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BSTRACT 

RISPR-Cas9 tools have transformed genetic manip- 
lation capabilities in the laboratory. Empirical rules- 
f-thumb have been developed for only a narrow 

ange of model organisms, and mechanistic under- 
innings for sgRNA efficiency remain poorly under- 
tood. This work establishes a novel feature set and 

ew public resour ce, pr oduced with quantum chem- 
cal tensors, for interpreting and predicting sgRNA 

fficiency. Feature engineering for sgRNA efficiency 

s performed using an explainable-artificial intelli- 
ence model: iterative Random Forest (iRF). By en- 
oding quantitative attributes of position-specific se- 
uences for Esc heric hia coli sgRNAs, we identify im- 
ortant traits for sgRNA design in bacterial species. 
dditionall y, we sho w that e xpanding positional en- 
oding to quantum descriptors of base-pair , dimer , 
rimer, and tetramer sequences captures intricate in- 
eractions in local and neighboring nucleotides of 
he target DNA. These features highlight variation 

n CRISPR-Cas9 sgRNA dynamics between E. coli 
nd H. sapiens genomes. These novel encodings of 
gRNAs enhance our understanding of the elaborate 

uantum biological processes involved in CRISPR- 
as9 machinery. 
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RAPHICAL ABSTRACT 

NTRODUCTION 

RISPR-Cas9 is revolutionizing genome-editing using a 

ingle guide RN A (sgRN A) to direct precise cleavage at en- 
ogenous locations in the genome ( 1 , 2 ). The first step to
ngineer or modify a specific region using CRISPR-Cas9 

s to computationally predict cutting efficiencies of poten- 
ial sgRNAs. The CRISPR-Cas9 system depends on this 
esigned sgRNA to target the protein complex to a region 

anked by a 3 

′ NGG protospacer adjacent motif (PAM). 
he CRISPR-Cas9 system is successful only if both speci- 
city and efficiency occur at the target loci ( 3 ). To in- 

orm sgRNA sequence choices, genomic feature analyses 
ave associa ted sgRNA a ttributes with cutting ef ficiency for 
RISPR-Cas9 systems ( 4–8 ). 
The efficiency of CRISPR-Cas9 systems is defined as 

he percentage of transgenic samples in which mutations 
re introduced at the intended target. Due to the time 
nd effort r equir ed to transform many species, efficiency is 
cobsonda@ornl.gov 
u.au 

ids Research. 
s Attribution License (http: // creati v ecommons.org / licenses / by / 4.0 / ), which 
e original work is properly cited. 
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critical. The calculated efficiency, while correlated, does not
directl y ca pture the specificity (on-target versus off-target
cuts) that occur. Predicting sgRNA efficiency r equir es car e-
ful consideration of relationships among the sgRNA se-
quence, genomic features of the target region, and activity
within the CRISPR-Cas9 system. Some of these relation-
ships have been extensively investigated ( 9 ). Among them,
nucleotide composition of the target sequence is the most
thoroughly studied contributor to sgRNA efficiency ( 3 , 10–
12 ). Specific nucleotide patterns have been associated with
sgRNA efficiency; including the presence of guanine and
absence of thymine near the PAM sequence, pr efer ence for
cytosine near the cut site, and overall GC content ( 3 , 11 , 13 ).
The seed region – defined as the fiv e to ten bases of the target
sequence nearest the PAM – is of centr al consider ation for
these patterns in sgRNA sequence composition ( 10 , 12 , 14 ). 

While nucleotide sequence patterns are observed across
species, their influence on CRISPR-Cas9 sgRNA associa-
tion and target cleav age v aries ( 1 , 15–18 ). The added com-
plexities of chromatin structure have started to be consid-
ered, enhancing understandings of CRISPR-Cas9 dynam-
ics. For example, human models were expanded with infor-
mation about the insertion point within the gene sequence
( 19 ) and secondary structure of the target sequence ( 20 , 21 ).
Target regions with low nucleosome occupancy and high
chromatin accessibility have also been investigated ( 22–26 ).
These structural nuances underscore e v en greater variation
in CRISPR-Cas9 system mechanisms across organisms. 

DNA is less protected in prokaryotic cells than in eu-
karyotic cells because of a simpler chromatin structure;
and target r egions ar e often more accessible ( 3 ). In con-
trast, mammalian cells have highly active non-homologous
end-joining (NHEJ) systems, which induce repair mecha-
nisms for the DNA double strand break during CRISPR-
Cas9 integration. In prokaryotes, sgRNA activity is corre-
lated with cellular survival because double stranded breaks
are lethal to the cell in the absence of NHEJ ( 27 ). These
pronounced differences in structure and function illumi-
nate, in part, why models trained for mammalian species
have failed to provide sgRNAs that consistently integrate
with target sequences across other kingdoms. This insuffi-
ciency spurred de v elopment of organism-tailored models,
including those for plants ( 1 ), yeast ( 18 ) and bacteria ( 28 ).
Expanding the breadth and chemical specificity of model
feature sets provides useful avenues for extending state-
of-the-art sgRNA efficiency prediction to other organisms
and non-model species. To achie v e this ne xt le v el of model
prediction power, quantum chemical properties warrant
consideration. 

Bridging chemistry and physics, quantum chemical prop-
erties capture the ways in which electron density impact
the reactivities and energetics of molecules. Some prop-
erties, such as the HOMO–LUMO gap (highest occupied
molecular orbital-lowest unoccupied molecular orbital en-
ergy ga p; H–L ga p), describe how electron density is dis-
tributed among atoms. Meanwhile, other properties, like
hydrogen-bonding energy or �-stacking energy, describe
how a system’s total energy changes as molecules interact.
Such properties depend on how the molecular electron den-
sities shift in response to one another. Incorporating quan-
tum chemical detail when characterizing or predicting bio-
logical processes has been transformati v e for biology; pro-
viding ne w frame wor ks for vie wing processes, identifying
novel features, and enhancing mechanistic understandings
( 29 , 30 ). This work spotlights quantum properties includ-
ing HOMO–LUMO ga ps, hydro gen bonding, and stacking
interactions to investigate the complex molecular interac-
tions of the DNA double helix and the DNA / CRISPR-
Cas9 sgRNA hybrid. 

Machine learning models excel at identifying patterns in
data to inform outcomes; but advances in predicti v e power
are bottlenecked by the depth and breadth of training data.
Current methods of fea ture evalua tion for CRISPR-Cas9
efficiency are trained on experimental sgRNA cutting effi-
ciency data from a narrow range of eukaryotic species, in-
cluding human, mouse, and zebrafish ( 4 ). While these mod-
els’ species-by-species rules for sgRNA pr ediction ar e infor-
mati v e, their insights are rarely generalizable. Therefore, to
de v elop advanced predicti v e models, the training data must
be sufficiently detailed to capture the complexities of ge-
nomic structure and content that influence efficiencies of
CRISPR-Cas9 integration and target cleavage. 

Here we use machine learning approaches to unravel
these species-dependent rules of sgRNA efficiency. Many
current AI model generation approaches use techniques
such as neural networks that can obscure associations be-
hind a ‘black box’ of decision schemes. We sought to un-
derstand feature contributions to cutting efficiency for Es-
c heric hia coli through an e xplainab le-artificial intelligence
(XAI) approach. We used iterati v e Random Forest (iRF),
an XAI method designed for model transparency and fea-
ture evaluation, to assess CRISPR-Cas9 efficiency and im-
prove our understanding of the system’s underlying bio-
logical mechanisms. When trained on detailed feature sets,
XAI models provide a shared basis for predicting sgRNA
efficiency across organisms. This wor k e xtends sgRNA ef-
ficiency modeling to assess both E. coli and Homo sapiens
da tasets. Additionally, our model integra tes a novel and in-
terdisciplinary feature set that includes quantum chemical
properties. 

