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Abstract

The study of non-natural biocatalytic transformations relies heavily on empirical methods, such 

as directed evolution, for identifying improved variants. Although exceptionally effective, this 

approach provides limited insight into the molecular mechanisms behind the transformations and 

necessitates multiple protein engineering campaigns for new reactants. To address this limitation, 

we disclose a strategy to explore the biocatalytic reaction space and garner insight into the 

molecular mechanisms driving enzymatic transformations. Specifically, we explored the selectivity 

of an “ene”-reductase, GluER-T36A, to create a data-driven toolset that explores reaction space 

and rationalizes the observed and predicted selectivities of substrate/mutant combinations. The 
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resultant statistical models related structural features of the enzyme and substrate to selectivity and 

were used to effectively predict selectivity in reactions with out-of-sample substrates and mutants. 

Our approach provided a deeper understanding of enantioinduction by GluER-T36A and holds the 

potential to enhance the virtual screening of enzyme mutants.

Graphical Abstract

INTRODUCTION

Enzymes play an expanding role as selective, efficient catalysts for biotechnology, 

biomedicine, biofuels, and industrial pharmacology.1-4 The extension of enzymatic catalysis 

to non-native transformations generally relies on extensive screens of sequence space 

through protein engineering [e.g., directed evolution (DE)].5,6 Advances in sequencing 

technologies and machine learning have enabled predictive modeling of biocatalyst 

reactivity. However, the widespread use of these methods is somewhat hindered due to 

the requirement for tremendous quantities of experimental data and the “black-box” nature 

of the algorithms used to guide optimization. Like DE, existing platforms for predictive 

biocatalysis do not necessarily capture or reveal the important mechanistic features of a 

given reaction and may not translate well to modified reactions (such as a similar reaction 

with a different substrate).

We were motivated to develop a strategy to simultaneously explore biocatalytic reaction 

space and gain insight into the molecular mechanisms behind non-native transformations. 

Specifically, we wanted to describe sequence space (enzyme mutants) and chemical space 

(substrate variants) in a quantitative manner using molecular descriptors and relate these 

descriptors to reaction outcomes, like enantioselectivity.7 Unlike black-box methods for 

predictive biocatalysis, we postulated that simple statistical models constructed from smaller 

datasets could deliver not only predictive power but also valuable molecular-level insights 

into the origins of selective biocatalysis. We anticipated that attention to conformational 

dynamics and the use of information-rich molecular descriptors (of both enzyme and 

substrate) would result in models with greater interpretability and generalizability compared 

to existing methods.8-12

In this study, we demonstrate this approach in the context of non-native enantioselective 

photoenzymatic radical cyclization reactions catalyzed by “ene”-reductase (ERED) variants 

from Gluconobacter oxydans (GluER-T36A, Scheme 1).13 We created a statistical toolset 
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that explored GluER-T36A reaction space and rationalized the observed and predicted 

selectivities of previously untested substrate/mutant combinations. The emphasis on both 

substrate and enzyme diversity in model training allowed us to predict the selectivity of 

out-of-sample substrates in combination with new GluER-T36A variants. We demonstrated 

the adaptability of statistical models through the incorporation of additional experimental 

data and hypothesis-driven parameter advancement. The inclusion of multiple substrates 

in model training and development complemented existing in silico protein engineering 

methods (which often require separate datasets/analyses for each substrate).14-16 Our results 

showcase the advantages of these tools in predicting and rationalizing the molecular 

interactions that drive enantioselective biocatalysis.

