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Abstract

The incidence of stroke and stroke-related hemiparesis has been steadily increasing and is 

projected to become a serious social, financial, and physical burden on the aging population. 

Limited access to outpatient rehabilitation for these stroke survivors further deepens the healthcare 

issue and estranges the stroke patient demographic in rural areas. However, new advances in 

motion detection deep learning enable the use of handheld smartphone cameras for body tracking, 

offering unparalleled levels of accessibility. In this study we want to develop an automated 

method for evaluation of a shortened variant of the Fugl-Meyer assessment, the standard stroke 

rehabilitation scale describing upper extremity motor function.We pair this technology with a 

series of machine learning models, including different neural network structures and an XGBoost 

model, to score 16 of 33 (49%) Fugl-Meyer item activities. In this observational study, 45 

acute stroke patients completed at least one recorded Fugl-Meyer assessment for training of the 

auto-scorers, which yielded average accuracies ranging from 78.1% to 82.7% item-wise. This 

novel method is demonstrated with potential to conduct telehealth rehabilitation evaluations and 

assessments with accuracy and availability.
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Introduction

Studies report up to 85% of stroke survivors experience upper extremity (UE) hemiparesis 

in at least one arm 1 and 78% fail to achieve the average UE function for their age, even 
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after 3 months of treatment and rehabilitation 2. Loss or partial loss of function in even one 

of the limbs can be extremely debilitating and depressive, as many basic daily tasks require 

bimanual function. In fact, dependence on bilaterality has been shown to increase with age 3. 

Common tasks like buttoning a shirt, writing, reaching for objects, and opening bottles mean 

the survivor must unlearn old habits and relearn new ones 4,5.

The growing issue of poor accessibility to healthcare exacerbates this functional decline, 

particularly for patients with disabilities in rural areas and largely attributable to a wide 

variety of factors6. In Texas, for example, the geographic disparities between rural and 

urban America are apparent; 71% of rural counties lack outpatient rehabilitation clinics 

for stroke patients, which greatly exceeds the 19% of urban counties 7. Parekh and Barton 
8 describe other contributing factors and the complications of healthcare delivery to an 

aging and increasingly disabled population, citing 75 million people who have multiple 

chronic conditions. These comorbidities reduce patient compliance and stand in the way 

of treatment that is best realized by active participation. Current telerehab programs assess 

motor impairment utilizing technology that is expensive, out of reach for many, or utilize 

a hybrid in-person assessment, as there is limited availability of quantifiable remote motor 

assessment 9–11. Uninsured and underinsured patients tend to have increased disability after 

stroke, are less likely to be discharged to inpatient rehabilitation, and may have minimal 

or no access to outpatient therapies following a stroke 12–14. These reasons inspire us to 

advance technologies that can reach an increasingly isolated patient demographic.

An automated assessment of the UE post-stroke that can occur in an outpatient setting 

will provide clinicians with important data to guide decision-making and maximize session 

time for targeted intervention, whether it is in the home or via telerehab. Automation of 

the Fugl-Meyer assessment, which is used extensively as the primary metric to quantify 

post-stroke recovery, can provide objective data on range-of-motion, strength, and functional 

abilities that would otherwise require time and labor from healthcare professionals. In this 

paper, we present a novel approach to using machine learning for automatic scoring of 

the Fugl-Meyer assessment to measure upper extremity function in stroke patients. Our 

primary objective is to demonstrate the feasibility of using a single digital camera for motion 

detection and machine learning methods for automatic scoring. We developed and tested the 

predictive ability of four machine learning models on videos provided by consenting stroke 

patients and compared the results with scores provided by a trained healthcare professional. 

Our results show that machine learning models can achieve similar or better accuracy than 

human experts in predicting Fugl-Meyer assessment scores. This approach has the potential 

to reduce clinician burden and improve accessibility to marginalized groups.

Methods

A. Patient Recruitment

45 adult study participants with acute or subacute weakness or unilateral hemiplegia as 

a result of ischemic or hemorrhagic stroke were recruited after admission to inpatient 

rehabilitation facilities within the Memorial Hermann Health System. Patients were 

ineligible to participate in the study if they were younger than 18 years old and at the 

discretion of their attending physician; this refers to any limiting reason from the physician 

Zamin et al. Page 2

Neurorehabil Neural Repair. Author manuscript; available in PMC 2023 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



who is responsible for the patient’s well-being, including their current physical condition 

or interference with important treatment. No physicians recommended exclusion of any 

subject for this study. Subjects enrolled in the study if they could comprehend and follow 

basic instructions. All subjects provided in-person or electronic informed consent after an 

explanation of the study protocol and prior to any study activity, which was approved by the 

UT Health Institutional Review Board (IRB) and Committee for the Protection of Human 

Subjects (IRB number: HSC-MS-20–0767).