MATERIALS AND METHODS 

Datasets 

E. coli. A publicly accessible E. coli dataset published by
( 28 ) was utilized. Briefly, this dataset contains 55670 unique
sgRNAs that are profiled by co-expressing a genome-scale
library with a pooled screening strategy. The data was com-
piled from three different Cas9 variations including Cas9
( Str eptococcus pyog enes ), eSpCas9, and Cas9 ( � recA). The
eSpCas9 is a Cas9 that has been r eengineer ed for improved
specificity and the Cas9 ( � recA) was de v eloped by knock-
out of recA blocking DSB repair. The dataset contains both
sgRNA sequence and empirical CRISPR-Cas9 efficiency
scores for each of the respecti v e guides. The cutting effi-
ciency scor es wer e calculated by taking the binary logarithm
(log x ) of the selected read count to the control read count.
We focused on the Cas9 dataset for analyses within this
manuscript. 

H. sapiens. A publicly accessible H. sapiens dataset pub-
lished by ( 10 ) was utilized. This dataset contains 1278
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nique sgRNAs based on a human malignant melanoma 

ell-line (A375) viability analysis. The cutting efficiency was 
etermined in the same manner as described above with 

he log 2 fold change calcula ted rela ti v e to the change in
bundance during a two-week growth period. Addition- 
lly, a larger dataset curated by ( 33 ) which contains four 
ub licly-accessib le human experimental sgRNA efficiency 

atasets ( 11 , 19 , 39 ) including multiple cell lines (HCT116, 
EK293T, HELA and HL60) was considered. Cutting ef- 

ciency values were defined as the log 2 fold change in the 
easured knockout efficacy. 

ulti-species. The multi-species model included sgRNA 

f ficiency da ta from all previously described da tasets. 
hen model training occurs on datasets spanning multiple 

pecies, all data is min-max normalized on a scale of 0 to 

 and composed into a matrix of sgRNA and cutting effi- 
iency scores for model input. To eliminate species bias due 
o sample size, a consistent subsampling of 15 000 sgRNAs 
as utilized from E. coli and H. sapiens ; and the species was 

ncoded as a binary feature. 

eature matrix 

uantum chemical pr oper ties ( 29 ). Quantum chemical 
r operties pr ovide unique insights into the factors influenc- 

ng sgRNA efficiency in CRISPR-Cas9 systems. Canonical 
f DN A–DN A and DN A–RN A duplex es wer e modeled to
ssess these factors. The analysis included quantum chem- 
cal properties of individual nucleotide bases; base-pairs; 
nd base-pair dimers , trimers , and tetramers. In this way, 
 fourteen- ̊A ngstrom (4 bp) cut-off distance was invoked 

or long-r angeinter actions in the sgRN A. Additionall y, a 

ew sliding-window approach for the nucleotide base po- 
itions was de v eloped for sgRNA interactions with the tar- 
et DNA. Base-pair interactions were encoded into blocks, 
hich subdivided the twenty-nucleotide sgRNA. In this ap- 
roach, fiv e ranges of interactions were assessed, from in- 
ramolecular to intermolecular. 

HOMO–LUMO gap has been described as a signpost for 
 molecule’s kinetic stability ( 40 ). It describes the energetics 
f allowed electron transitions, and the likelihood of pro- 
esses involving electron mobility. Structurally, the H–L gap 

eflects a molecule’s landscape of phase dependence for elec- 
ronic wave function interactions –– both constructi v e and 

estructi v e –– tha t origina te covalent molecular interactions 
 41 ). Hydro gen bonding, meanw hile, is a contextual prop- 
rty. It reflects an energetic pr efer ence for arrangements of 
olecules in relation to one another. Hydrogen bonding 

irects non-covalent interactions between molecules, play- 
ng roles in thermodynamic stability and the energetics of 
rotein folding, as two examples ( 42 ). Stacking interactions 
re similarly contextual interactions and occur between aro- 
atic rings. Stacking inter actions r ange from �- � inter ac- 

ions within the rings –– of the overlapping p -orbital electron 

ensity –– to steric repulsions from e xocy clic groups, which 

re implicated in DNA twisting ( 43 ). Hydrogen bonding 

nd stacking interactions differ in the chemical species that 
articipate (Supplementary Figur e S2). Wher eas hydrogen 

onding interactions occur between hydrogen and a hydro- 
en bond acceptor, stacking interactions occur between aro- 
atic moieties. Quantifying the energetics of these interac- 
ions complements a detailed feature set for machine learn- 
ng models and sgRNA efficiency prediction. 

The density-functional-based tight binding method 

DFTB) is a powerful approach for large-scale atomistic 
imula tions and calcula ting quantum chemical properties. 
his work uses the DFTB3 / 3ob parameter set (third order 
arametrization for biological and organic systems). Calcu- 

ations with the DFTB3 / 3ob parameter set yield excellent 
olecular geometries (Wang and Berkelbach, 2020), which 

ompare favorably with more resource-intensi v e methods. 
or example, DFTB3-3OB structures exhibit maximum ab- 
olute deviations of 0.045 Å ngstr oms fr om MP2 / 6-31G(d) 
ethods (second order Møller–Plesset perturbation theory 

ith six-primiti v e split valence polarized Pople basis; ( 44 )). 

nitial coordinates . Nucleotide coordina tes were collected 

rom PubChem ( 45 ). B-DNA base-pairs were extracted 

rom crystal structure data ( 46 ) (PDBID: 167D; ( 46 )). RNA 

ybrids and DN A–RN A hybrids wer e pr epar ed by sterics- 
ri v en structure ov erlay in Bio via Disco very Studio soft-
are (Dassault Syst ̀emes , S .E.). The nucleotide base and 

ase-pair geometries were optimized through a gradient de- 
cent method with the simulation procedure described be- 
ow. By optimizing the building blocks (the bases and base- 
airs) and then systematically constructing kmers, we main- 
ain an internal consistency of coordinates across the full 
 n = 904) set of systems. This reduction of the full confor- 
ational freedom of the kmers was motivated by the work 

f Šponer et al. ( 59 ), and serves primarily to prevent asser- 
ion of an optimal geometry where the context is not con- 
idered; and secondarily to avoid specialization to a con- 
ext which may not be extensible or generalizable across 
he di v ersity of availab le conforma tional sta tes and species- 
ependent DNA winding or remodeling. After optimiza- 
ion, each base-pair was aligned with the xy-plane in Open- 
ymol software (Schr ̈odinger, Inc.). In analogy to Gil et al. 
 47 ), each base-pair was then translated such that its cen- 
roid was the origin of coordinates. To complete the un- 
mbiguous set of transformations, the pyrimidine carboxyl 
r oups pr ovided a final constraint. For this, the thymine car- 
onyl bond and cytosine carbonyl carbon were rotated to be 
ormal to one another. 

-mer construction. For all constructs, base-pairs were 
tacked at a distance of 3.5 Å along the z-axis, and ro- 
ated 36 degrees about their centroids (the origin). Struc- 
ur es wer e pr epar ed with scripts ex ecuted in Open-Pymol. 
ll non-chimeric single-strand combinations were assessed. 

n total, fiv e nucleotide bases, size base-pairs (bp), 32 bp 

imers, 156 bp trimers and 716 bp tetramers were evaluated. 
ompiled k-mers were assessed by single-point energy cal- 

ulations using the simulation procedure described below. 

imulation. Calculations were carried out at the DFTB3- 
3(BJ) / 3ob le v el of theory with Grimme’s D3(BJ) dis- 

ersion correction ( 48 , 49 ). Dispersion corrections were 
ncluded to capture non-covalent interactions, resolving 

an der Waals and London dispersion forces in de- 
ail. Grimme’s dispersion correction was selected to de- 
cribe medium and short-range dispersion effects ( 50 ). 
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Additionally, a ‘COSMO’ model was used with water as a
solvent ( co nductor-like s creening mo del). This model ap-
proximated solvent interactions and contextualized the ge-
ometries and energy calculations to a water environment.
Total system energy, HOMO–LUMO gap, and other quan-
tum tensors were compiled for assessment in an Iterati v e
Random Forest model. 

