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Abstract (150-word limit)  45 

Alzheimer's disease (AD) exhibits spatially heterogeneous 3R/4R tau pathology distributions 46 

across participants, making it a challenge to quantify extent of tau deposition. Utilizing Tau-PET 47 

from three independent cohorts, we trained and validated a machine learning model to identify 48 

visually positive Tau-PET scans from regional SUVR values and developed a novel summary 49 

measure, THETA, that accounts for heterogeneity in tau deposition. The model for identification 50 

of tau positivity achieved a balanced test accuracy of 95% and accuracy of ≥87% on the validation 51 

datasets. THETA captured heterogeneity of tau deposition, had better association with clinical 52 

measures, and corresponded better with visual assessments in comparison with the temporal 53 

meta-region-of-interest Tau-PET quantification methods. Our novel approach aids in identification 54 

of positive Tau-PET scans and provides a quantitative summary measure, THETA, that effectively 55 

captures the heterogeneous tau deposition seen in AD. The application of THETA for quantifying 56 

Tau-PET in AD exhibits great potential.   57 
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1. Introduction 58 

Alzheimer’s disease (AD) is characterized by the accumulation of β-amyloid (Aβ) plaques and 59 

neurofibrillary tangles (NFTs) in the brain. NFTs are composed of hyperphosphorylated tau 60 

proteins and in a majority of individuals tau progresses along predictable patterns, originating in 61 

the transentorhinal cortex and spreading to the limbic system and eventually to the neocortex. 62 

The spread of tau leads to cognitive impairment and dementia1. However, evidence from 63 

pathology and imaging have shed light on the heterogeneity of tau deposition in AD, suggesting 64 

that there could be distinct patterns of tau accumulation across individuals2–4.  65 

Current understanding of AD pathophysiology and neurodegeneration suggests that the NFT 66 

accumulation is closely correlated with clinical disease progression and precedes clinical 67 

symptoms, making tau a promising biomarker for disease diagnosis and clinical trial design5,6. 68 

Positron emission tomography (PET) imaging is used to visualize and assess tau deposition using 69 

radioligands that bind specifically to the paired helical filament of NFTs and can be used to detect 70 

and track tau pathology in vivo7. Studies using PET have shown in preclinical AD, tau deposition 71 

is spread throughout several cortical regions and there follows multiple trajectories3. The most 72 

common quantification methods for Tau-PET utilize meta-regions of interest (meta-ROIs), such 73 

as the temporal meta-ROI, or the more recent medial temporal lobe (MTL) and neocortical (NEO) 74 

meta-ROIs to stage disease severity8,9. These methods ignore the extent of tau outside these 75 

meta-ROIs and average the Tau-PET standardized uptake value ratios (SUVR) in the entire meta-76 

ROI, which underweights any focal depositions of tau in smaller regions within the meta-ROI. In 77 

addition to the meta-ROIs, there are less commonly used quantitative methods such as the 78 

volumes-of-interest voxel-based multiblock barycentric discriminant analysis (MUBADA)10 that 79 

have also been used to assess the clinical group separation. 80 
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The visual rating method followed in this study was based on the density and distribution of tau 81 

identified by the radiotracer [18F]flortaucipir (Tauvid™) which was recently FDA-approved for AD 82 

tau pathology at B3-level (Braak stages V/VI)11. The visual assessment criteria consider the focal 83 

deposition of tau through the brain and could overcome the limitations of the meta-ROI methods. 84 

In this work we set out to test the hypothesis that a machine learning (ML) model can be 85 

developed to identify positive Tau-PET scans based on the clinically accepted multirater visual 86 

ratings, and improved quantification methods can be developed to incorporate the heterogeneity 87 

in spatial distribution of tau tracer signals throughout the brain. We further hypothesized that these 88 

ML-based tau quantification methods could outperform the currently used meta-ROI quantification 89 

methods and provide a more accurate and sensitive quantification of tau deposition that would 90 

map better to disease severity.  91 

To test our hypotheses, we designed our study with three aims: 1) develop a machine learning 92 

model on a large single site dataset using regional SUVR values as inputs and visual ratings as 93 

targets and validate the model’s performance on two external independent cohorts, 2) compare 94 

the performance of our ML model to temporal, MTL and NEO meta-ROI quantitative methods, 95 

and 3) develop a novel summary measure that is more sensitive to clinical disease severity by 96 

leveraging the regional heterogeneity captured by our ML model. This study aims to address the 97 

limitations in the current quantitative methods for tau deposition in AD by utilizing advanced ML 98 

approaches.   99 
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2. Results 100 

