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Energy Efficient Artificial Olfactory System with Integrated
Sensing and Computing Capabilities for Food Spoilage
Detection

Gyuweon Jung, Jaehyeon Kim, Seongbin Hong, Hunhee Shin, Yujeong Jeong,
Wonjun Shin, Dongseok Kwon, Woo Young Choi, and Jong-Ho Lee*

Artificial olfactory systems (AOSs) that mimic biological olfactory systems are
of great interest. However, most existing AOSs suffer from high energy
consumption levels and latency issues due to data conversion and
transmission. In this work, an energy- and area-efficient AOS based on
near-sensor computing is proposed. The AOS efficiently integrates an array of
sensing units (merged field effect transistor (FET)-type gas sensors and
amplifier circuits) and an AND-type nonvolatile memory (NVM) array. The
signals of the sensing units are directly connected to the NVM array and are
computed in memory, and the meaningful linear combinations of signals are
output as bit line currents. The AOS is designed to detect food spoilage by
employing thin zinc oxide films as gas-sensing materials, and it exhibits low
detection limits for H2S and NH3 gases (0.01 ppm), which are high-protein
food spoilage markers. As a proof of concept, monitoring the entire spoilage
process of chicken tenderloin is demonstrated. The system can continuously
track freshness scores and food conditions throughout the spoilage process.
The proposed AOS platform is applicable to various applications due to its
ability to change the sensing temperature and programmable NVM cells.

1. Introduction

Biological olfactory systems (BOSs) play essential roles in liv-
ing things, such as predator detection and food freshness
determination.[1–3] Since the concept of an electronic nose (EN)
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that imitates BOSs was presented in
1982,[4] research on artificial olfactory
systems (AOSs) has steadily increased.[5–13]

AOSs have been commercialized and
utilized in numerous fields, including
disease monitoring and food spoilage
detection.[6,7] Owing to the develop-
ment of complementary metal–oxide–
semiconductor (CMOS)-compatible gas
sensors, such as GasFET,[14,15] capacitively
coupled FET (CCFET),[16,17] and floating-
gate FET (FGFET),[18,19] AOSs integrated
with a large-scale gas sensor array with
digital-based interface circuits have been
implemented.[20–22] The performance of
AOS has been improved by applying a
machine learning-based gas identification
algorithm using a large amount of gas
sensor data.[23]

Conventional AOSs consist of sensor
arrays, analog-to-digital converters (ADCs),
microcontroller units (MCUs), memories,
processors, and servers.[7–9,24,25] Olfactory
information is typically generated by

converting analog sensor array signals into digital signals and by
passing them to local processors or servers for processing and
inference. Since the sensor devices and computing devices are
physically separated and data processing and inference are per-
formed in a centralized von Neumann computing architecture,
conventional AOSs have certain limitations, such as high energy
consumption, latency, and data loss.[26–28] These limitations in-
tensify as larger AOSs with more sensors are developed. In ad-
dition, to implement portable AOS in a variety of edge devices,
these limitations must be addressed.

Recently, energy-efficient architectures that perform sensing
and computation functions on the same chip have received
increasing research interest.[27–32] Energy-efficient AOSs have
been proposed using 3D integrations,[22,33] memristors,[34,35] and
spiking neurons.[36,37] Vertically stacking processors, memories,
and sensor array layers on a single chip are favorable for the
size and communication speed; however, fabrication is challeng-
ing, and digital signal-based sensor/processor interfaces are still
required.[22,33] However, devices that employ in-memory comput-
ing (IMC) using memristors and signal processing through spik-
ing neurons have simple interfaces, and they effectively reduce
energy consumption. Nevertheless, to acquire reliable olfactory
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Figure 1. Biological olfactory system and proposed artificial olfactory system. a) Sequence of odor detection by the biological olfactory system. b)
Sequence of gas detection by the proposed artificial olfactory system. c) Schematic diagram of the proposed artificial olfactory system.

information utilizing IMC and spiking neurons, the raw data
from sensors should undergo low-level processing, such as base-
line cancellation and noise reduction.[28]