Methods justification. To our knowledge, there is no
consensus method (or pr eferr ed method) for simulating
oligonucleotides beyond base-pairs. For simulations with
individual nucleotide bases and base-pairs, LC-DFT is in-
dicated in pr efer ence to high-le v el ab initio methods for re-
covering frontier orbital energies ( 55 ). Despite its excellent
performance in this context, LC-DFT typically scales as
N 

4–6 , with N the number of atoms ( 56 , 57 ). Furthermore,
the total number of systems to sample for all canonical
gRNA sequence fragments increases combinatorically with
the degree of base-pair polymerization (trimers, n = 156;
tetramers, n = 716). These are competing imperati v es in
this work which rapidly escalate the computational de-
mand. Ther efor e, a low-scaling method is essential to de-
scribe e v en modest windows of the gRNA structure with
quantum chemical detail. We select the DFTB method
because it provides reliable geometries ( 58 ) with scaling
(N3 ( 57 )) that is amenable to the large number of con-
structs considered in this work ( n = 904). We compare the
DFTB3 / 3ob model output with LC- �BLYP / pVTZ (long-
r ange corrected, r ange separ ated, Becke–Lee–Yang–Parr
functional with triple z eta polariz ed valence basis) calcu-
lations up to base-pair dimers. We find that the top fea-
tures (base-pair H-L ga p, hydro gen bonding energy, base-
pair stacking energy) and the regions of special interest (3 

′
and 5 

′ termini) are reproduced across models and methods
(Supplementary Figur e S4). Mor eov er, the le v el of model
prediction is consistent ( > 81%) across models, with the
top fifty features emphasizing quantum chemical proper-
ties (Supplementary Figure S4). We include frontier orbital
and ground-state energies at DFTB3 / 3ob, LC-DFT / pVTZ
and HF / 6–31G** le v els of theory (Hartree-Fock with six-
primiti v e split valence Pople basis and d- / p-type polariza-
tion functions) to compare the ordering of features across
methods (Supplemental Table 5). 

Pub lic r esour ce . All calculated quantum chemical proper-
ties for nucleotides and k-mers have been compiled in Sup-
plementary Table S1. 

Positional encoding. Matrix generation involved extrac-
tion of se v eral isola ted fea ture sets. Position-independent
and position-dependent encoding of the 20 bp sgRNA
were performed as described by Doench et al., 2014.
Briefly, position-independent featur es wer e determined
by the count of nucleotides within the 20 bp sequence
both as a single base (A / C / T / G) and as paired bases
(AA / AC / AG / etc.). Position-dependent featur es wer e r ep-
resented using binary variables (1 r epr esents pr esence at
that position) to encode the position of nucleotide bases up
to base-pair oligomers. To describe all possible combina-
tions, each position was described by four bits, with a bi-
nary value for each of the four possible bases (A / C / T / G).
P air ed bases are further encoded with a binary value for
each of the 16 possible base pair combinations. Addition-
ally, we encoded the PAM (NGG) sequence by incorporat-
ing position-independent encoding of the N nucleotide. The
combination of positional encoding approaches resulted in
384 features for each sgRNA assessed. 

Further positional encoding was conducted with k-mers
to extend sequence fragment descriptions to the full guide
RNA. This encoding considers combinations of fragments,
capturing how the fragment’s context in the full transcript
influences sgRNA binding and efficiency. Here, a k -mer is
simply a sequence of characters in a string. We utilized
k -mers to capture nucleotide neighborhoods, considering
multiple base pairs with defined dependent positions. This
was done through a stepwise integration of additional nu-
cleotides as described above in a position-dependent man-
ner including nucleotides in groups of two to fiv e. The bi-
nary matrix includes the positional encoding using a sliding
window so that each position from 1 to 20 (less the k -mer
length) is encoded. 

‘Raw’ featur es . Se v er al r aw value featur es wer e deter-
mined including GC content (ratio from 0–1 r epr esenting
the proportion of the sgRNA sequence that is composed
of GC), temperature of melting of the DNA duplex (calcu-
lated by the Watson-Crick formula of Tm( ◦C) = 64.9 + 41
* (nG + nC-16.4) / (nA + nT + nG + nC)), minimum free
energy as a function of RNA structure (calculated with Vi-
ennaRNA; ( 51 )), distance of the target sequence to the clos-
est downstream PAM (utilizing the known genome assem-
bly this was determined by the number of bases between
position 20 of the sgRNA and the nearest NGG), and loca-
tion relati v e to the target gene (r epr esented by TSS, TTS and
quartiles of gene sequence (Q1–Q4)). These calculated val-
ues resulted in an additional 5 features for each sgRNA
assessed. 

Normalization and correlation assessment. The predicti v e
measur e, cutting efficiency scor e, was min-max normalized
to ensure tr ansfer ability across models , control, methods ,
datasets and species. The distributions of high or low cut-
ting efficiency scor es differ ed between species, and these
skews were maintained during normalization as to not bias
the technical efficiency of one species against the other. 

Additionally, values were assessed for high le v els of cor-
rela tion between fea tures. W hen any two features resulted
in a correlation higher than 0.9 one of the features was re-
moved to eliminate the chance for split weights in feature
importance during model training. The feature set utilized
continuous and discrete variables with varied distributions.

Iter ative r andom f or est model 

Random forest (RF) is a non-linear r egr ession model which
incorporates an ensemble of decision trees that trace the al-
gorithm’s decision process. Iterati v e Random Forest (iRF)
expands on the Random Forest method and is described in
( 52 , 53 ). Briefly, iRF is an ad vanced form of RF that imple-
ments a boosting and feature culling process based on the
feature importance values from the previous iteration’s ran-
dom forest. These processes further iterate and amplify the
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ea tures tha t repea tedly indica te high predicti v e capacity. 
he boosting process produces a similar effect to Lasso in a 

inear model frame wor k. In iRF, a Random Forest is gener- 
 ted where fea tures are unweighted and randomly sampled, 
t any gi v en node in the decision trees, with equal probabil- 
ty. This process establishes feature importance scores that 
re used to weight features in the next forest. This itera- 
i v e method provides an amplifica tion ef fect, increasing the 
hance that important featur es ar e evaluated at any gi v en 

ode ( 52 , 53 ). 
For this study, the process of weighting and generating 

 new Random Forest is repeated 10 times with 1000 trees 
nd incorporates a 5-fold cross validation. For each run, 
he data is separated into an 80 / 20 training / test split where
0% of the data is used for training the model and the re-
aining data (not utilized in model training) is used for 

esting. Each feature is ranked by its importance in the 
ree building step and the direction of impact is determined 

ased on the signed correlation of feature value and cutting 

fficiency value. Specifically, the feature matrix described 

bove (incorporating positional encoding of the sgRNA 

ucleotide composition through a one-hot binary method, 
nd quantum chemical properties) is utilized to predict the 
gRNA cutting efficiency. Multiple iRF models were pro- 
uced with different feature sets to assess top importance- 
coring, highly-predicti v e features; details on these models 
re in Table 1 . 