B. Study Activities

After enrollment, researchers performed Fugl-Meyer assessments with subjects every 2 

days. Fugl-Meyer exercise items were recorded only after the activity was described by 

the investigator, demonstrated by the investigator, and the subject showed understanding 

by demonstration. For the recordings, study participants repeated each movement with 

both arms, first on their non-paretic side, between 3 and 5 times. Fugl-Meyer assessments 

were ended immediately upon request of the subject for any reason. The movements were 

captured by a video camera at a resolution of 1080p and a frame rate of 60 Hz placed 3–5 

meters away on a tripod 1.5 meters in height. Consistent camera placement, ample lighting, 

and an unobscured subject improved the quality of motion detection. The Fugl-Meyer was 

scored in-person by the investigator leading the assessment and by a licensed occupational 

therapist after the video was spliced into individual activity items. The occupational 

therapist completed standardization training for an NIH trial and had BlueCloud certification 

for scoring visual recordings of Fugl-Meyer assessments. All identifiable patient health 

information, including raw audio- and visual-recording data, was stored locally on an 

encrypted hard drive and later on a secure UTHealth School of Biomedical Informatics 

(SBMI) server. Subject videos were separated into smaller clips consisting of individual 

Fugl-Meyer activity items for ease of scoring by both the model and by the licensed 

occupational therapist.

C. Deep-learning Motion Detection Algorithm and Feature Extraction

We modified a joint recognition pipeline15 to extract body joints locations from videos. The 

pipeline uses YOLO V316 object detection model to obtain bounding boxes of the patient’s 

presence in the image. The cropped bounding boxes are then fed to the HRDNet model17 to 

extract joints and other landmarks on the body. The output would be extracted xy-positional 

coordinates of body joints (nose, neck, hip center, and shoulder, elbow, wrist, hip, knee, 

ankle, eye, ear for both sides of body), which would be further used as input along the 

timeline of the patient’s video as an input to score classification model.

Besides major body joints, several Fugl-Meyer assessment items (exercises in hand or wrist 

groups) require high-precision location identification of hand joints from a patient’s video. 

A finger joint detection model18 is implemented which firstly fits a palm detector to provide 

a bounding box for the hand’s skeleton, and then lock joint landmark locations (wrist alone 

and 4 joints from all 5 fingers respectively for hand model).

For both models, the output is a (f × 3) vector for each frame, where the first dimension f
is the number of features and the second dimension 3 contains the xy-positional coordinates 
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and a confidence level. The number of features is 21 for each joint in the hand model and 19 

for each joint in the body model. Normalization of joint position coordinates controlled for 

differences in subject size and allowed fair comparison between samples. A demonstration 

of two models on original videos are shown in Figure 1.

The positional coordinates of features were extracted from video clips for analysis by the 

Fugl-Meyer Auto-Scoring Models described in section D. Due to symmetry across the 

sagittal plane, metrics could be calculated both on the left and right side of the subject 

without adaptations. A summary of the features extracted and final inputs for the auto-

scoring models are described in Table A2. Additional information on individual features is 

provided in the appendix.

D. Fugl-Meyer Auto-Scoring Models

16 items of the Fugl-Meyer assessment (described in Table 2) are recorded using only a 

smartphone camera and scored using machine learning methods. Multiple deep learning 

models including a convolutional neural network (CNN), recurrent neural network (RNN) 

and dilated CNN were evaluated to find the highest performing model.

For each video, a 3D tensor of size 2 × n × Jb for the body (for body actions such as shoulder 

flexion to 90°) or 2 × n × Jℎ for the hand (for hand actions such as Wrist circumduction) is 

generated. Jb = 19 and Jℎ = 21 denote the number of joints for body and hand, respectively. 

Note that x and y coordinates of each joint are encoded as two channels in the 3D tensor, and 

we selected n = 15 frames of equal interval along the video length

For the CNN model, our plain action recognition network was to extract spatial-temporal 

information from the frame-wise joint locations. It consisted of 3 convolution layers with 

a filter of 3 × 3, a stride of 1 and a padding of 1, and as the feature map size is halved, 

the channels (number of filters) is doubled. Two sets of filter numbers were tested: 64 and 

128 for the number of filters in the first convolutional layer, respectively. Each convolutional 

layer is followed by batch normalization (BN).

To further improve the action recognition performance, we used a CNN layer as a backbone 

for encoding, and then added a layer of RNN layer as a CNN-RNN model (hidden size 

= 64), and a layer of dilated CNN where the extracted encoded features are flattened 

and concatenated along the time dimension. A demonstration of the models’ structure 

can be found in Fig. A1. To compare prediction accuracies of deep learning models with 

advanced machine learning models, we chose eXtreme Gradient Boosting (XGBoost) to be 

the machine learning benchmark model.