Among various olfactory sensors, semiconducting metal ox-
ide (SMO) sensors have received the most attention due to their
ability to be fabricated on a large scale using CMOS-compatible
processes.[38] SMO-based sensors have been successfully com-
mercialized because of their high sensitivity and reliability. How-
ever, SMO-based sensors require high operating temperatures
(>100 °C). There have been proposals for sensors operating at
room temperature (RT);[39–41] however, there are still concerns
with the humidity effect, long recovery time, device-to-device
variation, and mass production. For example, electrochemical
and polymer-based gas sensors have shown excellent perfor-
mance at room temperature and are being developed to over-
come these concerns.[42,43] In SMO-based sensors, microheaters
are built into sensors, and the heaters consume a large amount of
energy.[44,45] Therefore, to apply AOSs to edge devices, purpose-
oriented AOSs must be designed based on the small number of
sensors and the optimal heater operation (e.g., pulsed operation).

In this work, we present a near-sensor computing-based AOS
for food spoilage detection. The proposed AOS has a high energy
efficiency and compact design by mimicking the BOS. The BOS
obtains olfactory information in the following manner (Figure
1a). As odorant receptors react with volatile molecules and pro-
duce chemicals, olfactory neurons generate electrical signals that

are transmitted to the olfactory bulb.[46] The olfactory data pat-
tern of the olfactory bulb is transmitted to the olfactory cortex
of the brain, and olfactory information is inferred.[47] In the pro-
posed AOS, a sensing operation is performed through a gas sens-
ing material, a gas sensor array containing the sensing mate-
rial, an amplifier array containing gas sensors, and an NVM ar-
ray (Figure 1b). The charge transfer caused by the adsorbate-
surface reaction in the sensing material changes the electrical
properties of the gas sensor. The proposed AOS consists of an
amplifier array and an AND-type NVM array integrated on the
same substrate using conventional CMOS process technology
(Figure 1c). In the amplifier array, each amplifier consists of a
FET-type sensor and a load FET to reduce area and power con-
sumption. The sensed signal is amplified and converted to a volt-
age by an amplifier before being passed to the WL in a non-
volatile memory (NVM) array. In the NVM array, olfactory sens-
ing data are linearly combined through IMC-based multiplica-
tion and accumulation (MAC) operations, and meaningful olfac-
tory information is provided as output. The proposed AOS uses
a novel method of integrating the output of the sensing unit
and the input of the in-memory computing block without us-
ing the sensor/processor interface circuits and conventional low-
level processing. To verify the performance of the proposed AOS
in real-world applications, we demonstrate that AOS can provide
continuous food (chicken tenderloin) spoilage information as an
example.
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Figure 2. Design of the fabricated artificial olfactory system. a) Optical micrograph of the artificial olfactory system. b) SEM images of the artificial
olfactory system unit and c) AND-type NVM array. d) Energy-dispersive X-ray spectroscopy (EDS) mapping image of the fabricated gas sensor. e) Top
SEM image of the ZnO film. f) AFM image of the ZnO film.

2. Results and Discussion

2.1. Structure of the Artificial Olfactory System

The proposed AOS is fabricated using standard CMOS technol-
ogy (Figure 2a; Figure S1, Supporting Information). The AOS in-
tegrates sensing units (Figure 2b; Figure S2, Supporting Infor-
mation) and computing units (NVM array, Figure 2c). The fabri-
cated AOS has eight sensing units, and the size of the fabricated
NVM array is eight-word lines (WLs) × six-bit lines (BLs). The
sensing unit consists of a gas-sensing material, an nFET sensor,
and a pFET load. The sensors feature control gates (CGs) and
floating gates (FGs) in their constructions that are placed hori-
zontally; low-power microheaters are embedded beneath the CGs
(Figure 2d).[48] Gas sensors using floating gates have been stud-
ied for over 20 years and have shown excellent performance.[20,49]

As a gas-sensing material, an 8-nm-thick ZnO film is formed
on the CG, and a SiO2/Si3N4/SiO2 (O/N/O) layer covers the FG
(Figure 2d–f). The sensors have n+ poly-Si microheaters of vary-
ing widths (WH). When the heater voltage (VH) is supplied, the
eight sensors operate at various temperatures (T1–T8) and exhibit
different gas responses. An nFET sensor is connected in series
with a pFET load to form a trans-impedance amplifier circuit. The
outputs of the sensing units (Vouts = X1∼X8) are connected to the
WLs of the AND-type NVM array.