WORKFLOW DESIGN

A major challenge associated with building statistical models of biocatalyst selectivity 

was the availability of balanced training data. We, therefore, sought a system with 

which we could construct a training set containing a range of reaction outcomes to 

develop the statistical modeling workflow. EREDs were selected as a model biocatalytic 

framework as they have been reliably utilized in a range of non-native enantioselective 

reactions.17-21 GluER-T36A is a selective catalyst for the photoenzymatic cyclization 

of many α-chloroamides (Scheme 1); however, a number of substrates had to be 

paired with homologous EREDs to achieve high enantioselectivity in the initial report.13 

Although effective in this instance, the general practice of shifting enzyme frameworks 

can lead to unexpected results (i.e., enantiodivergent transformations or byproducts) and 

introduce challenges including reoptimization of expression and reaction conditions.20,21 To 

circumvent these challenges, we sought to develop explanatory statistical models. These 

models would relate structural features of a small but diverse sample of GluER-T36A 

variants and α-chloroamide substrates to selectivity and draw from all training data, 

including poorly performing substrate/mutant combinations. Notably, this strategy avoids 

the requirement for screening thousands of mutants and cyclic evaluation of mutant libraries 

to expand the reaction scope.

In this context, we designed a focused training set with diversity in both substrate 

characteristics and enzyme mutations. The transformation of substrates 1a–4a (Scheme 

1) encompass three different cyclization modes (1a: 5-endo-trig, 2a, 3a: 5-exo-trig, and 

4a: 6-exo-trig), varying electronic properties (as in 2a and 3a), and alkene substitution 

patterns (1a vs 2a–4a). Informed by previous studies on GluER-T36A, we identified five 

residues within the GluER-T36A active site for mutation: W66, Y177, Q232, F269, and 

Y343. Mutations at these sites were shown to retain activity while affecting selectivity in the 

cyclization, although the mechanism of selectivity modulation was not well-understood. We 

preformed site-directed mutagenesis to introduce residues W, F, D, L, or A at each of the 

five sites as these mutations would sample a range of residue properties. Substrates 1a–4a 
were subjected to reactions with each expressible mutant, resulting in a total of 50 datapoints 

to use in model training and selection. A full table of substrate/enzyme combinations and the 

resultant ee’s is included in Table S1.

Clements et al. Page 3

J Am Chem Soc. Author manuscript; available in PMC 2023 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We next considered strategies to computationally characterize both enzyme and ligand 

(substrate and product) structures for descriptor extraction. We have previously described 

methods to characterize small-molecule catalysts and compute chemical descriptors by 

pairing molecular mechanics (MM)-based structural analysis with density functional theory 

(DFT) calculations.22,23 However, the shift to biocatalytic platforms presents several 

unique challenges. The size and elaborate dynamics of enzymes have necessitated bespoke 

computational strategies to study enzyme/ligand complexes [EL]; however, many of these 

are best suited for in-depth analysis of one or a few [EL] pairs due to their operational 

complexity and resource demands.24,25 We therefore sought workflows that would account 

for the dynamic nature of biocatalysts while also introducing scalability and consideration of 

ligand interactions.

We identified two complementary conformational search platforms: molecular dynamics 

(MD) and induced fit docking (IFD) (Figure 1A). Typical MD simulations allow for 

flexibility in the entire enzyme; however, they also require substantial computational 

resources to sample enzyme conformations. To increase the scalability of the MD 

workflow, we utilized an enhanced sampling method, accelerated MD (aMD). This method 

artificially lowers the kinetic barriers in MD simulations through systematic perturbation 

of the potential energy surface.26,27 We employed aMD to sample a larger number of 

GluER conformers without lengthening the MD simulation. Another step to reduce the 

computational cost of the aMD conformational search was to pair the enzyme structures 

with conformational ensembles of the free ligand (both substrate and product structures) 

from MM/DFT. The separate assembly of enzyme and ligand structures in the aMD 

sampling approach makes it easily applicable to large enzyme/ligand matrices and has 

potential for virtual screening (vide infra).

As an alternative to the aMD conformer search, which requires supercomputing resources 

and expert knowledge, we directly probed the [EL] conformers with IFD. IFD is a 

MM-based docking protocol that approximates the docking pose of a ligand and the 

concomitant repositioning of nearby enzyme residues.28-30 Previously, we applied IFD to 

engineer a more promiscuous variant of the prenyltransferase, NotF.31 Using the mechanistic 

insights gained from IFD simulations, we identified a NotF mutation that allowed the 

prenyltransferase to accept a more sterically demanding substrate. Here, we have expanded 

the use of IFD as a tool for collecting [EL] conformational ensembles. This conformational 

search method scales with the number of [EL] complexes, but unlike the aMD platform, 

it offers the advantage of directly probing the interactions between the small molecule and 

biocatalyst.