E. Evaluation and Statistics

For each Fugl-Meyer assessment item score there are 3 possibilities: 0, 1 and 2, where 2 

implies the patient performs no/little difference in this item with the weak side compared to 

the strong side, while 0 implies that the patient cannot finish/have great difficulty conducting 

such movement. The ground truth data used in calculating the accuracies was the experts’ 

scores of the same videos that were fed to the algorithm. The actual FMA scores were 

not used in the calculation. Our model was trained on the experts’ scores and then applied 
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to reserved videos for testing.We treated item-wise Fugl-Meyer assessment scoring as a 

classification problem of 3 classes, did a 10-time cross-validation of randomly train-test split 

in item-wise level, and calculated the averaged accuracy, AUROC, and its standard deviation 

for comparison. In these cross-validations, training and testing sets were kept separate. 

Moreover, we then conducted group-wise Fugl-Meyer assessment scoring evaluation by 

fitting a linear regression model between predicted and actual group scores to calculate the 

coefficient of determination, and root-mean-square error (RMSE) of difference.

Results

A. Patient Characteristics

A total of 45 study participants completed at least one Fugl-Meyer assessment and are 

included in the analysis. A summary describing patient demographics and conditions is 

provided in Table 1. NIH Stroke Scores (NIHSS) were taken at admission and recorded 

by hospital staff on the patient’s electronic health record. Demographic information for 

one patient was missing due to a documentation glitch, but the subject provided informed 

consent and participated in all study activities.

B. Modified Fugl-Meyer Assessment Items

Table 2 categorizes and summarizes the Fugl-Meyer assessment and identifies scorable 

items with an abbreviation. Items that can not be scored fall under 1 of 3 categories:

1. Requiring physical examination (R)

2. Involving occluded joints or undetectable motion (U)

3. Requiring strength assessment (S)

C. Item-Wise and Group-Wise Prediction Accuracies

Table 3 illustrates various models’ ability to predict scores from the videos for each 

individual item, described as item-wise, and the predefined categories of the Fugl-Meyer, 

described as group-wise. It also lists the number of videos for each class (0, 1, 2) for each 

Fugl-Meyer item. To test accuracy and generalizability of the model at multiple structural 

levels, group-wise predictions were conducted for the dilated CNN model, described in 

Table 3b. Since in each group 2 or 3 items are included, we take the sum of scores for 

each patient with potential total score as 4 or 6, respectively, and treat it as a regression 

problem and evaluate the performance using root-mean-square deviation (RMSE). Figure 2 

reiterates the tabular item-wise prediction accuracies in a graphical form. Average accuracies 

are 82.7∓1.6%, 80.7∓1.7%, 76.4∓1.6%, and 78.3∓2.2% for the dilated convolutional neural 

network, convolutional neural network and recurrent neural network, convolutional neural 

network, and XGBoost models respectively. Strong correlation between model prediction 

and actual scores are seen when analyzed group-wise; correlation coefficients range between 

0.83 and 0.951 and average 0.89. For XGBoost models, we tried to identify features 

that contribute mostly to prediction on each items, and the results are shown in Figure 

A2. Moreover, we demonstrated the inter-rater agreement over scoring Fugl-Meyer items 
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through video slices, and the details of comparison experiment can be found in Inter-rater 

Agreement Analysis part in Supplementary.

Discussion

In this study, we demonstrate the feasibility of a low cost and very accessible method 

to automatically score components of the Fugl-Meyer Upper Extremity assessment. We 

used data provided from 45 study participants who share similar demographic and clinical 

diversity to the greater stroke patient population.

Traditional methods automating the Fugl-Meyer assessment rely on a combination of 

different motion capture devices and scoring techniques: Table A1 summarizes the recording 

apparatus, count of scorable Fugl-Meyer items, scoring methods, and results of several 

studies for reference. All related studies use at minimum one Kinect camera to capture 

motion for their automation. With this recording configuration, one model19 predicts Fugl-

Meyer scores with accuracies ranging between 65% and 87% depending on the item, 

and another models’20 results, which are described as correlations between qualitative and 

quantitative scores, vary greatly depending on the activity, showing virtually no correlation 

for flexor synergy (0.03) and strong correlation for wrist flexion (0.97). Other methods21 use 

two Kinect cameras to capture 3D body representations and a random forest model to predict 

two Fugl-Meyer item scores at 91% and 59% accuracy. Studies23,24 also occasionally 

employ the use of force sensors and inertial measurement units to score up to 26 and 

25 items, respectively; support vector machines and backpropagation neural networks for 

scoring achieved prediction accuracies of 86% and 93% for each model24 and scoring 

activities using a binary rule-based classification method23 yielded accuracies ranging 

between 66.7% and 100% depending on the Fugl-Meyer item.

