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ABSTRACT

CRISPR-Cas9 tools have transformed genetic manip-
ulation capabilities in the laboratory. Empirical rules-
of-thumb have been developed for only a narrow
range of model organisms, and mechanistic under-
pinnings for sgRNA efficiency remain poorly under-
stood. This work establishes a novel feature set and
new public resource, produced with quantum chem-
ical tensors, for interpreting and predicting sgRNA
efficiency. Feature engineering for sgRNA efficiency
is performed using an explainable-artificial intelli-
gence model: iterative Random Forest (iRF). By en-
coding quantitative attributes of position-specific se-
quences for Escherichia coli sgRNAs, we identify im-
portant traits for sgRNA design in bacterial species.
Additionally, we show that expanding positional en-
coding to quantum descriptors of base-pair, dimer,
trimer, and tetramer sequences captures intricate in-
teractions in local and neighboring nucleotides of
the target DNA. These features highlight variation
in CRISPR-Cas9 sgRNA dynamics between E. coli
and H. sapiens genomes. These novel encodings of
sgRNAs enhance our understanding of the elaborate
quantum biological processes involved in CRISPR-
Cas9 machinery.
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INTRODUCTION

CRISPR-Cas9 is revolutionizing genome-editing using a
single guide RNA (sgRNA) to direct precise cleavage at en-
dogenous locations in the genome (1,2). The first step to
engineer or modify a specific region using CRISPR-Cas9
is to computationally predict cutting efficiencies of poten-
tial sgRNAs. The CRISPR-Cas9 system depends on this
designed sgRNA to target the protein complex to a region
flanked by a 3'NGG protospacer adjacent motif (PAM).
The CRISPR-Cas9 system is successful only if both speci-
ficity and efficiency occur at the target loci (3). To in-
form sgRNA sequence choices, genomic feature analyses
have associated sgRNA attributes with cutting efficiency for
CRISPR-Cas9 systems (4-8).

The efficiency of CRISPR-Cas9 systems is defined as
the percentage of transgenic samples in which mutations
are introduced at the intended target. Due to the time
and effort required to transform many species, efficiency is
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critical. The calculated efficiency, while correlated, does not
directly capture the specificity (on-target versus off-target
cuts) that occur. Predicting sgRNA efficiency requires care-
ful consideration of relationships among the sgRNA se-
quence, genomic features of the target region, and activity
within the CRISPR-Cas9 system. Some of these relation-
ships have been extensively investigated (9). Among them,
nucleotide composition of the target sequence is the most
thoroughly studied contributor to sgRNA efficiency (3,10-
12). Specific nucleotide patterns have been associated with
sgRNA efficiency; including the presence of guanine and
absence of thymine near the PAM sequence, preference for
cytosine near the cut site, and overall GC content (3,11,13).
The seed region — defined as the five to ten bases of the target
sequence nearest the PAM — is of central consideration for
these patterns in sSgRNA sequence composition (10,12,14).

While nucleotide sequence patterns are observed across
species, their influence on CRISPR-Cas9 sgRNA associa-
tion and target cleavage varies (1,15-18). The added com-
plexities of chromatin structure have started to be consid-
ered, enhancing understandings of CRISPR-Cas9 dynam-
ics. For example, human models were expanded with infor-
mation about the insertion point within the gene sequence
(19) and secondary structure of the target sequence (20,21).
Target regions with low nucleosome occupancy and high
chromatin accessibility have also been investigated (22-26).
These structural nuances underscore even greater variation
in CRISPR-Cas9 system mechanisms across organisms.

DNA is less protected in prokaryotic cells than in eu-
karyotic cells because of a simpler chromatin structure;
and target regions are often more accessible (3). In con-
trast, mammalian cells have highly active non-homologous
end-joining (NHEJ) systems, which induce repair mecha-
nisms for the DNA double strand break during CRISPR-
Cas9 integration. In prokaryotes, sgRNA activity is corre-
lated with cellular survival because double stranded breaks
are lethal to the cell in the absence of NHEJ (27). These
pronounced differences in structure and function illumi-
nate, in part, why models trained for mammalian species
have failed to provide sgRNAs that consistently integrate
with target sequences across other kingdoms. This insuffi-
ciency spurred development of organism-tailored models,
including those for plants (1), yeast (18) and bacteria (28).
Expanding the breadth and chemical specificity of model
feature sets provides useful avenues for extending state-
of-the-art sgRNA efficiency prediction to other organisms
and non-model species. To achieve this next level of model
prediction power, quantum chemical properties warrant
consideration.