odel assessment across quantum calculations. The iRF 

odel was run using LC-DFT and DFTB3 quantum calcu- 
ations for nucleotide base, base pair, and base-pair dimer k- 

ers of the sgRNA to assess the variation in model output 
hen featur es wer e calcula ted a t dif ferent le v els of quantum

heory (Supplementary Figure S5). Both the predictabil- 
ty of the iRF models (Supplementary Figure S5A) and 

he top importance features (Supplementary Figure S5B) 
ere identified. The HL-ga p, hydro gen bonding, and stack- 

ng energies are maintained as key features across the mod- 
ls. These properties’ locations within the 3 

′ region of the 
gRNA are also conserved (Supplementary Figure S5B). It 
s observed that 94 out of the top 100 features are consistent 
etween the two models. 

alidation 

ligo design. As part of another project, 120000 unique 
ynthetic guide RNAs (sgRNAs) were synthesized by Ag- 
lent (Santa Clara, CA) as 90mers consisting of the 35-bp 

23119 Anderson promoter, the 20-bp spacer, and the 35- 
p 5 

′ end of the sgRNA. The pool of single-stranded DNA 

olecules recei v ed from Agilent were dissolv ed in 200 �l 
lution Buffer (EB; 10 mM Tris, pH 8.0) and heated at 42 

◦C 

ntil all visible solids had dissolved. 
The sgRNA sequences were picked to minimize potential 

pecificity issues. Namel y, onl y sequences with unique seeds 
nd no matches to sequences adjacent to non-canonical 
AMs were chosen. Additionally, Cas9 was expressed at a 

oder ate r ather than a high le v el, which should further re-
uce the effects of decreased specificity. 

ligo processing and donor library production. Once in so- 
ution, second strand synthesis proceeded by mixing 20 �l 
ligo solution, 2.5 �l 10 �M oWGA139, and 25 �l NEB 

 × Q5 Hot Start Master Mix into each of two 0.2 ml PCR 

ubes. This reaction was placed in a thermal cycler and the 
ollowing program was run: 98 

◦C 1 min, 68 

◦C 10 s, 72 

◦C 5
in, 4 

◦C hold. Once the hold was reached, 2.5 �l 10 �M 

WGA140 was added to each tube, and the following pro- 
ram was run: 98 

◦C 1 min; 25 cycles of 98 

◦C 5 s, 68 

◦C for 10
, 72 

◦C for 15 s; 72 

◦C for 5 min, 4 

◦C hold. The PCR prod-
ct was purified by running on a 3% agarose gel in TAE 

uffer until the band w as halfw ay down the gel, removing a 

el slice containing the band, and purifying the DNA with 

he NEB Monarch DNA Gel Extraction Kit. To clone this 
urified double-stranded oligo, a PCR of the pSS9-gRNA 

ector ( 62 ) was performed using the NEB Q5 Hot Start 2X 

aster Mix as manufacturer’s instructions with the primers 
WGA137 and oWGA138. 5 �l DpnI (NEB) was added di- 
ectly to the PCR product and incubated at 37 

◦C overnight. 
his reaction was cleaned by adding 45 �l water and 40 �l 
agBio HighPrep PCR Cleanup magnetic beads and fol- 

owing manufacturer’s instructions. Quality of this back- 
one vector fragment was empirically tested by transform- 

ng 100 ng into Lucigen E. cloni Supreme DUO electrocom- 
etent cells per manufacturer’s instructions; as ∼40 colonies 
ere produced in this reaction, the backbone was consid- 

red suitable for Gibson assembly. 100 ng of vector back- 
one and 17.56 ng oligo library PCR product were added 

o a 20 �l NEBuilder HiFi Assembly reaction per manufac- 
urer’s instructions (a 5:1 insert:vector ratio). Afterwards, 
he reaction was cleaned via drop dialysis with a 0.02 mi- 
r on nitr ocellulose filter floated on 250 ml of 18.2 M � wa- 
er. 2 �l of this dialysis product was added to each of 6 

5-ul Lucigen E. cloni Supreme DUO comp cell aliquots, 
nd electroporation was performed using a BioRad Mi- 
roPulser set to the E. coli 1 program. 950 �l Lucigen Re- 
overy Buffer was added to each transformation, these six 

olutions were combined, and the totality was incubated at 
7 

◦C for 1 h. Afterwards, this recovery culture was added to 

00 ml LB + 100 �g / ml carbenicillin and incubated at 37 

◦C
v ernight. The ne xt morning, the culture was harvested, the 
upernatant was discarded, and the cell pellets were sus- 
ended in 200 ml + 200 �g / ml carbenicillin and incubated 

t 37 

◦C for four h. This fresh culture was harvested via cen- 
rifugation, then plasmid DNA was extracted using a Zymo 

esear ch Midipr ep Kit. This library, r eferr ed to her eafter as
he Donor Library, was sent for sequencing by Illumina. 

ost competent cell pr epar ation. E. coli K12 MG1655 

ontaining pX2-Cas9 was struck from a freezer stock to an 

B + 50 �g / ml kanamycin agar plate, and a single colony 

as picked to 5 ml of LB + kan in a culture tube. This cul-
ure was incubated at 37 

◦C overnight, then it was used to in- 
culate 110 ml of LB + kan + 0.2% arabinose to an OD600 

o 0.1. Growth was monitored over the course of 3 h, and 

00 ml of the cells were harvested once an OD 600 of ∼0.6 

as measured. The cell pellet was washed 3x with 10% glyc- 
rol, then suspended to a final volume of 1000 ul. 

ost library production. To pr epar e the library for trans- 
ormation, 10 �g of library vector was mixed with 100 pg 

ach of pWGA128 and pWGA130 to provide internal con- 
rols for escape and cutting, respecti v ely. 52.5 �l of con- 
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Table 1. iRF model summary and metrics 

Model 
species 

Source 
dataset 

# of 
sgRNAs Feature det 

# of 
Features Description 

Test 
dpecies R2 

Pearson 
correlation 

E.coli Guo et al. 
2016 

40 468 
[32 374 
train] 

Raw 5 summary values of sgRNA 

sequence including GC content, 
Tm, MFE, gene density and 
distance to PAM 

E. coli 0.0406861 0.2007612 

Onehot 5911 binary positional encoding of 
20bp sgRNA nucleotide 
sequence 

E. coli 0.26004285 0.4914184 

QCT 316 quantitati v e metrics for H-bond 
and HL-gap based on positional 
nucleotide sequence 

E. coli 0.24183122 0.4918057 

Raw.Onehot 6916 Raw + Onehot E. coli 0.26028286 0.4931724 
Raw.QCT 312 Raw + QCT E. coli 0.24177446 0.4939777 
Onehot.QCT 6227 Onehot + QCT E. coli 0.24905183 0.500817 
Full Matrix 6232 Raw + Onehot + QCT E. coli 0.24906667 0.5019173 

H. sapien 0.00429969 0.06557198 
Top 5 5 Based on the full feature matrix 

iRF model run with E.coli data, 
the top feature importance 
scor es wer e utilized to generate 
new iRF modesl with 
5,10,20,40100200500 and 1000 
features. 