Upon acquisition of the enzyme and ligand conformational ensembles with either aMD 

or IFD, chemical descriptors were computed, automatically extracted, and curated for the 

ligands as well as for individual residues in the active site (Figure 1B). These descriptors 

included electronic (e.g., NBO charges),32 steric (e.g., sterimol values),33 and dynamic 

descriptors, which measure the topographical properties of a collection of conformers [e.g., 

dynamic surface area (DSA)].34 Although this initial parameterization strategy neglected the 

interactions between protein residues, we hypothesized that representing the active site by its 
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individual residues in this manner could reveal the residues that have the most influence on 

reaction enantioselectivity (vide infra).

Finally, descriptors were regressed against the experimentally collected dataset (70:30 split 

of training and validation set data points, enantioselectivity expressed as ΔΔG‡, which 

is proportional to the log of the measured enantiomeric ratio) using a forward-stepwise 

multivariate linear regression (MLR) algorithm, which resulted in numerous candidate 

models for each conformational search platform (Figure 1C).22

RESULTS AND DISCUSSION

From the candidate models, we identified a representative high-performing aMD statistical 

model (Figure 2A) that had a training R2 of 0.82 and a mean absolute error (MAE) in ΔΔG‡ 

of 0.19 kcal/mol, indicating a good correlation between the measured and predicted values 

of the training set. The validation R2 is the correlation between measured and predicted 

values for the validation set (the partition of data that was withheld from model training); 

the aMD model had a validation R2 of 0.73 and a corresponding validation MAE = 0.19 

kcal/mol. As for the parameters in the aMD model, ΔNBOpdt,β-C is the difference in the 

maximum and minimum NBO charge on the product β-carbon; ΔSterimol Lsub is the 

difference in the maximum and minimum substituent length values (flexibility) of substrate 

structures. Residue 66ΔSterimol L is the difference in the maximum and minimum residue 

length values (flexibility) of residue 66. Residue 100ΔAngle 1 and Residue 342ΔAngle 3 are 

the difference in the maximum and minimum of these angles (see Supporting Information). 

Residue 172Sterimol L,max is the maximum length of residue 172.

The selected IFD statistical model (Figure 2B) demonstrated a training R2 of 0.83 

with a MAE of 0.18 kcal/mol, suggesting that the aMD and IFD models performed 

similarly in their capability to describe the data in the training set. The IFD model 

had a validation R2 of 0.57 and a corresponding validation MAE of 0.29 kcal/mol. 

Identification of statistical models from both IFD and aMD workflows validated our 

hypothesis that molecular features of enzyme residues and ligands can describe the outcome 

of a biocatalytic reaction. NBOpdt,carbonyl O is the NBO charge of the carbonyl oxygen on 

product structures. NBOpdt,β-H,min is the minimum NBO charge of the hydrogen bound 

to the β-carbon in product structures. Residue 100pdt,Sterimol B5 is the maximum width of 

residue 100 from product-docked enzyme structures. Residue 269sub,Sterimol B5GS is the 

GScore (docking-score) weighted maximum width of residue 269 from the substrate-docked 

enzyme structures. Residue 100pdt,DSA and Residue 172pdt,DSA are the DSAs of residues 

100 and 172 from product-docked enzyme structures, respectively. Residue 343sub,ΔSterimol L 

is the difference in the maximum and minimum length (flexibility) of residue 343 from 

substrate-docked enzyme structures.

Unlike established procedures to predict biocatalyst selectivity, the statistical models 

presented herein possess the ability to evaluate substrates that were not included in 

model training. We, therefore, used both aMD and IFD statistical models to predict the 

performance of various GluER-T36A mutants with two new substrates: 5a and 6a (Figure 

2C). These were selected to incorporate substrate characteristics that were not represented in 
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the training set, including an alkyl-substituted example (5a) and a different cyclization mode 

(6a, 7-exo-trig). For the aMD model, 5a and 6a conformers were collected and combined 

with existing enzyme trajectories, and for IFD, the relevant [EL] poses were generated. 