Bridging chemistry and physics, quantum chemical prop-
erties capture the ways in which electron density impact
the reactivities and energetics of molecules. Some prop-
erties, such as the HOMO-LUMO gap (highest occupied
molecular orbital-lowest unoccupied molecular orbital en-
ergy gap; H-L gap), describe how electron density is dis-
tributed among atoms. Meanwhile, other properties, like
hydrogen-bonding energy or m-stacking energy, describe
how a system’s total energy changes as molecules interact.
Such properties depend on how the molecular electron den-
sities shift in response to one another. Incorporating quan-
tum chemical detail when characterizing or predicting bio-

logical processes has been transformative for biology; pro-
viding new frameworks for viewing processes, identifying
novel features, and enhancing mechanistic understandings
(29,30). This work spotlights quantum properties includ-
ing HOMO-LUMO gaps, hydrogen bonding, and stacking
interactions to investigate the complex molecular interac-
tions of the DNA double helix and the DNA/CRISPR-
Cas9 sgRNA hybrid.

Machine learning models excel at identifying patterns in
data to inform outcomes; but advances in predictive power
are bottlenecked by the depth and breadth of training data.
Current methods of feature evaluation for CRISPR-Cas9
efficiency are trained on experimental sgRINA cutting effi-
ciency data from a narrow range of eukaryotic species, in-
cluding human, mouse, and zebrafish (4). While these mod-
els’ species-by-species rules for sgRNA prediction are infor-
mative, their insights are rarely generalizable. Therefore, to
develop advanced predictive models, the training data must
be sufficiently detailed to capture the complexities of ge-
nomic structure and content that influence efficiencies of
CRISPR-Cas9 integration and target cleavage.

Here we use machine learning approaches to unravel
these species-dependent rules of sgRNA efficiency. Many
current Al model generation approaches use techniques
such as neural networks that can obscure associations be-
hind a ‘black box’ of decision schemes. We sought to un-
derstand feature contributions to cutting efficiency for Es-
cherichia coli through an explainable-artificial intelligence
(XAI) approach. We used iterative Random Forest (iRF),
an XAI method designed for model transparency and fea-
ture evaluation, to assess CRISPR-Cas9 efficiency and im-
prove our understanding of the system’s underlying bio-
logical mechanisms. When trained on detailed feature sets,
XAI models provide a shared basis for predicting sgRNA
efficiency across organisms. This work extends sgRNA ef-
ficiency modeling to assess both E. coli and Homo sapiens
datasets. Additionally, our model integrates a novel and in-
terdisciplinary feature set that includes quantum chemical
properties.

MATERIALS AND METHODS
Datasets

E. coli. A publicly accessible E. coli dataset published by
(28) was utilized. Briefly, this dataset contains 55670 unique
sgRNAs that are profiled by co-expressing a genome-scale
library with a pooled screening strategy. The data was com-
piled from three different Cas9 variations including Cas9
(Streptococcus pyogenes), eSpCas9, and Cas9 (ArecA). The
eSpCas9 is a Cas9 that has been reengineered for improved
specificity and the Cas9 (ArecA) was developed by knock-
out of recA blocking DSB repair. The dataset contains both
sgRNA sequence and empirical CRISPR-Cas9 efficiency
scores for each of the respective guides. The cutting effi-
ciency scores were calculated by taking the binary logarithm
(logy) of the selected read count to the control read count.
We focused on the Cas9 dataset for analyses within this
manuscript.

H. sapiens. A publicly accessible H. sapiens dataset pub-
lished by (10) was utilized. This dataset contains 1278



unique sgRNAs based on a human malignant melanoma
cell-line (A375) viability analysis. The cutting efficiency was
determined in the same manner as described above with
the log, fold change calculated relative to the change in
abundance during a two-week growth period. Addition-
ally, a larger dataset curated by (33) which contains four
publicly-accessible human experimental sgRNA efficiency
datasets (11,19,39) including multiple cell lines (HCT116,
HEK?293T, HELA and HL60) was considered. Cutting ef-
ficiency values were defined as the log; fold change in the
measured knockout efficacy.

Multi-species. The multi-species model included sgRNA
efficiency data from all previously described datasets.
When model training occurs on datasets spanning multiple
species, all data is min-max normalized on a scale of 0 to
1 and composed into a matrix of sgRNA and cutting effi-
ciency scores for model input. To eliminate species bias due
to sample size, a consistent subsampling of 15 000 sgRNAs
was utilized from E. coli and H. sapiens; and the species was
encoded as a binary feature.