2.1. Characteristics of study population 101 

The study included three independent datasets: Mayo, ADNI, and OASIS-3. The Mayo dataset 102 

had 1290 participants with an average age (SD) of 67 (14) years: 55% were male, and 74% were 103 

cognitively unimpaired. The ADNI dataset had 831 participants with an average age of 72 (8) 104 

years: 48% were male, and 55% were cognitively unimpaired. The OASIS-3 dataset had 430 105 

participants with an average age of 70 (8) years: 43% were male, and 86% were cognitively 106 

unimpaired (Table 1). The percentage of visually tau-positive cases in Mayo, ADNI, and OASIS-107 

3 were 19%, 28%, and 14%, respectively (Table 1). The proportion of participants who were 108 

classified as tau-positive using both MTL and NEO meta-ROIs were low, highlighting the 109 

heterogeneity of the sample (14% for Mayo, 20% for ADNI, and 11% for OASIS-3) (Table 1).  110 
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Table 1. Characteristics summary of study population. 111 

Variables Mayo ADNI OASIS-3  

N 1290 831 430 

Age, mean (SD) years  67 (14) 72 (8) 70 (8) 

Males, n (%) 706 (55) 399 (48) 186 (43) 

Females, n (%) 584 (45) 432 (52) 244 (57) 

Cognitively unimpaired (CU), n (%) 957 (74) 455 (55) 371 (86) 

Mild cognitively unimpaired (MCI), n (%) 173 (13) 283 (34) 11 (3) 

Alzheimer’s disease (AD), n (%) 121 (9) 93 (11) 48 (11) 

Dementia with Lewy Bodies (DLB), n (%) 37 (3) - - 

APOE4+, n (%) 425 (34) 287 (40) 168 (39) 

Aβ+, n (%) 512 (40) 335 (43) 133 (32) 

TV+, n (%) 245 (19) 230 (28) 61 (14) 

TMTL
+, n (%) 243 (19) 255 (31) 80 (19) 

TNEO
+, n (%) 202 (16) 183 (22) 57 (13) 

TTemporal
+, n (%) 476 (37) 418 (50) 159 (37) 

TMTL
+ and TNEO

+, n (%) 183 (14) 170 (20) 49 (11) 

TTemporal
+ and TMTL

+, n (%) 235 (18) 242 (29) 74 (17) 

TTemporal
+ and TNEO

+, n (%) 202 (16) 183 (22) 57 (13) 

TV+: Visually tau-positive 

TTemporal
+: Tau-positive in the temporal meta-ROI 

TMTL
+: Tau-positive in the middle temporo-lateral (MTL)  

TNEO
+: Tau-positive in the neocortex (NEO)  

  112 
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2.2. Model trained on visual ratings for predicting tau positivity  113 

The regional SUVRs were the inputs to the ML model and the visual classifications were the 114 

predicted class (Fig. 1). The model was trained on the Mayo dataset and tested on ADNI and 115 

OASIS-3. To validate the model, we conducted multiple runs using different data splits (Fig. 2). 116 

The models’ performance was consistent as indicated by a standard deviation less than 5% for 117 

all metrics (Fig. 2). We then selected the best model with the highest f1-score. 118 

Figure 1. Study design. First, we trained a machine learning (ML) model using a library of visually 

assessed scans where the visual rating was used as the ground truth and the SUVRs were the inputs. 

Second, after training the model we applied the SHAP AI explainer to determine each region’s 

contribution to the predicted visual rating. Lastly, we derived a summary measure we are calling tau 

heterogeneity evaluation in Alzheimer’s disease (THETA) score using each participant’s SUVR value 

and corresponding SHAPs.  
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The best model performed very well in predicting tau status on the Mayo dataset, achieving a 119 

balanced accuracy of 98.58% and 95.43% on the Mayo training and testing sets, respectively. 120 

When evaluating the model’s performance on the external datasets, ADNI and OASIS-3, it 121 

achieved a balanced accuracy of 87.74% and 87.03%, respectively. The model identified tau-122 

positive and negative participants with an AUC of 1.00 on the testing set. It also showed very 123 

good classification performance on the ADNI external dataset, with an AUC of 0.96. In contrast, 124 

the AUC was lower in the OASIS-3 dataset at 0.94 (Fig.2).   125 
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 126 

Datasets MCC Bal Accuracy F1 Precision Recall 

Mayo training† (%) 90.68 (3.71) 94.87 (2.51) 92.20 (3.14) 96.36 (2.53) 88.52 (4.87) 

Mayo testing†† (%) 87.68 (3.43) 92.49 (1.99) 90.00 (2.44) 93.88 (3.60) 86.45(4.20) 

ADNI testing¥ (%) 78.68 (1.69) 86.25 (1.36) 83.05 (1.60) 94.56 (2.63) 74.18 (3.28) 

OASIS-3 testingǂ (%) 73.57 (2.87) 82.48 (1.95) 75.79 (2.64) 88.81 (5.19) 66.40 (4.25) 

†n = 1032; ††n = 258; ¥n = 831; ǂn = 430.  
MCC = Matthews correlation coefficient, Bal Accuracy = Balanced accuracy 

Figure 2. Model performance for binary classification of tau status based on the visual assessment from 

the three raters. The model was trained on the Mayo and validated on the external validation sets, ADNI 

and OASIS-3. The top table shows summary of the multiple runs conducted using different random splits 

of the training (80%) and testing (20%) sets. The metrics in the table show the mean (standard deviation). 