The proposed AOS directly uses the outputs of the sensing
units as the inputs of the computing units without low-level

processing or interfaces. Unlike conventional AOSs, the pro-
posed AOS does not require baseline compensation and noise
reduction. The sensing units of conventional AOSs utilize gas-
sensing materials as resistors with varying conductance in re-
sponse to the gas reaction.[50,51] As the current flows through
the polycrystalline sensing material, the baseline of the signal
drifts,[52] and the sensing signals are very noisy.[53] However, our
gas sensors with Si FET transducers exhibit little baseline drift
because the current does not flow through the gas-sensing mate-
rial (Figure S3, Supporting Information). In addition, since our
sensors use crystalline Si as channels, our sensors can have ∼105

times lower low-frequency noise than conventional resistor-type
sensors.[54,55] Table S1 (Supporting Information) shows the per-
formance comparison with state-of-the-art AOSs with sensing
and computing capabilities. Unlike previous studies, the pro-
posed AOS uses analog signals to perform sensing and process-
ing on the same chip, making it energy efficient.

2.2. Characteristics of the Artificial Olfactory Sensing Units

The equivalent circuit diagram and transfer curves of the artifi-
cial olfactory sensing unit are shown in Figure 3a,b, respectively.
Unlike existing sensing units that integrate each manufactured
sensor and amplifier,[7,8,33] the proposed sensing unit efficiently
merges a sensor and an amplifier. The sensing unit detects
gas through the following process. The interaction between the
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Figure 3. Characteristics of the artificial olfactory sensing unit. a) Schematic circuit diagram of the artificial olfactory sensing unit. Qeff, CS, CONO, Cp,
and Cox are the effective charge generated by the gas reaction, the capacitance of the sensing material, the capacitance of the O/N/O passivation layer,
parasitic capacitance, and gate oxide capacitance, respectively. b) Transfer curves of the artificial olfactory sensing unit (amplifier circuit) as a parameter
of gate bias (Vb) of load pFET. Transfer curves of the nFET sensor and pFET load are shown in the inset. c) Transfer curves of the sensor and d) amplifier
circuit before and after the 5 ppm NH3 gas reaction. A schematic cross-section of the sensor is shown in the inset of (c). e) Dynamic responses of the
artificial olfactory sensing unit to varying concentrations of H2S and f) NH3 gases at 265 and 222 °C, respectively. In the colored and uncolored regions,
the sensing unit was exposed to gas and air, respectively. ΔVout versus gas concentration curves are shown in the insets.

gas-sensing material and gas produces an effective charge (Qeff).
This Qeff changes the threshold voltage (Vth) of the sensor,[48]

which in turn changes the Vout of the sensing unit. That is, the
sensing unit detects the adsorbate–surface reaction, amplifies
the signal, and provides a voltage as an output. Figure 3c shows
the transfer curves of the sensor before and after the gas reaction
to 5 ppm NH3. Since NH3 is a reducing gas that reacts with
pre-adsorbed oxygen,[56] the gas reaction forms a positive Qeff
and reduces the Vth of the sensor. ΔVth causes a decrease in
Vout of the amplifier (Figure 3d). Due to the complement of the
nFET sensor and pFET load, the gain of the amplifier (AV =
ΔVout/ΔVin ≈ ΔVout/ΔVth) is large (AV = 9.3 V/V), maximizing
the output signal (Figure S4, Supporting Information). The
voltage (Vb) applied to the gate of the pFET load is set to a value
that maximizes AV (Figure 3b).

The sensing units are optimized for high-protein food spoilage
detection. The conditions of high-protein foods, such as meat,
can be classified as fresh, edible, spoiled, or completely spoiled
depending on the presence of gas, including no gas, traces of
NH3 gas, large amounts of NH3 gas, and H2S gas.[8,57] ZnO is
sensitive to NH3 and H2S gases, and it exhibits substantially
different reaction characteristics to these gases.[34,58,59] The X-
ray photoelectron spectroscopy (XPS) and grazing incidence X-
ray diffraction (GIXRD) analyses of the ZnO films are shown in
Figures S5 and S6 (Supporting Information), respectively. Thin-
film type ZnO enables high process uniformity and gas sensitiv-
ity. The thin ZnO film increases the depletion capacitance (CS, in
Figure 3a) of the sensing material due to oxygen adsorption, thus
increasing the effects of Qeff, ΔVth, and ΔVout.