The enantioselectivities of 5a and 6a with each GluER-T36A variant were predicted using 

the statistical models from Figure 2a,b. Gratifyingly, in the experimental evaluation of 

these combinations, the models performed generally well in predicting the selectivity of 

GluER-T36A variants with the out-of-sample substrates. The aMD model was somewhat 

more successful, with a MAE of 0.38 kcal/mol for the out-of-sample substrate predictions, 

compared to a MAE of 0.48 kcal/mol for the IFD model.

In addition to the competing diastereomeric transition states in the desired cyclization, 

a hydrodehalogenation pathway can also interfere with the cyclization process through 

H-atom transfer (HAT) to the putative α-acyl radical (as shown in Figure 3). The relative 

ratio of cyclization to HAT appeared to be primarily substrate-dependent, with the lowest 

levels of HAT detected in the 5-exo-trig cyclization of aryl substrates 2a and 3a. Despite 

the strong substrate dependence, some GluER-T36A variants modulate preference for the 

HAT pathway (Table S1), and we sought to capture GluER-T36A chemoselectivity through 

a separate statistical model.

We found that regressing with the previously collected IFD descriptor set resulted in the best 

statistical model (training and validation R2 of 0.82 and 0.70, respectively, Figure 3A). As 

expected from the observed substrate dependence, the HAT model primarily featured ligand 

descriptors: NBOpdt carbonyl C,GS is the docking score-weighted NBO of the carbon atom of 

the product carbonyl. NBOpdt,β-H,GS is the docking score-weighted NBO of the hydrogen 

atom bound to the β-carbon in product structures. Sterimol Lpdt,min describes the minimum 

length of the lactam substituent off the β-carbon in product structures. Simply put, the ligand 

features suggested that the electronic nature of the stereocenter formed in the cyclization 

and size of the lactam substituent when bound to the active site are largely responsible for 

the observed cyclization/HAT rate differences. Additionally, catalyst identity can modulate 

preference for the cyclization pathway, namely, through the repositioning of residue 269 

(Residue 269Sterimol B5sub,GS is the docking score-weighted maximum width of residue 269, 

generated from substrate-docked enzyme structures).

As an external validation of this model, we predicted the cyclization to HAT ratio of 

substrate 6a with a suite of GluER-T36A mutations. IFD appears to be particularly well 

suited for this analysis as it explicitly sampled ligand position for each GluER-T36A variant.

We next turned our attention to virtual screening GluER-T36A variants to predict how 

mutations impact selectivity in cyclization. We aimed to predict selectivity with multiple 

substrates and therefore utilized the aMD workflow, which scales with the number of 

enzyme variants screened rather than with the number of [EL] complexes. We took a rather 

ambitious tact by exploring a virtual library of GluER-T36A double and triple mutants even 

though only single mutants were initially used in the training data. The statistical models 

were used to predict the selectivity of each variant with the model substrate 2a and an alkyl 

substrate 5a. We selected only mutants that extrapolated beyond the enantioselectivities 

observed in the training data. The putative hits were expressed, but unfortunately, subjecting 
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them to the reaction conditions resulted in little or no enantioenrichment of products 2b 
and 5b and other substrates (Table S2). This disappointing result suggested that poor 

extrapolation of the aMD model to new enzyme mutants was a result of the relatively 

small number of GluER-T36A single mutants used in model training and/or because the 

quantitative descriptors that were used to characterize the enzymes did not account for 

interactions between residues.

To address these challenges, we interrogated the initial statistical models and developed a 

mechanistic hypothesis that enabled us to create reaction-specific descriptors (Figure 4). 

The aMD and IFD models showed a correlation between GluER-T36A selectivity and 

the relative positioning of aromatic residues 66, 100, and 177, consistent with studies 

of homologous EREDs.35-38 Features describing residue 100 conveyed that increased 

flexibility led to decreased enantioselectivity. Similarly, the negative coefficient associated 

with residue 66 (Residue 66Δ-Sterimol L) in the aMD model indicated that the dynamic 

behavior of this residue contributes to enhanced selectivity in the cyclization. Inspection 

of the aMD conformers revealed that W100 is involved in a network of competitive non-

covalent interactions with flanking residues 66 and 177, where a strong (rigid) integration 

between residues 100 and 177 enables residue 66 to have a wider range of motion. 