E. coli 0.11240746 0.3436711 

Top 10 10 E. coli 0.15779734 0.4019815 
Top 20 20 E. coli 0.2017236 0.4458406 
Top 50 50 E. coli 0.24529071 0.4903894 
Top 100 100 E. coli 0.25119027 0.4967809 
Top 200 200 
Top 500 500 
Top 1000 1000 

H.sapien Doench et al. 
2014 

1278 
[1022 
train] 

Full Matrix 6172 Raw + Onehot + QCT based on 
the H.sapien sgRNA sequence 
set from Doench et al. 2014 

H. sapien 0.389120714 0.6525512 

H.sapien Chuai et al. 
2018 

16 749 
[13 399 
train] 

Full Matrix 6172 Raw + Onehot + QCT based on 
the H.sapien sgRNA sequence 
set from Chuai et al. 2018 

H. sapien 0.229489979 0.486193 

H.sapien Doench et al. 
2014; Chuai 
et al. 2018 

17 421 
[13 936 
train] 

Full Matrix 6172 Raw + Onehot + QCT based on 
the H.sapien sgRNA sequence 
set from Doench et al. 2014 and 
Chuai et al. 2018 

H. sapien 0.211671332 0.4964907 

E.coli + 

H.sapien 
Guo et al. 
2016; Doench 
et al. 2014; 
Chuai et al. 
2018 

30000 
[24000 
train] 

Full Matrix 6172 Raw + Onehot + QCT based on 
the E.coli sgRNA sequence set 
from Guo et al. 2016 and the 
H.sa pien sgRN A sequence set 
sfrom Doench et al. 2014 and 
Chuai et al. 2018 

E. coli + 

H. sapien 
0.486194 0.6972761 

[E.coli 0.504] 
[H.sapien 
0.491] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

trolled library solution was added to 525 �l of electrocom-
petent cells, and 55 �l of this mixture was electroporated in
a 1 mm gap cuvette by a BioRad Micropulser set to the E.
coli 1 program 10 times in total, adding 950 �l of SOC to
each electroporation immediately after the shock. These 10
ml of cells and media were combined into a culture tube,
then 1 �l of 1 ng / �l pWGA129 plasmid was added to the
culture to act as a control for washing. The recovery culture
was incuba ted a t 37 

◦C for 1 h, then centrifuged and the su-
perna tant aspira ted. The cell pellet was suspended in then
entir ely transferr ed to 100 ml of LB + kan + 100 �g / ml
carbenicillin and cultured at 37 

◦C for 6 h. 50 ml of culture
had cells harvested, washed once with 50 ml DNAse I Wash
Buffer (10 mM Tris, 2.5 mM MgCl 2 , 0.5 mM CaCl 2 ), then
the pellet was suspended in 1.5 ml of DNAse I Wash Buffer
and transferred to a 1.5 ml microcentrifuge tube. This pel-
let was washed two more times with 1.5 ml DNAse I Wash
Buffer, then suspended in 990 �l of the same. 10 �l of NEB
DNAse I was added, and the reaction was incubated for 15
minutes a t 37 

◦C . The cell pellet was harvested, and plasmid
DNA was extracted using the NEB Monar ch Minipr ep Kit.
This library, r eferr ed to her eafter as the Host Library, was
sent for sequencing by Illumina. 

Illumina library preparation. For both Donor and Host Li-
brary plasmid pools, PCR using ‘phased primers’ amplified
the gRNA spacers to be sequenced. Briefly, fiv e forwar d and
fiv e re v erse primers were made, each that bound to the same
site of the library plasmids but possessing zero to four addi-
tional random bases at the 5 

′ end; the purpose of these extra
bases is to alleviate issues inherent to sequencing amplicons
on Illumina platforms, as the very low complexity of am-
plicon molecules pre v ents high-quality base calls from be-
ing made by the Illumina system. These forward and re v erse
primer mixes were used together with 30 ng of library vector
in a Q5 Hot Start PCR as per manufacturer’s instructions.
The PCR product was purified on 3% gel and isolated using
the NEB Monarch DNA Gel Extraction Kit, quantified us-
ing the Promega Quantus fluorometer and the QuantiFluor
ONE dsDNA System, and then used in the NEBNext Ultra
II DNA Library Prep Kit for Illumina. During the amplifi-
cation step, one forward and one re v erse primer per library
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rom the NEBNext Multiplex Oligos for Illumina (Dual In- 
ex Primers Set 1) kit was used to complete the protocol. 

llumina library sequencing. Sequencing libraries were val- 
dated on an Agilent Bioanalyzer using a DNA7500 chip, 
nd the final libr ary concentr ation was determined by Qubit 
Thermo Fisher Waltham, MA) with the broad range dou- 
le stranded DNA assay. A paired end sequencing run 

2 × 75 bp) was completed on an Illumina MiSeq instru- 
ent (Illumina, San Diego, CA) with 20% PhiX spike in 

sing v3 chemistry following the manufactures denaturing 

nd loading recommendations. The Donor Library was se- 
uenced using three separate sequencing runs, while the 
ost Library was sequenced using two separate runs. 

ata processing. P air ed end r eads wer e merged using 

he USEARCH -f astq mer g epair s command with the - 
astq maxdiffs option set to 10 ( 63 , 64 ). The merged 

airs were then matched to the original design file in 

ASTA format using USEARCH ( usear ch -usear ch local 
ath / to / r eads .f astq -db path / to / designs .f asta -str and both
threads 30 -id 0.9 -top hit only -tar g et cov 1 -user out
ath / to / output.tsv -userfields query + tar g et + id + qr o w-
ots + tr o wdots + qr o w + tr o w ). The output .tsv file was
arsed in Python to count the instances of perfect reads 

or each design in the design file and to calculate the abun- 
ances of perfect reads for each design (calculated as num- 
er of perfect reads for a design divided by the number of 
erged pairs used in the initial USEARCH matching, and 

hese data for all runs were combined into a single spread- 
heet. In that spreadsheet, new columns to calculate values 
or the average donor library reads, average donor library 

b undance, avera ge host library abundance, host wash con- 
rol correction, delta, log 2 delta, and P-value for each design. 
riefly: average donor library reads, donor abundances, and 

ost abundances were calculated with the AVERAGE func- 
ion in Excel; the host wash control corrected abundance 
as calculated as the average host library abundance minus 

he product of the ratio of the average host abundance of 
he pWGA129 wash control sequence, the ratio of the total 
ass of DNA used (1 �g) to the ratio of wash control plas- 
id added to the recovery (1 ng), and the donor abundance 

f the cassette; delta was calculated as the host wash con- 
rol corrected abundance divided by average donor library 

bundance; log 2 delta was calculated by log2 delta; and the 
 -value was calculated by the Student’s t -test function in 

xcel for a two-tailed heteroscedastic test. Designs possess- 
ng either less than 10 average donor library reads or a P - 
alue equal to or greater than 0.05 were moved to ‘grave- 
ard’ tabs in the spreadsheet and excluded from any further 
nalysis. The resulting validation data are contained in Sup- 
lementary Table 6. 
The iRF model was run using the same criteria as de- 

cribed in the ‘Iterati v e Random Forest Model’ section 

bove. A classification iRF model using five-fold cross- 
alidation with 1000 decision trees per random forest and 

en iterations was trained with the Guo et al. Cas9 sgRNA 

ataset. Classes were defined by sgRNAs with bad (0) or 
ood ( 1 ) cutting efficiency scores as determined by the 2500 

uides at each tail of the Log2 normalized score distribu- 

ion. The cross-validation test resulted in an ROC AUC of v
.8606. This model was then used to predict the class for 
 novel 120k sgRNA E. coli dataset as described above. 
pecifically, the 2500 guides at either tail of the Log 2 nor- 
alized score distribution were assessed and found to have 

n accuracy of AUC = 0.7633. See supplemental for classi- 
cation model test results (Supplementary Figure S5). 