Feature matrix

Quantum chemical properties (29). Quantum chemical
properties provide unique insights into the factors influenc-
ing sgRNA efficiency in CRISPR-Cas9 systems. Canonical
of DNA-DNA and DNA-RNA duplexes were modeled to
assess these factors. The analysis included quantum chem-
ical properties of individual nucleotide bases; base-pairs;
and base-pair dimers, trimers, and tetramers. In this way,
a fourteen-Angstrom (4 bp) cut-off distance was invoked
for long-rangeinteractions in the sgRNA. Additionally, a
new sliding-window approach for the nucleotide base po-
sitions was developed for sgRNA interactions with the tar-
get DNA. Base-pair interactions were encoded into blocks,
which subdivided the twenty-nucleotide sgRNA. In this ap-
proach, five ranges of interactions were assessed, from in-
tramolecular to intermolecular.

HOMO-LUMO gap has been described as a signpost for
a molecule’s kinetic stability (40). It describes the energetics
of allowed electron transitions, and the likelihood of pro-
cesses involving electron mobility. Structurally, the H-L gap
reflects a molecule’s landscape of phase dependence for elec-
tronic wave function interactions—both constructive and
destructive— that originate covalent molecular interactions
(41). Hydrogen bonding, meanwhile, is a contextual prop-
erty. It reflects an energetic preference for arrangements of
molecules in relation to one another. Hydrogen bonding
directs non-covalent interactions between molecules, play-
ing roles in thermodynamic stability and the energetics of
protein folding, as two examples (42). Stacking interactions
are similarly contextual interactions and occur between aro-
matic rings. Stacking interactions range from -7 interac-
tions within the rings—of the overlapping p-orbital electron
density—to steric repulsions from exocyclic groups, which
are implicated in DNA twisting (43). Hydrogen bonding
and stacking interactions differ in the chemical species that
participate (Supplementary Figure S2). Whereas hydrogen
bonding interactions occur between hydrogen and a hydro-
gen bond acceptor, stacking interactions occur between aro-
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matic moieties. Quantifying the energetics of these interac-
tions complements a detailed feature set for machine learn-
ing models and sgRNA efficiency prediction.

The density-functional-based tight binding method
(DFTB) is a powerful approach for large-scale atomistic
simulations and calculating quantum chemical properties.
This work uses the DFTB3/30b parameter set (third order
parametrization for biological and organic systems). Calcu-
lations with the DFTB3/30b parameter set yield excellent
molecular geometries (Wang and Berkelbach, 2020), which
compare favorably with more resource-intensive methods.
For example, DFTB3-30B structures exhibit maximum ab-
solute deviations of 0.045 Angstroms from MP2/6-31G(d)
methods (second order Moller—Plesset perturbation theory
with six-primitive split valence polarized Pople basis; (44)).

Initial coordinates. Nucleotide coordinates were collected
from PubChem (45). B-DNA base-pairs were extracted
from crystal structure data (46) (PDBID: 167D; (46)). RNA
hybrids and DNA-RNA hybrids were prepared by sterics-
driven structure overlay in Biovia Discovery Studio soft-
ware (Dassault Systémes, S.E.). The nucleotide base and
base-pair geometries were optimized through a gradient de-
scent method with the simulation procedure described be-
low. By optimizing the building blocks (the bases and base-
pairs) and then systematically constructing kmers, we main-
tain an internal consistency of coordinates across the full
(n = 904) set of systems. This reduction of the full confor-
mational freedom of the kmers was motivated by the work
of Sponer et al. (59), and serves primarily to prevent asser-
tion of an optimal geometry where the context is not con-
sidered; and secondarily to avoid specialization to a con-
text which may not be extensible or generalizable across
the diversity of available conformational states and species-
dependent DNA winding or remodeling. After optimiza-
tion, each base-pair was aligned with the xy-plane in Open-
Pymol software (Schrodinger, Inc.). In analogy to Gil ef al.
(47), each base-pair was then translated such that its cen-
troid was the origin of coordinates. To complete the un-
ambiguous set of transformations, the pyrimidine carboxyl
groups provided a final constraint. For this, the thymine car-
bonyl bond and cytosine carbonyl carbon were rotated to be
normal to one another.

K-mer construction. For all constructs, base-pairs were
stacked at a distance of 3.5 A along the z-axis, and ro-
tated 36 degrees about their centroids (the origin). Struc-
tures were prepared with scripts executed in Open-Pymol.
All non-chimeric single-strand combinations were assessed.
In total, five nucleotide bases, size base-pairs (bp), 32 bp
dimers, 156 bp trimers and 716 bp tetramers were evaluated.
Compiled k-mers were assessed by single-point energy cal-
culations using the simulation procedure described below.