Interestingly, IFD revealed significant repositioning of residue 66 upon substrate 6a binding, 

suggesting that mobility of this residue is essential for proper substrate orientation (Figure 

4A, right). We leveraged this insight to design new enzyme descriptors, which were focused 

on interactions between adjacent residues to better represent the contacts between residues 

66, 100, and 177 (Figure 5). The DSA method was expanded to calculate the DSA of 

a group of proximal residues. For example, conformers of residues 66 and 100 were 

enclosed in a hypothetical surface, then the surface area and volume of the cluster were 

computed to determine the cDSA and cDV, respectively (Figure 5A). To further probe 

the interactions between residues 66, 100, and 177, R-group centroids were measured to 

describe inter-residue distances (IRD, Figure 5B).

Having characterized the interactions between residues 66, 100, and 177, our focus then 

shifted to residues 172, 175, and 177. Both initial models found that the conformation of 

H172 is crucial for reaction selectivity. The aMD parameter for H172 measures its most 

extended conformation in each GluER-T36A variant; the aMD structures show that when 

H172 is extended, nearby residues N175 and Y177 are displaced, creating a distinct binding 

pocket (depicted as yellow spheres in Figure 4B, right). We suggest the open binding site 

observed in GluER-T36A-F269L allows for facile substrate binding and reduces the risk 

of substrate dissociation or rotation. Conversely, when H172 is retracted, as in the case of 

GluER-T36A-Y177W, the binding pocket is occluded by nearby residues, leading to reduced 

enantioselectivity.39 To interrogate this hypothesis, the cDSA, cDV, and associated IRDs for 

residue 172 and neighboring residues 175 and 177 were added to our enzyme descriptor set.

In addition to investigating the residue–residue interactions that were informed by our 

statistical models, we aimed to better understand the role of overall dynamics and flexibility 

in reaction enantioselectivity through feature development. To achieve this, we measured a 

residue’s flexibility over the course of the entire aMD trajectory rather than just within the 

clustered conformational ensemble. The frames from each aMD trajectory were aligned, and 
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the RMSD of the backbone atoms was measured for active site residues. Similarly, R-group 

flexibility was measured using the RMSD of side-chain nonhydrogen atoms (Figure 5C). A 

complete list of residues, cDSA, IRD, and RMSD measurements is available in Table S4.

PREDICTING SELECTIVITY OF NEW GLUER-T36A MUTANTS

The newly designed enzyme descriptors (Figure 5) and additional experimental data from 

the previous virtual screen (Table S2) were merged with the initial dataset for a subsequent 

round of statistical modeling. In addition to training and validation set statistics (R2 

and MAE), a simulated virtual screening was used to identify three similar candidate 

models for prospective virtual screening (full details are available in the Supporting 

Information). To validate the models, a library of untested GluER-T36A variants was 

generated in silico for a virtual screen with substrates 2a and 5a. Using the aMD 

workflow, conformational ensembles for 39 single-point mutants at positions 66, 269, and 

343 (sites at which mutations had previously preserved activity while affecting selectivity 

in the photoenzymatic cyclization) were collected, and the relevant parameters for the 

models were assembled. Unfortunately, the virtual screen did not suggest that any of these 

mutants would result in increased enantioenrichment in products 2b and 5b compared to 

previously tested GluER-T36A variants. Nonetheless, eight mutants, which were predicted 

to have a range of experimental outcomes, were selected from the in silico library for 

expression to validate the statistical model. Additional details of the virtual screening, 

mutant selection, and model comparison are available in the Supporting Information. The 

MLR models performed generally well in predicting how the new GluER-T36A mutants 

affected the enantioselectivity for products 2b and 5b. The best MLR model predicted 

the mutant performance with a MAE of 0.31 kcal/mol, and quantitative prediction of 

performance (within a 99% confidence interval computed from model bootstrapping with 

1000 subsamples) was achieved for 6/14 of the reactions with out-of-sample enzymes 

(Figure 6). This performance was substantially better than the predictions from a regularized 

model trained on the complete feature set (Figure S6).