dv anced featur e engineering metrics 

n combination with iterati v e Random Forest, in-house 
cripts for advanced interpretation of machine learning out- 
ut were utilized: 
Random intersection trees (RIT) uses binary predictor 

ariables to identify interactions among features in a model. 
n short, RIT starts by collecting the full set of matrix vari- 
bles in a ‘high level interaction’. Classes of observations are 
ssigned to each variable and then, through iteratively mak- 
ng a random observation and identifying which variable 
er e pr edicti v e of that observation, the interaction set is 
arrowed to a subset of patterns in the prediction variables 
 53 , 54 ). This process is repeated for each observation class. 
he algorithm works by assessing the node-split forest paths 

rom iRF to find features that occur consecuti v ely along the 
ath (more often than would be expected by chance). The 
esult of RIT is a set of interactions that are retained with 

igh probability, potentially in a non-linear manner, and are 
her efor e consider ed informati v e to the model as a whole
hen the features are in combination. 
For these analyses, we use internal R and Python scripts 

esigned for iterati v e and e xtensi v e tree-based random for- 
st decision processes. These scripts extend conventional 
IT methods for enhanced feature engineering and model 

omparison. They provide metrics for feature interpreta- 
ion, including normalized importance scores (for compari- 
on across models), and fea ture ef fect scores (the magnitude 
nd direction of that feature’s influence on the model). We 
lso identify and characterize interacting features. For this, 
he number of samples captur ed, RIT (pr evalence of a fea- 
ure set in the model), adjusted RIT (the difference between 

he model and e xpected pre valence of a feature set), and set 
mportance, are key indicators. 

ESULTS 

eature importance with iterative random forest 

e assess iRF-based predicti v e models that le v erage quan- 
um descriptors for multiple degrees of base-pair polymer- 
za tion. This da ta ca ptures interactions within the sgRN A 

ucleotide sequence, along with properties of the individual 
ases. This approach combines the increased interpretabil- 

ty of XAI methods for feature interpretation with the 
ovel incorporation of quantum chemical properties to fur- 
her mechanistic understandings of CRISPR-Cas9. Models 
ere generated for sgRNA efficiency in E. coli and H. sapi- 

ns . Varia tions in fea tur e importance across kingdoms wer e 
lso assessed. 

A pub licly availab le E. coli dataset was used to gener- 
te a detailed feature matrix to determine highly influen- 
ial properties for predicting CRISPR-Cas9 cutting efficien- 
ies (Figure 1 ). In this model, the dependent variable (Y- 
ector) is the experimental cutting efficiency score for each 
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Figure 1. Explainable-AI method for analysis of feature importance on prediction of sgRNA ef ficiency. Fea tures are forma tted to generate a wide matrix 
with rows r epr esenting each sgRNA, corresponding experimental cutting efficiency scores and columns for all feature values. This information matrix is 
analyzed with an iterati v e Random Forest (iRF) method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sgRNA. We used quantum chemical features of nucleotides
to capture the intricacies of the multi-step CRISPR-Cas9
mechanism. In addition, base-pair oligomers ( k -mers) up
to tetramers were incorporated, describing nucleotide po-
sition in the sgRNA structure with binary encoding (one-
hot k-mers) and quantum chemical properties (quantum
k -mers). These k-mers assess the subsequence structure of
the 20bp sgRNA by segmenting the sequence into frag-
ments of one to four bases. These features provide a basis
for interpreting the influences of independent and depen-
dent nucleotides on sgRNA efficiency, and progress struc-
turally informed understandings of sgRNA efficiency. Fea-
tur es pr eviously determined to influence CRISPR-Cas9 ef-
ficiency in mammalian species were also encoded, includ-
ing GC content, melting temperature, and one-hot encod-
ing of single and paired nucleotides in the target sequence.
We also included metrics such as the distance between the
target sequence and the nearest PAM (NGG sequence) and
location of the target sequence relati v e to the nearest gene.
To sharpen insight into the contributions of each feature,
predicti v e capabilities were assessed by Pearson correla-
tions and accuracy ( R 

2 ) metrics (Supplemental Table 1).
The iRF model using the complete feature matrix results
in a predicti v e accuracy of 0.51, which is competiti v e with
the most predicti v e models currently available. Quantum
k-mers and one-hot k-mers contribute the largest feature
set contributions, isolating essential features for sgRNA
engineering. 
 

Feature engineering highlights the role of quantum mechanics

A feature engineering approach clarifies the factors influ-
encing sgRNA efficiency by identifying the model’s most
important variables. A total of 6232 features were used in
an iRF model for E. coli (the full E. coli feature set; Sup-
plementary Table S2). This model was trained on 32 374
sgRNA and tested on 8094 sgRNA sequences. This com-
plete fea ture ma trix cast as an iRF frame wor k resulted in
significant correlations between predicted and experimental
sgRNA cutting efficiency values (Figure 2 A). Furthermore,
high prediction le v els were found in the iRF model using
only the quantum chemical properties feature set; and ac-
curacy incr eased incr ementally as additional featur es and k-
mers were incorporated (Figure 2A; Supplementary Figure
S1; Supplemental results). Below, we focus on a subset of
fea tures tha t were the most predicti v e of sgRNA efficiency
(Figure 2 B, C). 

Based on feature importance values produced by
iRF (Supplementary Table S4), top features emphasized
positionally-encoded k-mers of quantum chemical proper-
ties and one-hot encoding of the target sequence (Figure
2 B). These top features were maintained as highly impor-
tant across two quantum chemical methods (Supplemen-
tary Figure S5). Top features were localized to positions 18
through 20 of the target sequence. This region is proximal
to the sgRNA tailpin structure, the target DNA PAM se-
quence, and cut site for the Cas9 nuclease. The most im-
portant feature was the HOMO–LUMO energy gap for
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R2 across iRF modelsSamples v Importance (Top 100 Features)

R2

R2 across iRF models

Raw + One-hot + 
Quantum + Kmers 

Raw + One-hot + Quantum

One-hot + Quantum

Raw + Quantum

Raw + One-hot

Quantum

One-hot

Raw

1.0 1.0 0.2
R2

Top 1,000

Top 500

Top 200

Top 100

Top 50

Top 20

Top 10

Top 5

Feature Importance (Top 50 Features)
A B

C D

Figure 2. Identifying model variation based on feature input and assessing feature importance in E. coli . ( A ) Violin plot of R 

2 values based on iRF model 
genera tion with isola ted fea ture input (fea ture ca tegories described in Table 1 ). ( B ) The top 50 features from the full fea ture ma trix iRF model ranked by 
normalized feature importance score and color-coded by feature category. ( C ) Dot plot of features from full feature matrix iRF model showing the number 
of samples (sgRNAs) that were influenced by that feature (y-axis) versus the normalized importance of the feature (x-axis). Color temperature increases 
with the feature effect score (red, negati v e; b lue, positi v e) and dot size is scaled by the normalized importance score. ( D ) Violin plot of R 

2 values for the 
top 5, 10, 20, 50, 100, 200, 500 and 1000 features, based on full feature iRF model output. There is a plateau of information gained from including features 
with low importance scores. 
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he base pair at position 20 of the target sequence (Fig- 
re 2 B). This feature alone accounted for more than 6% 

f the variance in empirical sgRNA efficiency. The next 
ost important feature was the base-pair dimer stacking 

nergy at bases 19 and 20; accounting for ∼3% of the vari- 
nce. Hydrogen bonding energy of the base pair at posi- 
ion 20 shows a similar contribution. Following these fea- 
ures in importance, we observ e se v eral position-dependent 
ase pair dimer , trimer , and tetramer quantum chemical 
roperties. Each of these features accounted for 1–2% of 
he dataset variance. Se v eral one-hot encoding sequences 
ere also important features, including cytosine positions 
5 and 16 (CC pos15) and a CCA beginning at position 19. 
dditionally, se v eral features with high feature importance 

cor es ar e consistent with trends in the literature, including 

C content and melting temperature ( 31 ). 
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Each decision tree within an iRF model selects features
based on their contribution to the predicti v e ability against
the experimental dataset. Because of complex relationships
between features and sgRNA, individual features may not
be influential for each sgRNA in the model. Ther efor e, each
feature’s average number of affected sgRNAs was also cal-
culated for all decision trees within the iRF model. This
average was compared with the total number of training
data sgRNAs to determine the relati v e proportion of sgR-
NAs that each feature influenced (Figure 2 C). The twenty
highest-magnitude fea tures af fected between 20% and 85%
of sgRNA samples. The three most-commonly influential
features included the base pair 20 HOMO–LUMO gap en-
ergy, the base-pair 19–20 dimer hydrogen bond energy, and
the base-pair 1–4 tetramer hydrogen bond energy (Figure
2 C). These top features span both positi v e and negati v e as-
sociations with predicted cutting efficiency scores. 