[48] The responses

of the sensing unit to H2S and NH3 gases at varying concentra-
tions are shown in Figure 3e,f, respectively. Due to the low noise
and high AV of the sensing unit, the sensing unit has very low
detection limits (DLs) (<0.01 ppm NH3 and 0.01 ppm H2S). The
DLs of our sensing units are either similar to or surpass those
of previously reported high-performance sensors.[8,34,60] Notably,
the proposed sensing unit utilizes a film-type gas-sensing mate-
rial that is highly reliable and advantageous for mass production.

The artificial olfactory sensing unit array consists of eight sens-
ing units with different operating temperatures (T1–T8) and out-
put signals (X1–X8) (Figure 4a). When the temperatures (T1–T8)of
eight microheaters are 178–265 °C (VH = 3 V and RH = ∼400 Ω),
the power consumption of the array is 22.6 mW (Figure S7, Sup-
porting Information). Due to the excellent thermal insulation
structure of the microheaters,[45] the total power consumption
levels of eight sensing units are comparable to those of typical
commercial single gas sensors (15–60 mW).[61] Figure 4b,c ex-
hibit theΔVouts of the array response to NH3 and H2S gas, respec-
tively. The ΔVouts for NH3 and H2S gases have different patterns.
NH3 gas has a convex upward ΔVout pattern, whereas H2S gas
has a pattern in which ΔVout increases as T increases due to the
sulfuration reaction.[59] The array is tested in humidity-changing
environments similar to those of real applications; there is little
(<3%) decrease in ΔVouts with increasing relative humidity (RH)
(Figure 4d; Tables S2 and S3, Supporting Information). The Vout
baseline change of sensing units with varying humidity is shown
in Figure S8 (Supporting Information).

When the meat starts to rot, NH3 gas is generated, the de-
cay worsens, the NH3 concentration gradually increases, and
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Figure 4. Characteristics of the artificial olfactory sensing unit array and its application. a) Schematic circuit diagram of the artificial olfactory sensing
unit array. b) Output signals (ΔVouts) of the array (ΔX1 − ΔX8) after the NH3 and c) H2S gas reactions. ΔVout is the change in Vout before and after
the gas reaction. d) ΔVouts of the array at various relative humidity (RH). e) LCs of ΔVouts. ΔX1 + ΔX8 and f) 0.94 × ΔX8−ΔX1 are linearly related (R2

= 0.999) to the NH3 gas concentration in the 0.01–0.5 ppm and 0.5–5 ppm concentration ranges, respectively. g) ΔVouts of the array when 1 ppm H2S
gas is generated in the presence of 2 ppm NH3 gas. h) ΔX4−ΔX7 in various NH3 and H2S gas mixture environments.

H2S gas is produced. Therefore, monitoring the concentration
of NH3 gas and the presence of H2S gas is essential for meat
spoilage detection. The NH3 and H2S gas concentration versus
output signal curves have nonlinearities in all eight sensing units
and follow the Langmuir adsorption model (Figure S9, Support-
ing Information).[62] Due to this inherent nonlinearity, in previ-
ous studies, the gas concentration is predicted by sending the
output signals to the server and applying them to nonlinear
functions.[7,63] Herein, the proposed AOS uses linear combina-
tions (LCs) of the sensing unit outputs that have linear relation-
ships with the NH3 gas concentration. Two LCs (ΔX1+ΔX8 and
0.94×ΔX8 −ΔX1) are used to generate signals that are linear over
the 0.01–0.5 ppm and 0.5–5 ppm NH3 gas concentration ranges,
respectively (Figure 4e,f). The latter LC is intentionally set to have
a negative value when the NH3 gas concentration is <0.5 ppm;
thus, the LC is only utilized when its value is positive. Notably,
it is feasible to generate LCs with linearity in gas concentrations
across various concentration ranges. In other words, the LC con-
figuration can be tailored to the purpose and widely applied. LCs
can be used as binary information (positive or negative) and ana-
log numeric values. For example, after setting two LCs, food con-
ditions can be considered fresh if both LC values are negative,
edible if the former LC value is positive and the latter LC value
is negative, and spoiled if both LC values are positive. The pro-
posed AOS can detect the presence of H2S gas. Since NH3 and
H2S have distinct ΔVout patterns, the pattern is significantly al-
tered when H2S is generated in an environment containing NH3
gas (Figure 4g). The generation of H2S gas dramatically increases
the ΔVout values of sensing units operating at high temperatures.
The existence of H2S gas can be confirmed by simply comparing
X4 and X7. ΔX7 is greater than ΔX4 in environments containing
H2S gas. (Figure 4f).