The updated statistical model is similar to the initial aMD model in several respects, 

including the use of a conserved electronic descriptor (the range in the charge on the 

carbonyl- or β-C in the lactam product, ΔNBOpdt,carbonyl-C or ΔNBOpdt,β-C, respectively) 

and a substrate steric descriptor (Sterimol B5sub,min or ΔSterimol Lsub). Additionally, 

the models have similar enzyme parameters describing the flexibility of residue 66 

(Residue 66Sterimol B5,max and Residue 66ΔSterimol L). The updated model also includes 

residue-specific descriptors for the maximum backbone angle of residue 175 (Residue 

175Angle 1,max), and the minimum backbone dihedral angles of residues 261 and 269 

(Residue 261dihedral,min and Residue 269dihedral,min, respectively).

As described in the previous section, we postulated that when residue 100 preferentially 

interacts with residue 177, it disengages interactions with residue 66, enabling the necessary 

flexibility of that residue for proper repositioning upon substrate binding. Further supporting 

this hypothesis, the IRD parameter (IRD residues 100–177) in the updated model indicates 

that selectivity declines when residue 100 is far from residue 177. The new enzyme 

descriptors, informed from our mechanistic analysis of the initial statistical models, 
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strengthened our understanding of GluER-T36A selectivity and enabled us to predict the 

effect of untested GluER-T36A mutations.

The GluER-T36A-Y343C variant was predicted to be most selective for both 2a and 5a, 

but the measured enantioselectivity was significantly over-predicted. To probe the origin 

of this apparent outlier, we compared the aMD conformers for GluER-T36A and the 

Y343C mutant, which revealed that adjacent residue W342 interacts with F269, a residue 

located on a loop adjacent to the active site. The loop is positioned to form a “lid” 

over the active site, and inspection of the GluER-T36A-Y343C conformational ensemble 

depicted a key difference from other GluER-T36A variants evaluated. The F269 loop is 

substantially displaced as a result of the Y343C mutation (Figure 7). Interestingly, similar 

mutations (Y343M) and even mutations to the loop (F269C, M, and R) do not result in 

comparable disorder. This structural anomaly supports that this prediction is likely an outlier 

as flexibility at this position is beneficial for enantioselectivity, but importantly, these models 

were not trained to recognize that major disruptions to the F269 loop are detrimental.

IFD experiments did not show alterations to the loop region as a result of the Y343 mutant, 

but an interesting change in the geometry of the bound lactam products was observed. These 

observations are seeding future studies to explore global [EL] features.

CONCLUSIONS

In summary, we have developed predictive tools to evaluate enzyme mutant performance 

on a non-native reaction while gaining a deeper mechanistic understanding. We identified 

two complementary conformational search platforms, aMD and IFD, to computationally 

characterize both enzyme and ligand structures for descriptor extraction and demonstrated 

how descriptors can be informed by evolving mechanistic hypothesis.

By utilizing a small, representative training set that encompasses a range of reaction 

outputs, we developed robust statistical models relating GluER-T36A structural features 

to function in an enantioselective cyclization. Although the focused training set used in 

this study was insufficient to predict reaction yields, we were able to construct a statistical 

model to capture the effects of the ligand and GluER-T36A variant on preference for a 

competing HAT pathway. These models allowed us to quantitatively predict the performance 

of out-of-sample substrates and substrate/mutant combinations, with a particular emphasis 

on substrate scope. Interpretation of the predictive model increased our understanding 

of the enantioinduction imparted by GluER-T36A, which complements contemporary 

approaches.40,41 Future applications of this workflow will include the enhancement of 

enzymatic descriptors and virtual screening of enzyme mutants for reaction engineering.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Workflow to develop statistical models of biocatalytic reaction performance. (A) Two 

complementary approaches, aMD and IFD, were used to generate enzyme conformers from 

a GluER-T36A crystal structure (PDB ID: 6MYW) after introducing the desired mutation 

in silico. (B) Enzyme features were quantified using a residue-based approach. Geometric 

descriptors include the length, width, and backbone angles of each residue conformer and 

the fluctuations of these measurements. Dynamic descriptors were measured by overlaying a 

residue conformational ensemble, encapsulating it in a fictitious surface, and measuring the 

resulting surface area and volume. Ligands were subjected to both a geometric analysis and 