Assessing feature association with sgRNA efficiency 

Each feature was assigned a direction (positi v e or negati v e)
and ef fect size, calcula ted with a random intersection tree
(RIT)-based approach ( 32 ) (Figure 3 A, Supplementary Fig-
ure S3). These components describe a feature’s relationship
with the cutting efficiency score, allowing for greater inter-
preta tion of tha t fea ture’s role in the CRISPR-Cas9 mech-
anism. For example, it has been shown that higher melt-
ing temperatures and greater GC content decrease guide
ef ficiency ( 31 ). This anti-correla ted rela tionship is demon-
strated in our model by a negati v e feature effect value (Fig-
ure 3A, C). Among the important features, both positi v e
and negati v e correlations with the predicted cutting effi-
ciency score were observed (Figure 3 ). 

The top positional encoding features also showed var-
ied directions of correlation with sgRNA cutting efficiency.
Two essential features are the HOMO–LUMO gap and the
hydrogen bond strength at position 20 between the sgRNA
and target sequence (Figure 3A, C, Supplementary Fig-
ure S2). The HOMO–LUMO gap is positi v ely correlated
with sgRNA cutting efficiency, while the hydrogen bond
strength at the same position is anti-correlated. Further,
the direction of the hydrogen bond str ength featur e effect
v alue v aries with position and encoding length –– whether
base-pair monomers , dimers , trimers , or tetramers are
consider ed. Hydrogen bond str ength at positions 18–20
hav e negati v e effects, w hile hydro gen bond strength at po-
sition 1 has a positi v e effect. This contrast indicates var-
ied pr efer ences for hydrogen bonding energy across regions
of the target sequence. One-hot encoding indicates posi-
tion 15 CC as anti-correlated, while position 19 GC is pos-
iti v ely correlated with sgRNA cutting efficiency. Addition-
ally, our model indicates that increased distance to PAM is
anti-correlated with sgRNA cutting efficiency. 

Quantum chemical insights into kingdom-specific dynamics 

Current species-trained models are inadequate for predic-
tion across organisms. To assess the organism specificity
of our iRF model, we tested the efficacy of the full E.
coli -trained model on se v eral pub licly accessib le H. sapiens
datasets ( 10 , 33 ). The r esulting pr edictions wer e extr emely
poor, with a Pearson correlation of 0.016. This supports
that key features identified by models trained on experi-
mental data from a single species are not predicti v e across
species, particularl y w here varied CRISPR-Cas9 interac-
tions and complex DNA structures contribute. 

E. coli and H. sapiens r epr esent differ ent kingdoms, Eu-
bacteria and Animalia. These classifications span single-
celled to multi-celled or ganisms; varied or ganellar makeup;
and di v ersity in genomic and epigenomic structures and
compositions. To compare the predicti v e capability of the
newly integrated feature set across kingdoms, we gener-
ated a model trained on H. sapiens -specific data ( 10 , 33 ).
The full fea ture ma trix was generated as described for the
E. coli model, using the specified sgRNA sequences in the
Doench et al. 2014 (1278 sgRNAs) and Chuai et al. 2018
(16749 sgRNAs) datasets (Supplementary Table S3). The
iRF model was pr epar ed with the same fiv e-fold cross val-
idation scheme as for the E. coli models. The resulting
model had a Pearson correlation of 0.50 (Table 1 ). This
is competiti v e with se v eral of the top predicti v e cutting
efficiency models currently available for human genome
editing ( 4 ). 

To explore this result, we cross-examined the twenty
highest-scoring features for each species-trained model
(Figure 3 ). Similarly to those identified in the E. coli model,
quantum chemical tensors in the target sequence’s seed re-
gion (sgRNA position 10–20, closest to the PAM sequence)
appear to dri v e the H. sapiens model prediction (Figure 3 B).
While quantum chemical properties as a feature set are im-
portant for sgRNA efficiency in both E. coli and H. sapi-
ens , the most predicti v e features vary considerably between
models. In E. coli , the occupancy of frontier orbitals for
PAM-adjacent nucleotides was a driving factor in CRISPR-
Cas9 cutting (Figure 3 C). In the H. sapiens model, how-
e v er, properties in central regions of the target sequence
were highlighted (positions 5–15; Figure 3 D). Key features
for this model emphasize hydrogen bonding energy and
stacking interactions, along with electron occupancy (Fig-
ure 3B / D). These features signpost novel mechanistic inter-
pretations focused on central regions of the target sequence
that can be explored in future biological studies. 

DISCUSSION 

Current sgRNA efficiency prediction models are limited by
a narrow range of species data for training. To enhance
the predicti v e accuracy, many models use deep learning
techniques that can obscure interpretability of their fea-
ture effects. This work expands understanding of the fac-
tors influencing sgRNA efficiency for a bacterial dataset
with an e xplainab le-AI method. Furthermore, we incorpo-
rate quantum chemical properties to provide novel insights
into sgRNA ef ficiency, d ynamics, and propose interpreta-
tions for the CRISPR-Cas9 mechanism. 

A panel of E.coli sgRNA sequences were encoded into a
ma trix incorpora ting PAM sequence distance, sgRNA melt-
ing temperature, GC content, one-hot binary encoding, and
quantum chemical properties. This detailed feature set was
used to train an XAI iRF model against experimentally
calcula ted cutting ef ficiencies. The goal of this model
was to predict on-target CRISPR-Cas9 activity to better
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Figure 3. Explainable-AI interpretation through iRF output metrics and featur es’ dir ectional influence on cutting efficiency. (A, B) The top 20 features 
from the full fea ture ma trices ranked by normalized importance score and color-coded by the direction of the effect. Positi v e correlations with the cutting 
efficiency score are blue while anti-correlations with cutting efficiency score are pink for E. coli ( A ) and H. sapiens ( B ). (C, D) sgRN A-DN A interaction 
highlighting quantum chemical features of top importance, their locations, and correlated associations with cutting efficiency scores in E. coli ( C ) and H. 
sapiens ( D ). DNA strand r epr esented in gray (target sequence) and blue (target complementary sequence), sgRNA shown in yellow, and PAM sequence 
displayed with NGG stars. The feature effect direction is indicated with arrows, up (blue arrow) indicates a positi v ely correlated relationship between the 
feature value and the cutting ef ficiency value. Fea ture bars indica te quantum properties (HL gap, purple; Stacking interactions, green; H-bonding, blue) and 
the length of the bar indicates the k -mer size. Multi-colored bars indicate the same k-mer at the same position has multiple features assessed as highly im- 
portant. The E. coli (C) model shows e xtensi v e localization of important features, primarily bp, trimer and tetramers at positions 11–20. Hydrogen bonding 
has outlier importance at position 1–5. Hydrogen bonding and stacking energy features are observed in both correlated and anti-correlated relationships 
with cutting efficiency (depending on their k -mer and position) while HL-gap is consistently a positi v e relationship nearest the PAM sequence. The H. 
sapiens (D) model has lesser feature localization, with many features overlapping in positions 5–15. For features of high importance (hydrogen bonding, 
stacking energy, and HL-gap), the feature-specific directional effects span both positi v e and negati v e relationships with cutting efficiency, dependent on 
the feature length and position. Similarly to the E. coli model, bp, trimers and tetramers are the most predicti v e. The number of electrons H. sapiens a top 
feature for the H. sapiens model that is not among the top feature in E. coli . 
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understand sgRNA efficiency in the genome. The predicti v e
capacity of the machine learning model was enhanced by
advanced k-mer features (binary and quantum) and is com-
petiti v e with currently available models. The XAI method-
ology permitted investigation of the underlying features by
quantifying feature importance scores. 