2.3. Characteristics of the Artificial Olfactory Computing Unit

The artificial olfactory computing unit consists of the AND-type
NVM array. The output signals of the sensing units are connected
to the WLs of the NVM array. The signals are linearly combined
through IMC-based MAC operations and output as BL currents
(IBLs) (Figure 5a). The IBL can be expressed as follows:

IBLj =
∑

i

wij

(
Xi − Vij

)
(1)

where wij and Vij are the transfer curve slope and the Vth of the
NVM cell, respectively. The AND-type NVM array is utilized due
to its high density and programmability with low power using
Fowler–Nordheim (FN) tunneling (Figure 5b).[64] The NVM cells
can be programmed/erased using a poly-Si floating gate as a
charge storage layer (Figure 5c). Unnecessary NVM cells are pro-
grammed and turned off so that specific Xis contribute to the IBL,
and the cells are programmed/erased to have the desired Vij. The
slopes (wijs) of NVM cells can be controlled by adjusting the inter-
face trap density using hot carrier injection (HCI) (Figure 5d).[65]

Figure 5e exhibits the slope change in the NVM cell when HCI
is repeatedly performed for 100 μs while adjusting VGS and VDS.
The slope that is changed by HCI can be returned to the initial
state by consecutively performing two FN tunneling steps (one
erasing step (−9 V, 100 μs) and one programming step (10 V, 100
μs) at VD =VS = 0 V) (Figure S10, Supporting Information). Since
the NVM cells show excellent retention characteristics at 300 K
(Figure S11, Supporting Information), an AOS with uniform per-
formance can be obtained with a single configuration.

The proposed IMC method effectively provides LCs of signals.
If two of the NVM cells connected to X1 and X8 are turned on with
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Figure 5. Characteristics of the artificial olfactory computing unit. a) Schematic diagram of the AOS and b) the computing unit (AND-type NVM array).
A schematic cross-section of an NVM cell is shown. c) Program and erase characteristics of the NVM cell. d) Slope of the transfer curve (= transconduc-
tance) reduction by HCI. The graph shows an enlarged view of the part of the transfer curves where VGS and ID show excellent linearity (R2 = 0.999). e)
Slope change in the NVM cell with the HCI pulse. Blue squares, red circles, and yellow triangles indicate when HCI is performed for 100 μs under (VGS,
VDS) = (5, 1 V), (6, 1 V), and (6, 2 V) conditions, respectively. The slope changed by HCI returns to the initial state by successively performing two FN
tunneling steps ((VGS, tpulse) = (−9 V, 100 μs) + (10 V, 100 μs)). f). IBL1 (= w(X1+X8 − 2 V)) and Iref−IBL1 versus NH3 gas concentration. g) IBL3−IBL2
(= w(X1 − 0.94 × X8)) versus NH3 gas concentration. h) IBL5−IBL4 (= w(X4 − X7) in various NH3 and H2S gas mixture environments.

the same slope and the other NVM cells are turned off, IBL1 with
a linear relationship to the NH3 gas concentration (0.01–0.5 ppm
range) can be obtained (Figure 5f). By using an appropriate Iref,
an Iref−IBL1 linear relationship to the NH3 gas concentration can
be obtained (Figure 5f). Notably, the difference between the two
currents can be obtained with a simple circuit.[66] Similarly, LC
with linearity in high-concentration NH3 gas (Figure 5g) and LC
indicating the presence of H2S gas (Figure 5h) can be successfully
implemented using the NVM array. The proposed AOS can out-
put various LCs that provide meaningful olfactory information
by repeatedly using sensing signals. Note that the proposed low-
energy processing method is an efficient alternative to data pro-
cessing and inference performed on conventional external pro-
cessors and servers.