The receiver operating characteristic's area under the curve (AUC) of the model (A) compares its 

performance in Mayo, ADNI, and OASIS3, while (B) and (C) illustrate the comparison of the model's 

performance to meta-ROI classification schemes in the Mayo testing and whole dataset respectively. 

Summary of models (200 runs) with random data splits 

(A) Validation in three datasets  (B) Test set (20%)  (C) Whole dataset  

Meta-ROI comparisons 
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2.3. Model performance in comparison to meta-ROI-based assessment for 127 

prediction of tau positivity  128 

The meta-ROIs showed very similar performances in classifying tau positivity in the Mayo cohort, 129 

with an AUC of 0.99 on the test-set (20%) and 0.94 on the whole dataset (Fig. 2B and Fig. 2C). 130 

The model outperformed all three meta-ROIs when evaluating classification performance on the 131 

Mayo dataset, with a misclassification of 3.67% and 0.48% of tau-positive and negative cases, 132 

respectively. On the ADNI dataset, the model misclassified 22.17% of the tau-positive and 2.33% 133 

of the tau-negative cases and was largely outperformed by the temporal meta-ROI for tau-positive 134 

misclassification at a rate of 6.96% (Table 2). On the OASIS-3 dataset, the model performed best 135 

in classifying tau-negative cases with a misclassification rate of 1.36% and had the second-best 136 

misclassification rate of 24.59%, outperformed by the temporal meta-ROI at 18.03%. 137 

Supplementary Tables 1 and 2 provide similar analyses for participants with CI and CU clinical 138 

diagnosis.  139 
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Table 2. Comparison of Meta-ROI-based assessments and the machine learning model 140 

predictions to the visual ratings when predicting tau positivity.  141 

  142 

Comparisons TPR (%) TNR (%) TP (n) TN (n) 1 - TPR (%) 1 - TNR (%) 

MAYO†  

TV vs TTemporal 0.93 0.76 227 796 7.34 23.83 

TV vs TMTL  0.78 0.95 191 993 22.04 4.97 

TV vs TNEO  0.76 0.98 185 1028 24.49 1.63 

TV vs Model  0.96 1.00 236 1040 3.67 0.48 

ADNI¥ 

TV vs TTemporal 0.93 0.66 214 397 6.96 33.94 

TV vs TMTL  0.78 0.88 180 526 21.74 12.48 

TV vs TNEO  0.70 0.96 161 579 30.00 3.66 

TV vs Model 0.78 0.98 179 587 22.17 2.33 

OASIS-3ǂ 

TV vs TTemporal 0.82 0.70 50 260 18.03 29.54 

TV vs TMTL  0.66 0.89 40 329 34.43 10.84 

TV vs TNEO  0.66 0.95 40 352 34.43 4.61 

TV vs Model 0.75 0.98 46 364 24.59 1.36 

†n = 1290; TV+ = 245, TV- = 1045, TTemporal
+ = 396, TMTL

+ = 243, TNEO
+ = 202 

¥n = 831; TV+ = 230, TV- = 301, TTemporal
+ = 362, TMTL

+ = 255, TNEO
+ = 183 

ǂn = 430; TV+ = 61, TV- = 369, TTemporal
+ = 131, TMTL

+ = 80, TNEO
+ = 57 
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2.4. Spatial heterogeneity captured by the machine learning model 143 

To assess the spatial heterogeneity captured by the model, we analyzed the SHAP (SHapley 144 

Additive exPlanations)12 summary plots for tau in the different regions of the brain. In participants 145 

with tau positivity in the NEO region, the inferior temporal cortex region was the top predictor (Fig. 146 

3). Conversely, in participants with tau positivity in the MTL region (the region well-known to be 147 

affected by tau deposition), the entorhinal cortex region emerged a crucial predictor (Fig. 3). 148 
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  149 

Figure 3. Feature importances for cases where tau was positive in the MTL meta-ROI only and in NEO meta-

ROI only. The arrow indicates the importance of the entorhinal region changing its rank depending on the 

regionality for TMTL
+, TNEO

- (left) cases, and for TMTL
-, TNEO

+ (right). 