Among the most important shortcomings of these studies is the employment of complex 

and costly technologies. All related studies rely heavily on depth sensing with the 

Microsoft Kinect camera. Issues with this camera include detection of subtle movements 

like supination and pronation, noise and inaccuracy when joints are occluded, reliance on 

infrared for motion capture, and poor hand tracking24. The use of external devices23,24 allow 

scoring of additional Fugl-Meyer items which improves clinical utility, but at the expense of 

reducing accessibility of the proposed technology, which is a focus of our study.

Video information analyzed by deep-learning motion detection models is the most accessible 

and least costly alternatives to Kinect depth sensors and marker-based motion capture 

technology. The smartphone is a ubiquitous tool among all generations and in all 

households, making it a prime candidate for reaching geographically and financially isolated 

populations; the methods presented in our study can be implemented practically with pre-

existing technology in remote settings, although it will be important in future studies to 

assess our automated method on handheld devices. Most importantly, we show that these 

methods can compete with and even outperform traditional methods of automating the 

Fugl-Meyer assessment. Depending on the model, the average accuracy ranged between 

78.1% and 82.7% for individual Fugl-Meyer items. Strong correlation (R2 = 0.89) between 

model prediction and actual scores are observed when analyzed group-wise. These results 
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further suggest the loss of information going from depth sensors to handheld video cameras 

is insignificant.

For item-wise accuracies, all models struggled the most with wrist circumduction, likely 

attributable to the low sample size of this activity. This item’s videos were not cut into 

individual repetitions because the activity is performed quickly and with poorly identifiable 

start and finish points. The group-wise accuracies presented in Table 3b suffer from low 

sample size due to the frequency of the therapist being unable to score items on the Fugl-

Meyer assessment due to the subject’s unique disability in the acute hospital setting. This 

often led to samples with incomplete Fugl-Meyer assessment scores and exclusion from this 

table, even if only one item was unscored. We plan to conduct future studies in outpatient 

settings, in order to conduct more complete Fugl-Meyer recordings, which could inform us 

on the method’s errors and possible correlations with severity of stroke. However, this is not 

a focus of this study as our goal is to study the individual components of the Fugl-Meyer and 

we were able to obtain a sufficient number for each component to conduct the ML analyses 

(as indicated in Table 3a). Furthermore, we wanted to focus on the individual components of 

the score which are clinically more meaningful than the total score.

Alternative methods to auto-scoring machine learning models were attempted, most notably 

rule-based classification23. An assortment of features described in Table A2 were calculated 

from the joint positional coordinates and employed in a logical scoring system that was both 

clinically interpretable and unique to each item. However, noise generated by the motion 

detection algorithm and volatility of angles produced when joints were collinear with the 

camera line-of-sight led to poor performance overall: rule-based classification averaged an 

accuracy of 66.7% with 3 items failing to exceed 50% and 6 items failing to exceed 60%. 

Auto-scoring machine learning methods tolerate noise from the motion detection algorithm 

and the volatility natural to 2D joint extractions from 3D movements; a sufficiently large 

sample of training data could compensate for the associated loss in clinical interpretability.

Limitations of this study include some loss of clinical utility described previously, 

attributable to several factors. The motion detection model used in this study does not 

appreciate the real geometry of many joints and physical position of the upper extremities. 

The ball-and-socket glenohumeral joint allows for internal and external rotation of the 

arm, which is undetectable by the current model. This paired with obfuscation of the 

scapulothoracic joint reduces the number of scorable items and may limit the scope of the 

model’s clinical utility. These critical, unidentifiable movements reduce the total item count 

by 4. However, it is possible that this model could infer information about these joints and 

mitigate this occlusion with sufficient data. Other unscorable items involve UE functions 

that are invisible to cameras and require an in-person examiner, including reflexes, wrist 

strength, and grip strength.

The distribution of video scores among subject videos presents another challenge to model 

performance: imbalanced classes are most evident in items FM-3, FM-4, FM-5, FM-16, and 

FM-17. However, FM-3, FM-4, and FM-5 still have enough samples distributed between 

2 of the 3 classes for differentiation by the auto-scorer. Fugl-Meyer items assessing 

tremors and dysmetria, abbreviated FM-16 and FM-17, were collected and scored by the 
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occupational therapist, but severe imbalances prevented training of the models: there were 

69, 1, and 0 videos scored 2, 1, and 0 for tremors and 32, 5, and 0 videos scored 2, 1, and 

0 for dysmetria, respectively. For this reason, it is likely these items can be scored by these 

model architectures in theory with sufficient data, but it is not proven in this study.