2.4. Application to Meat Spoilage Detection

The meat spoilage detection ability of the proposed AOS is tested
using chicken tenderloin. The ΔVouts of the sensing units and
images of the food over time are shown in Figure 6a. Chicken
tenderloin is kept at room temperature for testing. As the meat
spoils, it releases various gases including NH3 and H2S. On the

assumption that NH3 and H2S gases, which are predominantly
produced during meat spoilage, have a dominant influence on
the sensor signal, NH3 gas concentration prediction and H2S gas
generation detection are carried out. The reference point (0 h) is
chosen when the amount of NH3 gas produced from food ex-
ceeds 0.01 ppm. As food spoils, NH3 gas is generated, its con-
centration increases, and ΔVouts increases. Afterward, the ΔVout
pattern changes as H2S gas is generated. The outputs of the sens-
ing units are processed in the integrated NVM array to identify
NH3 gas concentration and food condition (Figure 6b). The NH3
gas concentration surpasses 0.5 ppm after eight hours. The IBL3–
IBL2 that is negative becomes a positive value after 8 h. After 11 h,
the concentration of NH3 gas exceeds 5 ppm, and H2S gas starts
to be generated. The IBL5–IB4 changes from negative to positive
after 11 h and continues to increase thereafter as the amount of
H2S gas produced by food spoilage increases. This finding in-
dicates that the food is completely spoiled from that point on-
ward. To confirm that the proposed AOS accurately detects gases,
the gases were analyzed using the commercial gas detection sys-
tem using electrochemical sensors and gas chromatography us-
ing thermal desorption (TD-GC) (Figure 6b). The concentration
of NH3 gas predicted using the commercialized electrochemi-
cal sensor is similar to that predicted by the proposed AOS. The
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Figure 6. Meat spoilage tracking using the proposed AOS. a) Transient ΔVouts during the spoilage of chicken tenderloin. The images of the food are
shown in the insets. b) ΔIBLs, system-inferred NH3 gas concentration, commercial electrochemical sensor-inferred NH3 gas concentration, TD-GC-
inferred H2S gas concentration, system-inferred H2S gas generation time, and freshness score during food spoilage. The NH3 gas concentrations in the
ranges of 0.01–0.5 ppm and 0.5–5 ppm are inferred using Iref−IBL1 and IBL3−IBL2, respectively. The generation of H2S gas is inferred using the change in
the sign of IBL5−IBL4 from negative to positive. The freshness score is calculated using Score = 100−150 × NH3 gas concentration. If the food generates
>0.5 ppm of NH3 gas, a freshness score of 0 is assigned. c) Method of classifying the food condition using the three outputs of the AOS as binary
signals. The system provides binary signals whether 1) the NH3 gas concentration is >0.01 ppm (low conc. NH3 alarm, yellow line), 2) the NH3 gas
concentration is >0.5 ppm (High conc. NH3 alarm, orange line), and 3) H2S gas is generated (H2S alarm, red line). By using three binary signals, the
food conditions are labeled fresh (000), edible (100), spoiled (110), and completely spoiled (111).

concentrations of H2S gas predicted by TD-GC are 0.015 ppm and
0.118 ppm at 11 and 12 h, respectively. The generation time of a
significant amount (>0.1 ppm) of H2S gas predicted using TD-
GC is 11 to 12 h, showing a similar trend to the proposed AOS.

The proposed AOS provides continuous and real-time ana-
log information related to food spoilage, and it can provide
appropriate food freshness scores for target foods. Herein, as
an example, we set the freshness score to 100−150 × NH3 gas
concentration (Figure 6b). We set the freshness score to zero (0)
if the food produces >0.5 ppm of NH3 gas. The three output
signals of AOS can be used as binary digital alarms to provide
food condition information. They change from negative (state
0) to positive (state 1) in the presence of low-concentration NH3
(0.01 ppm), high-concentration NH3 (0.5 ppm), and H2S gas,
respectively (Figure 6c). By using the three binary signals, the
state of food can be divided into fresh (000), edible (100), spoiled
(110), and completely spoiled (111). Unlike visual inspection,
which can only determine food conditions when it is completely
spoiled, the proposed system can track and evaluate the entire
food spoilage process.