TMTL
+, TNEO

- TMTL
-, TNEO

+ 
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2.5. Novel tau summary measure – THETA score 150 

We designed a novel tau global summary measure, THETA score (Tau Heterogeneity Evaluation 151 

in Alzheimer's Disease), that considers the spatial heterogeneity of tau deposition throughout the 152 

brain.  153 

The THETA score considers the contribution of all the regional tau SUVRs used to the determine 154 

a tau-positive or tau-negative scan. Here we illustrate THETA in two sub-populations that highlight 155 

tau heterogeneity: discordant and concordant groups. The discordant group consist of cases 156 

where there is disagreement between the visual rating and one or more of the meta-ROI 157 

classifications while concordant group consists of cases that agree both visual and with the meta-158 

ROIs (Fig. 4).  159 

The THETA score, as described in Equation 2 (section 4.6), was developed to combine different 160 

regions based on their contribution to both classification and disease severity, as indicated by the 161 

SUVRs. In the tau-positive and meta-ROI negative discordant cases where the model contribution 162 

is distributed amongst different regions and not focused specifically on meta-ROI regions, the 163 

THETA formulation successfully captures the heterogenous contributions of all the regions, 164 

including those with relatively mild signals and similar contributions (Fig. 5A). On the other hand, 165 

in tau-positive concordant cases, the hotspot regions that constitute the meta-ROIs are the top 166 

predictors in our ML model. In these cases, the THETA formulation maintains the importance of 167 

the top regions, thereby preserving the spatial heterogeneity (Fig. 5B).   168 
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  169 
Concordant group 

Figure 4. Examples of the concordant groups (A and B) where there is agreement between the visual rating 

and all three meta-ROIs while the discordant groups (C and D) have disagreement visually and with all three 

meta-ROIs. While the meta-ROI can miss visually positive scans where the SUVR is lower than the cutoff 

point (C), the visual assessment does not consider isolated increased activity in the MTL (D). The red arrows 

indicate where there is increased tracer uptake activity. 

75 years old, Male, AD Dementia, APOE4 negative, Aβ- 

57 years old, Male, AD Dementia, APOE4 negative, Aβ+ 

Visually positive (TV+), 

Meta-ROI positive (M+) 

Visually negative (TV-), 

Meta-ROI negative (M-) 

(A) 

(B) 

Discordant group 

86 years old, Female, AD Dementia, APOE4 positive, Aβ+ 

Visually positive (TV+), 

Meta-ROI negative (M-) 

(C) 

81 years old, Female, Cognitively Unimpaired, APOE4 negative, Aβ- 

Visually negative (TV-), 

Meta-ROI positive (M+) 

(D) 
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  170 

B. Mayo concordant cases TV+, M+  A. Mayo discordant cases TV+ 

Figure 5. The average regional THETA scores ranked in ascending order by median value for discordant cases 

(left) and concordant cases (right). The discordant cases which were visually positive (TV+) and negative with one 

or more meta-ROIs, and the concordant cases which were tau-positive (TV+ M+) both visually and all three meta-

ROIs. 
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2.5.1. Performance of THETA for assessing disease severity 171 

The performance of the tau summary score THETA for disease severity was assessed using two 172 

clinical disease severity measures, Mini-Mental State Examination (MMSE) and CDR sum of 173 

boxes (CDR-SB).  174 

When correlation was conducted for all participants from each cohort, the performance of the 175 

THETA score and the meta-ROIs was similar (Fig. 6, OASIS-3 shown in Supplementary Fig. 2). 176 

When looking at the relationship of MMSE to the meta-ROIs and THETA, there was a similar 177 

trend of decreasing slope from tau-negative to tau-positive (Fig. 6). However, the THETA score 178 

provided a clearer and more distinct separation between tau-positive and negative participants 179 

(Fig. 6). This pattern was also observed in the concordant groups (Fig. 7). In contrast, for the 180 

discordant groups, THETA demonstrated a negative and significant association with MMSE and 181 

a strong positive association to CDR-SB, but the meta-ROIs were not significantly associated with 182 

MMSE (Fig. 7). Similar analysis with possible outliers excluded is shown in Supplementary Figure 183 

3. 184 

Furthermore, we compared THETA to the temporal meta-ROI for different clinical diagnostic 185 

outcomes and calculated the mean differences between tau-positive and tau-negative cases (Fig. 186 

8). We found that for the AD Dementia participants the separation between the tau-positive and 187 

tau-negative cases created by both temporal Meta-ROI and THETA were similar in terms of 188 

statistical significance across the disease groups. However, for CU and MCI participants there 189 

was a clear overlap in tau status for the temporal Meta-ROI, whereas the THETA score showed 190 

better separation between tau-positive and tau-negative cases (Fig. 8). For instance, in the ADNI 191 

cohort, the difference between the tau-positive and tau-negative temporal Meta-ROI values for 192 

CU and MCI participants had an effect size of 3.08 (t-statistics = 16.50, p < 0.001) and 2.23 (t-193 

statistics = 16.76, p < 0.001), respectively. In contrast, the THETA score showed a much larger 194 
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effect size of 10.09 (t-statistics = 54.09, p < 0.001) and 6.83 (51.36, p < 0.001), respectively (Fig. 195 

8).  196 
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 197 

  198 

All correlations are significant p < 0.05. 