FM-18, or the time taken during the coordination and speed activity item, can not be scored 

using the machine learning models because the criteria is strictly rule-based in design. Inputs 

for the neural networks and XGBoost do not include any reference to the total number 

of video frames, so differences in activity duration are undetectable. However, this item is 

scorable by other means very simply; if submitted videos begin at the start of the activity 

item and finish at the end of the activity item, the quantity of frames and frame rate of the 

camera provide a score for FM-18.

Conclusion

This paper presents a method for low-cost automatic assessment of upper extremity 

impairment in stroke patients. We show the designed models can score 16 of 33 (49%) 

items in the Fugl-Meyer assessment, with accuracies ranging from 78.1% and 82.7% for 

each item. When grouped by Fugl-Meyer category, strong correlations between model 

prediction and actual scores were achieved (R2 = 0.89). This system carries potential to 

reduce physician and therapist burden, increase monitoring of arm impairment, and improve 

the quality and access to care.

In future studies, we envision several changes that could help establish this method as an 

effective solution to the growing issue of healthcare inaccessibility among stroke patients 

in rural settings. We would also like to explore the feasibility of this method in a larger 

population; recording in an outpatient clinical setting or subject’s home would help acquire 

more data for training the models and test this technology’s ability to function in its 

intended environment. Utilizing automated Fugl-Meyer could be used in rehabilitation trials 

to provide intermittent assessments during interventions, easily performed in the patient’s 

own home. Linking the data obtained through automated Fugl-Meyer assessment could 

be further applied to define “rehabilitation success” and even “rehabilitation potential,” 

enabling clinicians to make informed decisions for patient care. However, before widespread 

applications of our method, we will first need to determine which additional components 

of the FM can be automated and then re-test its validity and reliability. We also need 

to determine in longitudinal studies whether this method will be able to discern minimal 

clinically important differences in FM. Lastly, we believe that consistent camera placement, 

ample lighting, and an unobscured subject are important for optimal quality of motion 

detection. Future studies will be helpful to determine which of these parameters are essential 

for optimal quality.
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Appendix

Table A1.

Related Research

Study Recording Items Scoring Method Accuracy

(Eichler et al., 2018)21
- 2x Kinect cameras
- NS = 12, NH = 10 2 SVM, Single Decision, RF 59%, 91%

(Lee et al., 2018)22

- 1x Kinect camera
- Force sensors
NS = 9, NH = 1 26 Binary rule-based classification 66.7% - 100%

(Otten et al., 2015)23

- 1x Kinect camera
- 1x IMU
- 1x Glove sensor
- NH = 10 25 SVM and BNN 86% and 93%

(Kim et al., 2016)19
- 1x Kinect camera
- NS = 41 13 PCA and ANN 65% - 87%

(Olesh et al., 2014)20

- 1x LED-marker camera
- 1x Kinect camera
- NS = 9 10 PCA 0.03 < R2< 0.98

Abbreviations: NS, stroke subject sample size; NH, healthy subject sample size; IMU, inertial measurement unit; SVM, 

support vector machine; RF, random forest; BNN, backpropagation neural network; ANN, artificial neural network; 

R2, correlation coefficient. Accuracy is provided as a percentage compared to manual scores from trained healthcare 

professionals.

Table A2.

Features Extracted

Feature Name Description Abbreviation

Initial Metrics

 Shoulder ROM List of angles between arm and torso Sh_ROM

 Elbow Angle List of angles between axis of arm and forearm EA

 Wrist ROM List of vertical distances between fingers and wrist joint Wr

 Pro.-Sup. List containing classifications of “supination,” “pronation,” or 
“neutral”

Pro_Sup

 First 10% Isolates first 10% of video frames/the beginning of activity F10

 Last 90% Isolates last 90% of video frames/after the beginning of activity L90

 Last 10% Isolates last 10% of video frames/the end of activity L10

 Speed List of changes in values from another list, like speed Spd

 Maximum Highest value of list Max

 Minimum Lowest value of list Min

 Average Average value of a list Avg

 Mode Most common value in a list Mod

 Std. Dev. Standard deviation of the values in a list SDev

 1st Digit DIP List of positions of the 1st digit’s distal interphalangeal joint 1DIP

 3rd Digit MCP List of positions of the 3rd digit’s metacarpophalangeal joint 3MCP

 3rd Digit DIP List of positions of the 3rd digit’s distal interphalangeal joint 3DIP
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Feature Name Description Abbreviation

 5th Digit DIP List of positions of the 5th digit’s distal interphalangeal joint 5DIP

 Wrist Position List of positions of the wrist WrP

 Distance between 2 joints List of Euclidean distances between 2 joints labeled x and y Dis (x, y)

 Ratio between 2 distances A ratio of minimum distance to maximum distance between joints 
labeled x and y