3. Conclusion

In summary, we have proposed an artificial olfactory system for
application to food spoilage detection. The proposed AOS effi-

ciently integrates sensing and computing units on the same chip,
and it provides meaningful information by processing raw data
through near-sensor computing. The sensing units have high
sensitivities to NH3 and H2S gases, which are essential for de-
tecting food spoilage and insensitive to humidity. The sensing
units exhibit very low detection limits (<0.01 ppm NH3 and
0.01 ppm H2S) because of the thin-film ZnO gas sensing ma-
terial that considers the sensor transducer, high amplifier gain,
and low noise. The eight sensing units configured in the array
operate at different temperatures, resulting in different gas sens-
ing characteristics; the signals from the sensing units show dif-
ferent patterns for NH3 and H2S gases. Linear combinations of
sensing unit signals that are linear to NH3 gas concentration
and notify H2S gas generation are calculated through in-memory
computing (IMC) in the integrated non-volatile memory (NVM)
array. Proof-of-concept measurements of food spoilage are per-
formed using chicken tenderloins. The proposed artificial olfac-
tory system (AOS) can continuously monitor food throughout the
spoilage process, estimate the NH3 gas concentration and fresh-
ness score based on analog outputs, and classify food conditions
using binary signals.

Here, AOS is designed considering NH3 and H2S gases, which
are the most representative markers of meat spoilage. Since the
sensor is primarily influenced by the two gases produced by meat,
the predicted NH3 gas concentration and H2S gas generation
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time are comparable to those obtained with commercial gas de-
tection analysis equipment (electrochemical sensor and TD-GC).
The proposed AOS judged food spoilage conditions based on the
detection of these two gases. However, to determine the degree
of food spoilage in detail, various volatile organic compounds
(VOCs) should be considered. We believe that the proposed AOS
will achieve better performance in food spoilage detection if sens-
ing characteristics of sensors to various VOCs are considered.

Unlike conventional systems, the proposed AOS has a high
energy efficiency and compact design because it does not need
to convert all raw data using ADCs and perform low-level pro-
cessing. The proposed AOS processes the analog sensing signal
without interface circuits (e.g., ADCs) between the sensors and
the processor and converts it into meaningful refined data on the
same substrate integrated with the gas sensors. Since the AOS
performs processing and computing at the edge, converting and
transmitting only the minimum essential data, it minimizes en-
ergy consumption and latency. The AOS is believed to have sig-
nificant potential for edge device applications requiring ultralow
energy. In this study, the proposed AOS is specialized for food
spoilage detection; however, the proposed AOS platform can be
used for various applications by adjusting the gas-sensing mate-
rials and operating temperature ranges and by programming the
NVM cells.