DFT calculations to acquire electronic descriptors, including the natural bond orbital (NBO) 

charges of atoms indicated by a yellow sphere. (C) Descriptors for each enzyme/ligand were 

regressed against the experimentally determined selectivities, resulting in statistical models 

that enabled mechanistic insights and predicted the outcomes of out-of-sample substrates 

and mutants.
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Figure 2. 
aMD and IFD statistical models with ligand descriptors (red) and enzyme descriptors (blue). 

(A) The aMD model had a training and validation R2 of 0.82 and 0.73, respectively, a 

leave-one-out (LOO) R2 of 0.70, and a 4-fold R2 of 0.67. (B) The IFD model had a training 

and validation R2 of 0.83 and 0.57, respectively, LOO R2 of 0.73, and a 4-fold R2 of 

0.70. (C). Enantioselectivities of reactions with 5a and 6a to form 5b and 6b, respectively, 

predicted from the aMD and IFD models. aPredicted from aMD model 2, Figure S3.
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Figure 3. 
Statistical model of HAT side product formation. (A) Regressing experimental ratios of 

cyclization: HAT with the IFD descriptor set resulted in the best statistical model (training 

and validation R2 of 0.82 and 0.70, respectively, LOO R2 of 0.76, and a 4-fold R2 of 0.70). 

The model had three ligand descriptors (red) and one enzyme descriptor (blue). (B) HAT 

model predictions on substrate 6a.
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Figure 4. 
Mechanistic interpretation of descriptors from initial models. (A) The aMD conformers 

demonstrated that when aromatic residues 100 and 177 were closely associated, interactions 

between residues 66 and 100 were precluded, inducing residue 66 flexibility and higher 

selectivity. The IFD conformational ensembles (right) corroborated that the flexibility of 

residue 66 is necessary for substrate binding. (B) The term Residue 172Sterimol L,max 

from the aMD model indicated that extended configurations of H172 facilitated selectivity. 

Examination of enzyme conformers where this term was large (GluER-T36A-F269L = 6.7 

Å) showed H172 to be extended (blue) and revealed an open binding pocket (yellow sphere); 

this binding pocket was occluded in structures where values of this parameter were small 

(GluER-T36A-Y177W = 5.2 Å, red).

Clements et al. Page 16

J Am Chem Soc. Author manuscript; available in PMC 2023 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Hypothesis-driven parameter development. (A) Cluster DSAs and (B) IRD were measured to 

explicitly describe the interactions between residues 66/100/177 and 172/175/177. (C) The 

overall residue flexibility was measured by computing the RMSD of residue backbone and 

side-chain atoms.
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Figure 6. 
Updated model enabled virtual screening and prediction of the selectivity of new GluER-

T36A mutants. (A) Similar to the initial models, the updated statistical model has two 

ligand descriptors (red), several residue-based enzyme descriptors (blue), and one IRD 

parameter (gray) that measures the distance between residues 100 and 177. (B) Predicted 

enantioselectivities of 2a and 5a with untested GluER-T36A variants; the range for the 

predictions was computed at a 99% confidence interval using bootstrap subsampling. 
aTraining and validation set statistics were computed with a 70:30 split, as further described 

in the Supporting Information.
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Figure 7. 
GluER-T36A-Y343C is structurally unique. The aMD conformational ensemble of GluER-

T36A-Y343C (red) displays disorder in the 269-loop region compared to GluER-T36A 

(light blue). Other variants such as GluER-T36A-Y343M (dark blue) and GluER-T36A-

F269C (gray) maintain structures similar to GluER-T36A.
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Scheme 1. 
Enantioselective Cyclization Catalyzed by GluER-T36A and Mutants
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