05 86.1 8.3 3.09 87.3 7.7 3.27 92.6

AT 16.0 3.28 88.4 16.4 3.31 88.8 17.1 3.42 90.0
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TABLE V:

Performance of speaker verification systems trained on top of the hidden layers in the ARN model.

Layer Raw Lin-inp ARN-1 ARN-2 ARN-3 ARN-4

EER (%) 4.5 4.2 3.8 4.7 3.4 4.5
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