 
B. ADNI 

Figure 6. Comparison of the meta-ROIs and THETA score to the clinical measures MMSE and CDR-SB. 

The correlation coefficients are Spearman’s 𝑟ℎ𝑜 and the scatter plot shows the ordinary least squares 

regression. Similar results for the OASIS-3 cohort are included in Supplementary Figure 2. Tau- and Tau+ 

labels indicate visual assessment status. 

A. Mayo 

All correlations are significant p < 0.05. 
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 199 

  200 

A. Mayo discordant group B. Mayo concordant group 

Figure 7. Comparison of the meta-ROIs and THETA to clinical scores MMSE and CDR-SB for the Mayo cohort 

in the discordant and concordant group. The discordant group consisted of participants with disagreement 

between the visual rating and one or more meta-ROIs on the tau status, and the concordant group consists of 

participants whose tau status had agreement between the visual and all three meta-ROI methods. A similar 

analysis with outliers removed is included in Supplementary Figure 3. Tau- and Tau+ labels indicate visual 

assessment status. 

*Significant correlations p < 0.05 All correlations are significant p < 0.05. 
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 201 A. Mayo B. ADNI  

Figure 8. Comparison of the distribution of temporal meta-ROI and THETA in diagnostic 

groups for visually tau positive and negative participants. Mayo participants and on the right 

the ADNI participants are shown on the left and ADNI participants on the right. Tau- and Tau+ 

labels indicate visual assessment status. 

 ns: p <= 1.00, *: 0.001 < p <= 0.005, **: 0.0001 < p <= 0.001, ***: 0.00001 < p <= 0.0001, ****: p <= 0.00001 
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3. Discussion  202 

The progression of tau pathology, as captured by Tau-PET scans, has become a key indicator of 203 

disease severity in AD. However, current methods have limitations in addressing the 204 

heterogeneity of tau deposition. They focus on a limited number of regions with typically high tau 205 

uptake while ignoring the spatial variance of tau burden within these regions. These two limitations 206 

hamper the performance of meta-ROI-based methods for accurate detection and quantification 207 

of the Tau-PET signal. Using visual assessment by three raters as the gold standard in a large 208 

single site dataset (Mayo), we developed a ML model to accurately classify the status of Tau-PET 209 

scans and validated it in two independent datasets (ADNI and OASIS-3). We then utilized the 210 

model to develop a novel tau summary measure that considers tau SUVRs across the brain and 211 

provides a metric that maps extremely well to disease progression compared to current methods. 212 

Identification of positive Tau-PET scans  213 

The application of deep learning and ML using Tau-PET has become common in recent years, 214 

either to improve PET image acquisition13, to classify spatial patterns14,15, to study the association 215 

between Aβ and Tau-PET scans16, or to predict pathological tau accumulation from clinical 216 

measures17,18. ML-based indices have also been introduced such as Spatial Pattern of 217 

Abnormality for Recognition of Early Tauopathy (SPARE-Tau)19 and Alzheimer’s disease 218 

resemblance atrophy index (AD-RAI)20. SPARE-Tau was trained on tau SUVRs to predict clinical 219 

status (CU vs MCI/AD) while AD-RAI was trained on T1-weighted MRI volumetric measures also 220 

to predict clinical status and quantify brain atrophy. Nonetheless, our work is the first to develop 221 

and validate a ML model to identify positive Tau-PET scans using regional SUVRs from the entire 222 

brain. We validated our ML model with entirely independent datasets comprised of different 223 

population demographics and data sources. More importantly, our model was able to generalize 224 
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to both multicenter and single-center studies, with ADNI being a multicenter study while OASIS-225 

3 is a single-center study.  226 

Multirater visual assessment of Tau-PET is a clinically accepted standard for identifying positive 227 

Tau-PET scans as it offers the possibility of assessing tau burden in the entire brain.  It can be 228 

superior to the meta-ROIs quantitative methods that rely on specific regions to quantify tau 229 

burden. While the meta-ROIs focus on the entorhinal cortex and tend to overestimate tau-positive 230 

cases, the visual assessment does not consider isolated tau deposition in the medial temporal 231 

lobe. The NEO meta-ROI’s true negative rate was consistent across all three datasets while the 232 

MTL did better at identifying true negatives in Mayo and decreased in performance in ADNI and 233 