R (x, y)

Model Inputs

 Max(Sh_ROM) Highest angle between arm and torso achieved during exercise

 Avg(Spd(Sh_ROM)) Average angular speed of the arm during abduction

 Max(Spd(Sh_ROM)) The maximum angular speed of the arm during abduction

 Max(EA) Greatest amount of elbow flexion

 Min(EA) Greatest amount of elbow extension

 Max(F10(EA)) Greatest angle of flexion in the first 10% of video frames

 Max(L90(EA)) Greatest angle of flexion in the last 90% of video frames

 Avg(EA) Average angle between arm and forearm during exercise

 Avg(Spd(EA)) Average speed arm is flexed or extended during exercise

 Max(WrY)-Min(WrY) The total vertical ROM of the wrist

 Max(WrX)-Min(WrX) The total horizontal ROM of the wrist

 SDev(Wr) Standard deviation from the mean position of the wrist

 Avg(Spd(Wr)) Average speed the subject moves their wrist

 Mode(L10(Pro_Sup)) At the end of an exercise, the highest frequency of hand positions 
classified as “supinated,” “pronated,” or “neutral”

 Max(Spd(5DIP)) The maximum speed of the 5th digit

 Avg(Spd(5DIP)) The average speed of the 5th digit

 Max(Spd(1DIP)) The maximum speed of the thumb

 Avg(Spd(1DIP)) The average speed of the thumb

 Min(Dis(WrP, 3DIP)) The smallest distance between the wrist and 3rd digit

 Max(Dis(WrP, 3DIP)) The greatest distance between the wrist and 3rd digit

 R(WrP, 3DIP) The ratio of the smallest distance to greatest distance between the wrist 
and the 3rd digit

 Min(Dis(3MCP, 3DIP)) The minimum distance between the 3rd digit’s metacarpophalangeal 
joint and the distal interphalangeal joint

 Max(Dis(3MCP, 3DIP)) The maximum distance between the 3rd digit’s metacarpophalangeal 
joint and the distal interphalangeal joint

Elements of the list correspond to frames in video clips. F10, L90, and L10 assess metrics based on their values at the 
beginning of the exercise, after the beginning of the exercise, or at the end of the exercise. Other abbreviations: ROM, 
range-of-motion; Pro.-Sup., pronation-supination status; Std. Dev., standard deviation.
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Fig A1. 
Model structure overview (left) and detailed neural network presentation (right). After 

feeding with the same input of extracted temporal features matrix, the data goes through a 

block of feature-wise convolution and then goes to one of three branches: A is the Recurrent 

Neural Network, B is temporal-wise dilated Convolutional Neural Network of two blocks, 

and C is feature-wise Convolutional Neural Network of two blocks. For all 3 branches, a 

fully connected layer is attached as the last layer for score classification.
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Fig A2. 
Extracted Feature importance of XGBoost models for different Fugl-Meyer upper extremity 

activity items.

Feature Extraction

Shoulder range-of-motion and elbow angle are calculated using the dot product of 2 vectors. 

For shoulder range-of-motion, these vectors were lines from the shoulder to the elbow and 

from the neck to the hip center. The elbow angle was the supplementary angle to the angle 

generated by vectors from the shoulder to the elbow and from the elbow to the wrist, such 

that greater angles on the range 0° to 145° correspond to greater flexion and less extension at 

the elbow joint: 0° would be defined as full extension and angles near 145° would be defined 

as full flexion.
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Shoulder range-of-motion and elbow angle are vitally important features to create the model 

inputs. They are, however, the most susceptible to error. When the subject arms point 

forward or align with the camera line-of-sight, these features are prone to great variation 

and will often not represent the true angle of interest. A second version of shoulder range-of-

motion and elbow angle were created to address this; distances from shoulder to elbow and 

from elbow to wrist were recorded from all video clips from one Fugl-Meyer. The greatest 

value represented the true length of the respective arm segment for that set of videos, at that 

respective camera angle. Assuming the torso of the body stays reasonably still and the chair 

minimizes leaning forward and backward, we could infer the 3-dimensional position of the 

elbow and wrist and approximate the true elbow angle and true angle between arm and torso, 

referred to as the shoulder range-of-motion. Both versions of both features were included as 

model inputs.

The wrist range-of-motion feature averaged the vertical coordinates of all 

metacarpophalangeal joints, excluding the thumb. Like the other features, this feature was 

recorded for each frame of a video clip. The maximum and minimum of this list yields 

information about the subject’s ability to flex and extend the wrist.

Using the hand joint detection model, pronation and supination were estimated using the 

positional coordinates of the thumb and pinky. For most exercises, if the vector pointing 

from the pinky to the thumb was outside the body and up to the 45° angle, that position in 

the video would be classified as supinated. Beyond the 45° angle, it would be classified as 

a neutral grip. If the vector pointed toward the body and up to the 45° angle, it would be 

classified as pronated. This rule did not apply to scoring supination during flexor synergy. 