Quantum chemical properties carried the highest im-
portance for prediction of sgRNA efficiency. This feature
set is novel in the domain of CRISPR-Cas9 models and
enhances the model’s biological interpretability. Beyond
position-specific sequence information, which is commonly
encoded in a binary matrix, quantum chemical properties
signpost the varied nucleotide interactions tha t media te the
CRISPR-Cas9 mechanism. The sgRNA seed region fea-
tured quantum properties with high predicti v e capacities.
Descriptors of hydrogen bonding energy, stacking inter-
actions, and HOMO–LUMO gaps enrich the interpreta-
tion of why this region plays a vital role in CRISPR-Cas9
ef ficiency. Particularly, we note indica tions of mechanis-
tic competition for pr eferr ed structural features. We focus
on three main themes: locality in the ‘seed r egion’, degr ee
of base-pair polymerization, and mechanistic competition
(Figure 3 C). 

The ‘seed’ region, the fiv e to ten base pairs on the target
sequence’s 3 

′ end nearest to the PAM sequence and cleavage
site, has been a focus of sgRNA construction across mam-
malian species. Se v eral of the top E. coli -based features, es-
pecially quantum properties for base-pair and dimer struc-
tur es, ar e essential in positions 18–20 (Figure 3A; Figure
3 C). In contr ast, tetr amer features in the seed region are
highlighted further from the PAM sequence. These differ-
ences suggest a structur e-activity r elationship and may in-
dica te separa te mechanistic steps involving these regions. 

Looking to the multi-step CRISPR-Cas9 mechanism, we
postula te tha t considering both DN A-DN A double helix
unwinding and subsequent DN A–RN A binding are essen-
tial for interpreting these results. 

This distinction can be seen when interpreting a positi v e
correlation between the hydrogen bond stacking energy at
position 18 of the target sequence (Figure 3 A). Mechanisti-
cally, this indicates that position 18 is important for DNA–
RNA binding. Once helix melting has been initia ted a t the
target sequence’s 3 

′ end, the remaining sequence composi-
tion is potentially less important for unwinding. Ther efor e,
we suggest that while lower hydrogen bond strength at po-
sition 20 is energetically preferable for DNA double helix
melting, higher hydrogen bond strength at position 18 is im-
portant for strong DN A–RN A binding (Figure 3 A). 

In another view, a positive correlation between the
HOMO–LUMO gap energy and cutting efficiency is ob-
served at position 20. The HOMO–LUMO gap may capture
conformational changes that are occurring during the initial
integration of the CRISPR-Cas9 complex. We note recent
work identifying the ‘phosphate lock loop’ in this interpre-
ta tion. W hen the PAM sequence is identified and bound,
the DNA kinks to enable DNA helix unwinding and per-
mit DN A–RN A binding. These structural e v ents are stabi-
lized by a phosphate lock loop proximal to the PAM ( 34–
37 ). While a high HOMO–LUMO gap in this region may
describe a change in molecular stability, the weaker hydro-
gen bonding may relate to the DNA double helix unwinding
that follows. 

A further discovery was the variation in influential prop-
erties for sgRNA efficiency across species. The novel quan-
tum chemical property feature set is tr ansfer able across
species because of its construction from simple nucleotide
sequences. While the model does not provide a comprehen-
si v e vie w of nucleotide binding and interactions in complex
genomes, it does provide a structural grounding for mecha-
nistic interpreta tions tha t cannot be captured with conven-
tional binary encodings. Species-tailored iRF models gen-
erated utilizing E. coli and H. sapiens data exemplify this
incr ease in interpr etability. Mor eover, the H. sapiens model
provides sufficient predicti v e power while also allowing for
feature engineering insight. Such analytical interpretability
is not currently available with other top predicti v e models in
the field due to their deep learning focus ( 38 ). Furthermore,
our model performance points to the beneficial integration
of quantum chemical properties, not only for interpretation
but also for sgRNA efficiency prediction. 

This novel feature set was shown to be of high impor-
tance across species; with each species model emphasizing
different quantum chemical properties or locations of inter-
est. This highlights uses for understanding complex mech-
anisms across di v erse species and datasets. For example, re-
cent work, including that by Palermo et al., has made strides
in its combination QM / MM description of the S. pyogenes
CRISPR-Cas9 system, with particular focus on the scissile
phosphodiester bond [1, 2]. In light of our work, sampling
a larger region of the guide and a range of transcript can-
didates, focusing on the p -20 to p -15 region, could provide
powerful insight into the S. pyogenes CRISPR-Cas9 mech-
anism and its relationship to guide sequence composition
( 60 , 61 ). 

Varia tion in fea ture importance across models supports
critiques that organism-tailored models are not transfer-
able across species. This was further emphasized by the very
low performance of the E. coli trained model as a predictor
of H. sapiens sgRNA efficiency. Not only is model explo-
ration across species needed; new datasets with standard-
ized scoring methodologies ar e r equir ed for such studies to
be conducted. Current publicly accessible cutting libraries
vary across factors that can greatly influence the calculated
cutting efficiency scores; including sgRNA sequence length,
type of assay, and the use of a dead Cas9 (dCas9), Cas9 with
a non-complementary sequence as the guide, no Cas9 or no
guide as a control. Each of these variations influence the
reported efficiency values and complicate synthesis of mul-
tiple datasets within a single model or comparison across
datasets. Ther e ar e further challenges in assessing cutting
specificity in bacteria due to the general lack of NHEJ ma-
chinery. This causes many double stranded breaks to result
in cell lethality. Future work will generate genome-wide cut-
ting efficiency libraries to expand on currently available data
as well as standardize libraries across species for compari-
son and model integration. 

This work established a novel feature set, with quantum
chemical tensors, that advances the mechanistic interpreta-
tion and predicti v e accuracy of the model and will become a
r esour ce for continued work in the field. Initial insights into
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ssential variables for understanding the CRISPR-Cas9 

echanism have been identified through feature engineer- 
ng techniques. These advances provide avenues for improv- 
ng CRISPR-Cas9 sgRNA generation and identify points 
f interest for experimental follow-up in the CRISPR-Cas9 

echanism. Furthermore, these advances provide insights 
nto species variation of CRISPR-Cas9, and indicate meth- 
ds for predicti v e model enhancement. 

A T A A V AILABILITY 

o new data were generated or analysed in support of this 
 esear ch, except for guide RNA sequences and depletion 

cores, which are included in supplemental material. 
Source code for data processing can be found on 

itHub under an MIT license. Code for generating 

he fea ture ma trix can be found at https://github.com/ 
osha003/sgRNA iRF . Code for iterati v e Random For- 
st (iRF) can be found at https://github.com/jailGroup/ 
angerBasediRF . 
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