OASIS-3. On the other hand, in the Mayo cohort, all three meta-ROIs underperformed when 234 

identifying tau-positive cases compared to the visual ratings. Nonetheless, because our model 235 

was trained on the visual ratings, it showed excellent agreement with the visual ratings in the 236 

Mayo cohort.  237 

Quantification of heterogeneity of Tau-PET signal: THETA score 238 

Prior works have shown the spread of tau pathology to be heterogenous and to follow specific 239 

patterns across the brain. A histological study by Murray et al. has shown clinical differences 240 

between hippocampal sparing and limbic-predominant AD subtypes21 while a recent event-based 241 

computational study by Vogel et al. has shown the presence of posterior and lateral temporal 242 

subtypes of atypical AD2. While heterogeneity in tau deposition is accepted in the field, there are 243 

no measures that consider the heterogeneity in the Tau-PET signal while quantifying it into a 244 

summary metric.  245 

In this study, the novel tau summary measure, THETA, considers spatial heterogeneity across 246 

the brain, making it a better option for cognitive assessment and clinical diagnosis. Since the ML 247 

model accurately classified Tau-PET scans as tau-positive or negative by examining signals 248 
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throughout the entire brain, we incorporated the THETAi values to formulate our summary 249 

measure. This measure was derived using SHAP values, which indicated the importance of each 250 

individual region. Thus, by utilizing the heterogeneity captured by the ML model, we were able to 251 

ensure that THETA captured pattern-based information. This is illustrated by the regional THETA 252 

scores for the concordant or discordant subgroups (Fig. 3 and Fig. 5). Furthermore, since the 253 

range of THETA scores were distinct for the tau-positive/negative cases, we were able to get a 254 

clear separation between the tau-positive and negative participants for the MMSE clinical score 255 

(Fig. 6 and Fig. 7) and the diagnostic groups better than the temporal Meta-ROI (Fig. 8). 256 

THETA score for assessing disease severity  257 

Tau is a proximal surrogate of clinical disease severity and Tau-PET has tremendous potential to 258 

significantly impact clinical practice and clinical trials. The FDA approved [18F] flortaucipir PET 259 

imaging for detecting NFT B3 corresponding to Braak stages V or IV. Hence, effectively 260 

quantifying the Tau-PET signal has important implications because it provides a more accurate 261 

and sensitive assessment of disease severity. Given that multirater visual assessment is the 262 

clinically accepted standard in the field, developing a highly accurate model using this gold 263 

standard and utilizing the model characteristics for quantification of Tau-PET signal has several 264 

advantages. This is reflected in the THETA score outperforming the current methods as observed 265 

in Figures 6 - 8. Additionally, the THETA scores mapped on to cognitive indices comparably or 266 

better than meta-ROI-based methods.  267 

THETA can be utilized with ease across multiple clinical studies. The calculation of THETA in a 268 

clinical or research setting is similar to the meta-ROI calculation. Once an ML model is trained on 269 

the regional SUVRs and is interpreted using the SHAP AI explainer, THETA scores can be 270 

generated automatically using our formula. This process can be done for a single participant or a 271 

list of participants. The training of a ML model need only be done once and the trained model can 272 

be used multiple times, and the training set can constitute cohorts of different demographics as 273 
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we have demonstrated in our study. Future work will focus on validating THETA for tracking 274 

longitudinal Tau-PET changes. 275 

Strengths and Limitations  276 

This study has some strengths and limitations. We developed a ML model on one dataset and 277 

validated it on two independent datasets. There were some limitations in this study. First, the 278 

visual assessment of scans is subjective and can be prone to human errors. However, the visual 279 

ratings were obtained independently from three raters, and ambiguous discordant cases were 280 

reassessed by a Neuroradiologist (CRJ). Second, as expected, the model's performance was 281 

lower for the ADNI, and OASIS-3 validation sets due to differences between the cohorts. 282 

However, combining the cohorts and training a new model on the combined data solved this 283 

problem. The combined model achieved balanced accuracy between 94% and 96%, and 284 

ROCAUC greater than 0.99 for all datasets. This is shown in Supplementary Table 3 and 285 

Supplementary Figure 4. Third, the THETA score exhibits high sensitivity for a given tau-status 286 

which can be strength or a limitation. While visually accurate classification can provide a better 287 

range for tau quantification, a visually inaccurate classification (< 1% cases) could force the 288 

THETA towards zero. Future studies are planned to validate its performance on longitudinal 289 

studies. Lastly, changing of the cut-points for the meta-ROIs than ones used in this study could 290 

change the results for the meta-ROI comparisons.  291 

In conclusion, this study aimed to address the limitations of the current quantitative methods for 292 

quantifying the spread of tau deposition in Alzheimer's disease by using advanced ML 293 

approaches. We also developed a novel summary measure that captures regional heterogeneity, 294 

which can be a useful clinical tool for assessing disease progression and subtypes and identifying 295 

potential therapeutic targets. Further studies are needed to test the versatility of THETA. The ML 296 

model developed in this study performed extremely well in predicting tau status on both the MAYO 297 

dataset as well as on the external datasets. The model outperformed the three meta-ROIs in 298 
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classifying tau positivity on the Mayo test set and was comparable in ADNI and OASIS-3. 299 