To be classified as supinated, the hand pinky-to-thumb vector must be pointed upwards and 

with a large distance from start to finish, relative to the distance in other frames of the video.

Error Analysis

To gain a better understanding of the error distribution (0 vs. 1 or 1 vs. 2) over the dataset, 

confusion matrix of the model’s performance on the test set is plotted (Fig A3). Values are 

normalized along the true labels (row direction). As demonstrated in each sub-block, the 

error of distinguishing between satisfied completion and partial completion is higher than 

that between partial and inability of completion.”
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Fig A3. 
Confusion matrix plot of the test set. Accuracy in distinguishing scores of 2 vs. 1 exceeds 

that of distinguishing scores of 1 vs. 0.

Inter-rater agreement analysis

To explore the consistency between human experts over the method of utilizing videos slices 

to score Fugl-Meyer items, a subset of videos (consists of 9 patients randomly selected) 

were given to 2 physical therapists. The reviewers scored the videos individually while 

blinded to other examiner’s score. The scores were used to calculate Cohen’s Kappa Score, 

and the result table is shown below as Table A3. To help verify the proposed model in ideal 

clinical settings, we evaluate the model’s performance on the non-paretic side of patients, 

and the results are shown as in Table A4. It can be concluded that the high accuracy 

demonstrates that the model can classify unaffected activity patterns with high confidence.”
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Table A3.

Cohen’s Kappa scores between two human experts.

FM item Slice count Cohen’s Kappa score

FM-0 63 0.90

FM-1 62 0.93

FM-2 58 0.84

FM-3 67 0.81

FM-4 54 0.76

FM-5 71 0.79

FM-6 55 0.83

FM-7 61 0.81

FM-8 58 0.86

FM-9 41 0.88

FM-10 36 0.84

FM-11 74 0.76

FM-12 35 0.73

FM-13 22 0.72

FM-14 34 0.94

FM-15 36 0.91

Table A4.

Model evaluation of non-paretic side. FM scores are evaluated with comparison to the 

unaffected side, so ideally the scores of the unaffected side would be all 2s, thus result in 

high prediction accuracy.

Item Accuracy (%) Item Accuracy (%)

FM-0 94.5 FM-8 88.2

FM-1 95.7 FM-9 92.5

FM-2 91.2 FM-10 87.5

FM-3 93.3 FM-11 85.4

FM-4 89.4 FM-12 87.3

FM-5 87.5 FM-13 88.8

FM-6 88.0 FM-14 100.0

FM-7 85.3 FM-15 96.0
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Fig 1. 
Visual representation of normalized joint coordinates depicting final position of shoulder 

abduction performed poorly by subject (left, red) and correctly by investigator (middle, blue) 

with important joints identified (right, yellow). A hand detection model depicting joints 

(red) is superimposed on sample images of the subject (bottom left) and another investigator 

(bottom right).
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Fig 2. 
Prediction accuracies with standard deviation bars generated from the various scoring 

models grouped by Fugl-Meyer item. Abbreviations: dCNN, dilated convolutional neural 

network; CNN, convolutional neural network; RNN, recurrent neural network; XGBoost, 

eXtreme Gradient Boosting.
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Table 1.

Summary of Patient Population

Characteristic Missing, n (%) Categories Count, n (%) or μ∓σ
Demographics

  Age 1 (2.2 %) 60.4 ∓ 16.5

  Sex 1 (2.2 %) Male 24

Female 20

  Race 1 (2.2 %) White 12

Black 12

Asian 0

Hispanic 0

Other / Unknown 20

Presenting Condition

  Stroke Type 1 (2.2%) Ischemic 30

Hemorrhagic 12

Unspecified 2

  Paretic Side 0 (0%) Left 25

Right 10

No difference 10

  Lesion Location 1 (2.2%) Cortical 7

Subcortical 24

Other 13

  NIHSS 3 (6.7%) 6.9 ∓ 5.8

Abbreviations: μ, mean; σ, standard deviation; NIHSS, National Institute of Health Stroke Scale.
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Table 2.