4. Experimental Section
Device Fabrication: The artificial olfactory system was fabricated in a

cleanroom at the Inter-university Semiconductor Research Center (Seoul
National University) by utilizing conventional CMOS processes with ten
photomasks on a 6-inch p-type bulk Si wafer with an orientation of (100)
(Figure S1, Supporting Information). The wafers were cleaned using a sul-
furic acid peroxide mixture (SPM), ammonia peroxide mixture (APM), hy-
drochloric acid and peroxide mixture (HPM), and diluted hydrofluoric acid
(DHF) solutions. Reference markers were patterned using inductively cou-
pled plasma (ICP) dry etching on Si substrates. A 10-nm-thick SiO2 layer
was deposited by low-pressure chemical vapor deposition (LPCVD) to cre-
ate a sacrificial oxide that could protect the substrate throughout the ion
implantation process. For the p-channel devices, an n-well implantation
procedure (P+, 120 keV, 3 × 1012 cm−2) was performed. The n-well with
a depth of ∼2 μm was produced by performing the drive-in operation for
11 h at 1100 °C. Following the removal of the sacrificial oxide, a 10-nm-
thick SiO2 layer, and a 150-nm-thick Si3N4 layer were successively pro-
duced on the substrate by thermal oxidation and LPCVD, respectively. The
two layers were successively patterned by the reactive ion etching (RIE)
method to define the active areas of the FETs. Then, B+ field implanta-
tion (40 keV, 1.6 × 1013 cm−2) was conducted. By using the local oxida-
tion of silicon (LOCOS) technology, a 550-nm-thick SiO2 layer (field ox-
ide) was thermally grown to electrically isolate nearby devices. The SiO2
and Si3N4 layers above the active areas were removed using wet etching
with hot phosphoric acid (H3PO4) and DHF solutions. As the final step
of the LOCOS technique, the thermal oxidation process was conducted to
remove the white ribbon-shaped residues created during the wet oxidation
process. After ion implantation to adjust the threshold voltage (Vth), the
thermal oxide film was removed from the DHF solution. A 10-nm-thick
SiO2 layer (gate oxide) was thermally grown. A 300-nm-thick in situ n+-
doped poly-Si was produced by LPCVD and patterned for floating gates
for NVMs and sensors, gates for FET loads, and microheaters for sensors.
Source/drain (S/D) implantation (n-channel: As+, 40 keV, 2 × 1015 cm−2,
p-channel: BF2

+, 25 keV, 2× 1015 cm−2) was conducted. The O/N/O passi-
vation layer (10/20/10 nm) was successively deposited following the rapid
thermal process (RTP) (1050 °C, 5 s). After defining the contact holes,
Ti/TiN/Al/TiN metal layers (20/20/50/10 nm) were deposited and pat-

terned for control gates for sensors and NVMs and metal electrodes. The
H2 alloying process was conducted at 400 °C for 10 min. Etching holes
were patterned, and two kinds of dry etching were conducted to create an
air gap underneath the heater. To etch the field oxide, ICP etching using
CF4 gas was performed. Then, an RIE method using SF6/Ar gas was used
to etch the Si substrate isotropically. Finally, the sensing material (ZnO)
was deposited and patterned.

ZnO Characterization: Surface scanning electron microscopy (SEM)
and atomic force microscopy (AFM) images of the ZnO film were obtained
using a field-emission scanning electron microscope (SIGMA, Carl Zeiss)
and atomic force microscope (NX-10, Park Systems). The GIXRD pattern
was obtained using a grazing incidence X-ray diffractometer (Xpert Pro,
PANalytical). The XPS data were obtained using the VersaProbe III scan-
ning XPS microprobe equipped with an Al K𝛼 source.

Gas-Sensing Measurement: Measurements of sensor, including food
spoilage detection, were conducted using a probe station (main cham-
ber) with gas injection and ejection and a semiconductor parameter an-
alyzer (B1500A, Agilent) (Figure S12, Supporting Information). Humidity
and gas concentration levels were adjusted in the mixing chamber using
the mass flow controller (MFC), and gas was injected into the main cham-
ber at a rate of 200 mL min−1. Dry air was bubbled through deionized water
to form humid air. The mixing ratio of humid air and dry air was adjusted
to form humid air with the desired relative humidity. Afterward, a humidity
test was performed using a commercial humidity sensor. For food spoilage
detection, dry air was injected into the container with the food sample at
a rate of 200 mL min−1, and gases from the food were injected into the
main chamber. Gases from the food sample (chicken tenderloin) were an-
alyzed using a commercial gas detection system using electrochemical
gas sensors (AOMS-1000, ACEN) and gas chromatography with thermal
desorption (TD-GC, TurboMatrix 300 TD & Clarus 690 GC, PerkinElmer).
The gases were contained in Tedlar bags and used for analysis. The gases
generated from the food at approximately the same time were utilized for
the proposed AOS and commercialized systems.

The simplified equivalent circuit and IH–VH curve of the microheater
array are shown in Figures S13a and S7a (Supporting Information). The
temperatures of the sensing units belonging to the array were predicted
through a comparison of output signals of a single sensing unit and of
the array unit (Figure S13b, Supporting Information). Figure S7 (Sup-
porting Information) shows the temperature and power characteristics of
the microheaters. A single sensing unit was relatively free from parasitic
resistance characteristics, such as line resistance, making temperature
predictable using conventional resistance temperature detection (RTD)
methods.[34]

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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