Additionally, the novel summary measure, THETA, was able to better quantify the spatial 300 

heterogeneity of tau deposition and provide a more sensitive measure of clinical disease severity. 301 

Overall, the study provides promising results for the use of ML models in improving the detection 302 

and quantification of tau pathology in Alzheimer's disease.   303 
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4. Methods  304 

4.1. Study participants 305 

We included participants who had undergone a Tau-PET scan with [18F]flortaucipir tracer from 306 

three studies: a combined Mayo Clinic Study of Aging (MCSA)22 and Mayo Alzheimer's Disease 307 

Research Center (ADRC) data set (N = 1290, referred to as Mayo), Alzheimer’s Disease 308 

Neuroimaging Initiative phase 2 or 3 (ADNI) (N = 831), and Open Access Series of Imaging 309 

Studies phase 3 OASIS-3  (N = 430)23. Individuals with frontotemporal dementia were excluded. 310 

The Mayo cohort is a population-based study of cognitive aging among residents of Olmsted 311 

County, Minnesota, while the ADRC is a longitudinal research study of individuals recruited from 312 

clinical practice, and all participants provided written informed consent. Both studies have been 313 

approved by the Mayo Clinic and Olmsted Medical Center Institutional Review Boards. The ADNI 314 

cohort initiative was as launched in 2003 as a public-private partnership, led by Principal 315 

Investigator Michael W.  Weiner, MD. The primary goal of ADNI has been to test whether serial 316 

magnetic resonance imaging (MRI), positron emission tomography (PET), other biological 317 

markers, and clinical and neuropsychological assessment can be combined to measure the 318 

progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). The ADNI 319 

data was obtained from adni.loni.usc.edu database and for up-to-date information, see www.adni-320 

info.org. The OASIS-3 cohort is a longitudinal study through WUSTL Knight ADRC's ongoing 321 

projects including cognitively normal adults and individuals at various stages of cognitive decline, 322 

with MR and PET scans available. The data was obtained through request at https://www.oasis-323 

brains.org/. 324 

4.2. Image Preprocessing and SUVR measurements 325 

T1-weighted MRI were tissue-class segmented and divided into atlas regions using the MCALT-326 

ADIR122 atlas24. Tau-PET scans were rigidly coregistered to corresponding MRI and median 327 

http://www.adni-info.org/
http://www.adni-info.org/
https://www.oasis-brains.org/
https://www.oasis-brains.org/


30 
 

values were taken for each region. Cortical and subcortical regions were referenced to the median 328 

of the cerebellar crus to form SUVR units. These regional SUVR values were used both to form 329 

the meta-ROIs and as inputs to our machine learning models (see Section 4.5).   330 

4.3. Visual assessment of Tau-PET scans 331 

We followed the FDA-approved official criteria for visual assessment to classify the scans in the 332 

study11,25. In addition, the visual assessment on Tau-PET scans in all data sets was performed 333 

independently by three trained raters. Readers examined the PET images scaled to the average 334 

counts in a 2D cerebellum ROI and assigned either a positive (increased neocortical tracer uptake 335 

isolated to the posterolateral temporal or occipital or parietal/precuneus regions with or without 336 

frontal activity) or negative (no increased neocortical activity or increased neocortical activity 337 

isolated to the mesial temporal, anterolateral temporal, and/or frontal regions) AD pattern status 338 

using a previously published visual interpretation method25 (Supplementary Fig. 5). 339 

4.4. Tau-PET status using meta-ROIs 340 

The temporal meta-ROI was a voxel-weighted average of median uptake in the entorhinal, 341 

amygdala, parahippocampal, fusiform, inferior temporal, and middle temporal regions with the 342 

cerebral crus gray median as a reference region8. A cutoff point of 1.23 SUVR was used to assess 343 

tau positivity for the temporal meta-ROI. The MTL was an unweighted average of medial Tau-344 

PET uptake in bilateral entorhinal cortex and amygdala while the NEO meta-ROI was a voxel-345 

weighted average of bilateral middle temporal and inferior temporal gyri9. Meta-ROI values above 346 

1.30 SUVR for MTL and above 1.73 for NEO were considered abnormal. 347 

4.5. Training and interpreting the machine learning model 348 

The inputs to the ML model were 41 cortical region SUVR values calculated as mean of the right 349 

and left hemispheres values. The final model was trained on the Mayo dataset (n = 1290) split 350 
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into 80% training (n = 1038) and 20% testing (n = 252) and was evaluated on the external datasets 351 