Modified Fugl-Meyer Assessment Items

Group Fugl-Meyer Item Abbreviation

AI. Reflexes Flexors
Extensors

R
R

AII. Flexor Synergy Shoulder retraction during hand to ear activity
Shoulder elevation during hand to ear activity
Shoulder abduction during hand to ear activity
Shoulder external rotation during hand to ear activity
Elbow flexion during hand to ear activity
Forearm supination during hand to ear activity

U
U

FM-0
U

FM-1
FM-2

AII. Extensor Synergy Shoulder adduction during hand to ear activity
Elbow extension during hand to knee activity
Forearm pronation during hand to knee activity

FM-3
FM-4
FM-5

AIII. Mixed Synergies Hand to lumbar spine
Shoulder flexion to 90°
Forearm pronation/supination with elbow at 90°

U
FM-6
FM-7

AIV. Low Synergy Shoulder abduction to 90°
Shoulder flexion to 180°
Forearm pronation/supination with shoulder flexed

FM-8
FM-9
FM-10

AV. Normal Reflexes Biceps, triceps, and fingers R

B. Wrist Wrist stability with elbow at 90°
Wrist flexion/extension with elbow at 90°
Wrist stability with elbow at 180°
Wrist flexion/extension with elbow at 180°
Wrist circumduction

S
FM-11

S
FM-12
FM-13

C. Hand Mass flexion
Mass extension

FM-14
FM-15

C. Grasp Hook grasp
Thumb adduction
Pincer grasp
Cylinder grasp
Spherical grasp

S
S
S
S
S

D. Coordination/Speed Tremor during finger from knee to nose activity
Dysmetria during finger from knee to nose activity
Time to complete finger from knee to nose activity

FM-16*

FM-17*

FM-18*

Note that 18 of 33 tests (55%) in the Fugl-Meyer can theoretically be scored using the presented model and are abbreviated with the prefix “FM-”.

*
Items listed with do not have prediction accuracies due to score class imbalances (FM-16 and FM-17) and the specific scoring criteria (FM-18). 

Abbreviations: R, requiring physical examination; U, undetectable motion; S, requiring strength assessment.
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Table 3a.

Item-Wise Prediction Accuracies

Items N2 N1 N0 Model performance

XGBoost (%) CNN (%) CNN+RNN (%) Dilated CNN (%)

FM-0 189 80 11 81.4∓4.8 86.3∓4.1 84.1∓4.4 88.1∓4.5

FM-1 234 39 2 87.1∓2.6 89.1∓2.9 90.8∓4.3 91.4∓3.4

FM-2 99 146 33 70.3∓5.1 80.4∓4.3 76.3∓3.6 83.2∓3.9

FM-3 161 48 0 78.7∓4.1 83.2∓3.7 77.6∓5.2 85.7∓4.2

FM-4 101 108 0 79.9∓4.1 77.9∓2.5 78.8∓3.0 82.1∓3.0

FM-5 77 132 0 80.7∓5.2 81.6∓4.7 87.0∓5.1 80.6∓4.1

FM-6 67 29 32 71.0∓8.3 83.7∓3.5 82.6∓4.9 81.9∓4.3

FM-7 124 47 11 79.6∓6.0 80.5∓4.3 75.6∓3.7 81.0∓3.5

FM-8 103 10 10 85.3∓4.1 85.1∓6.7 81.0∓5.0 84.7∓5.2

FM-9 49 14 31 83.1∓9.1 87.9∓4.1 86.0∓3.8 85.2∓4.9

FM-10 84 67 17 75.2∓4.2 79.5∓3.0 76.9∓3.3 80.2∓3.5

FM-11 90 70 5 74.2∓3.1 79.2∓4.2 81.5∓4.7 78.0∓4.5

FM-12 55 55 16 63.5∓5.8 71.7∓3.4 66.4∓5.3 72.7∓3.9

FM-13 25 18 6 64.3∓6.3 67.6∓5.2 68.1∓5.3 71.4∓5.9

FM-14 93 7 11 91.4∓4.5 88.1∓2.0 90.1∓1.9 90.2∓2.8

FM-15 87 14 11 86.3∓5.2 90.9∓3.1 91.3∓2.6 90.5∓3.3

FM-16 69 1 0 / / / /

FM-17 32 5 0 / / / /

Abbreviations:
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Table 3b.

Group-Wise Prediction Accuracies

Groups STotal Savg (std) R2 RMSEpred

AII. Flexor Synergy 6 4.37∓1.337 0.865 0.643

AIII. Extensor Synergy 6 4.28∓1.284 0.883 0.619

AIV. Mixed Synergy 4 2.94∓0.739 0.897 0.587

AV. Low Synergy 6 4.82∓1.151 0.912 0.599

B. Wrist 6 4.15∓1.463 0.83 0.682

C. Hand 6 5.37∓0.061 0.951 0.476

D. Coordination / Speed 6 / / /

Abbreviations: Nₓ, count of videos scored x; CNN, convolutional neural network; RNN, recurrent neural network; /, unscorable due to class 

imbalances; STotal, total possible scores; Savg, total average of all available samples in group; std, standard deviation; R2, correlation coefficient; 

RMSEpred, root mean square error; /, unscorable due to class imbalances.
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