ADNI (n = 831) and OASIS-3 (n = 430). To validate the effect of the data splitting on the model 352 

performance, we split the data using 200 random seeds and ran the models on the different 353 

partitions (Supplementary Fig. 1). To account for class (tau-positive vs tau-negative) and group 354 

imbalance (discordant vs concordant) we implemented a semi-random iterative stratified data 355 

splitting technique (Supplementary Fig. 6).  356 

We used a multi-layer stack ensemble machine learning technique with a repeated k-fold bagging 357 

to train our model. Repeated k-fold bagging randomly partitions the training data into k folds and 358 

then trains k models, each using a different fold as the validation set. This process is repeatedly 359 

cross validated with the folds changing each time. The final ensemble model is then created by 360 

averaging the predictions of the k models. The Autogluon package was used for this purpose26. 361 

We preferred this technique due to its robustness and less likelihood of overfitting26. 362 

In order to interpret the model we used SHAP (SHapley Additive exPlanations)12. SHAP is a 363 

model-agnostic approach to interpreting model predictions that assigns a value to each feature 364 

which indicates how much a feature has contributed to the final prediction12. To develop the new 365 

metric THETA (section 4.5), we made use of SHAP’s Associative property, which states that the 366 

individual contributions sum up to the target label. In our binary problem of tau positivity, the SHAP 367 

values for each region ranged between -1 and +1 and for each tau-PET scan’s regional SUVR 368 

values these SHAPs added up to either a 0 (tau-negative) or +1 (tau-positive).  369 

4.6. Developing the novel tau summary measure 370 

We have developed a novel summary measure which we termed as the THETA score (Tau 371 

Heterogeneity Evaluation in Alzheimer’s Disease). This score is calculated as a linear 372 

combination of two components: the model outputs based on the contributions of tau SUVRs 373 

across the entire brain, and the weighted contribution of the SUVRs that fall within the 1st and the 374 
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99th percentile of SHAP values (Equation 1). The first component captures the overall feature 375 

importance by summing the SHAP values (∑ 𝜙𝑖𝑚𝑖=1 ) across 𝑚 number of regions. These SHAP 376 

values represent the individual contribution of each brain region (𝑖) to the model's prediction. The 377 

second component (∑ �̂�𝑖𝑥𝑖𝑚𝑖=1 ) focuses on the weighted contribution of the brain regions whose 378 

SHAP values fall within the percentile range. Across this subset, the SHAP values (�̂�𝑖) and the 379 

actual values of the corresponding SUVRs (𝑥𝑖) are multiplied to reflect their scaled impact. By 380 

combining these two components, the THETA score provides a comprehensive assessment of 381 

tau accumulation over the whole brain. 382 

Where φ𝑖 are SHAP values, �̂�𝑖  are the SHAP values within the percentile range, 𝑥𝑖 are the 383 

corresponding regional SUVRs, and 𝑚 is the total number of brain regions.  384 

To assess the repeatability of the THETA scores, we calculated the intra-class correlation 385 

coefficient (ICC) of the top models. We found the smallest ICC was 0.97 and the largest ICC was 386 

1.00 (Supplementary Fig. 1). 387 

4.7. Statistical Analysis 388 

Model performance was evaluated using Mathews correlation coefficient, balanced accuracy, 389 

precision, recall, and F1-score. Classification performance of the model and the meta-ROIs was 390 

measured on the test-set using Receiver Operating Characteristics Area Under the Curve (ROC 391 

AUC). The predicted probabilities and the raw SUVRs were used to plot the ROC AUC curve for 392 

the model and meta-ROIs, respectively. To compare the visual assessments to the meta-ROIs or 393 

to the ML model’s predictions, we used the true positive rate (TPR = TP / (TP + FN)), which is 394 

also known as sensitivity, true negative rate (TNR = TN / (TN + FP)), also known as specificity, 395 

rate of tau-positive mismatch (1-TPR), and rate of tau negative mismatch (1-TNR). In addition, 396 

𝛩 =  ∑𝜙𝑖𝑚
𝑖=1 +  ∑�̂�𝑖𝑥𝑖𝑚

𝑖=1  (1) 
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we evaluated the performance of THETA on the clinical disease severity measures by calculating 397 

correlation using Spearman 𝑟ℎ𝑜 and a linear estimation of slope and intercept using ordinary least 398 

squares. Lastly, we evaluated the separation between tau-positive and tau-negative for the 399 

different clinical diagnosis groups using Cohen’s 𝑑 for effect size and performed mean 400 

comparison using two-tailed independent samples t-test with Bonferroni correction for multiple 401 

comparisons. 402 
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