Simulation. Calculations were carried out at the DFTB3-
D3(BJ)/30b level of theory with Grimme’s D3(BJ) dis-
persion correction (48,49). Dispersion corrections were
included to capture non-covalent interactions, resolving
van der Waals and London dispersion forces in de-
tail. Grimme’s dispersion correction was selected to de-
scribe medium and short-range dispersion effects (50).
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Additionally, a ‘COSMO’ model was used with water as a
solvent (conductor-like screening model). This model ap-
proximated solvent interactions and contextualized the ge-
ometries and energy calculations to a water environment.
Total system energy, HOMO-LUMO gap, and other quan-
tum tensors were compiled for assessment in an Iterative
Random Forest model.

Methods justification. To our knowledge, there is no
consensus method (or preferred method) for simulating
oligonucleotides beyond base-pairs. For simulations with
individual nucleotide bases and base-pairs, LC-DFT is in-
dicated in preference to high-level ab initio methods for re-
covering frontier orbital energies (55). Despite its excellent
performance in this context, LC-DFT typically scales as
N** with N the number of atoms (56,57). Furthermore,
the total number of systems to sample for all canonical
gRNA sequence fragments increases combinatorically with
the degree of base-pair polymerization (trimers, n = 156;
tetramers, n = 716). These are competing imperatives in
this work which rapidly escalate the computational de-
mand. Therefore, a low-scaling method is essential to de-
scribe even modest windows of the gRNA structure with
quantum chemical detail. We select the DFTB method
because it provides reliable geometries (58) with scaling
(N3 (57)) that is amenable to the large number of con-
structs considered in this work (n = 904). We compare the
DFTB3/30b model output with LC-wBLYP/pVTZ (long-
range corrected, range separated, Becke-Lee—Yang—Parr
functional with triple zeta polarized valence basis) calcu-
lations up to base-pair dimers. We find that the top fea-
tures (base-pair H-L gap, hydrogen bonding energy, base-
pair stacking energy) and the regions of special interest (3’
and 5’ termini) are reproduced across models and methods
(Supplementary Figure S4). Moreover, the level of model
prediction is consistent (>81%) across models, with the
top fifty features emphasizing quantum chemical proper-
ties (Supplementary Figure S4). We include frontier orbital
and ground-state energies at DFTB3/30b, LC-DFT/pVTZ
and HF/6-31G** levels of theory (Hartree-Fock with six-
primitive split valence Pople basis and d-/p-type polariza-
tion functions) to compare the ordering of features across
methods (Supplemental Table 5).

Public resource.  All calculated quantum chemical proper-
ties for nucleotides and k-mers have been compiled in Sup-
plementary Table S1.

Positional encoding. Matrix generation involved extrac-
tion of several isolated feature sets. Position-independent
and position-dependent encoding of the 20 bp sgRNA
were performed as described by Doench et al., 2014.
Briefly, position-independent features were determined
by the count of nucleotides within the 20 bp sequence
both as a single base (A/C/T/G) and as paired bases
(AA/AC/AG/etc.). Position-dependent features were rep-
resented using binary variables (1 represents presence at
that position) to encode the position of nucleotide bases up
to base-pair oligomers. To describe all possible combina-
tions, each position was described by four bits, with a bi-
nary value for each of the four possible bases (A/C/T/G).

Paired bases are further encoded with a binary value for
each of the 16 possible base pair combinations. Addition-
ally, we encoded the PAM (NGG) sequence by incorporat-
ing position-independent encoding of the NV nucleotide. The
combination of positional encoding approaches resulted in
384 features for each sgRNA assessed.

Further positional encoding was conducted with k-mers
to extend sequence fragment descriptions to the full guide
RNA. This encoding considers combinations of fragments,
capturing how the fragment’s context in the full transcript
influences sgRNA binding and efficiency. Here, a k-mer is
simply a sequence of characters in a string. We utilized
k-mers to capture nucleotide neighborhoods, considering
multiple base pairs with defined dependent positions. This
was done through a stepwise integration of additional nu-
cleotides as described above in a position-dependent man-
ner including nucleotides in groups of two to five. The bi-
nary matrix includes the positional encoding using a sliding
window so that each position from 1 to 20 (less the k-mer
length) is encoded.

‘Raw’ features. Several raw value features were deter-
mined including GC content (ratio from 0-1 representing
the proportion of the sgRNA sequence that is composed
of GC), temperature of melting of the DNA duplex (calcu-
lated by the Watson-Crick formula of Tm(°C) = 64.9 + 41
*(nG + nC-16.4)/(nA + nT + nG + nC)), minimum free
energy as a function of RNA structure (calculated with Vi-
ennaRNA; (51)), distance of the target sequence to the clos-
est downstream PAM (utilizing the known genome assem-
bly this was determined by the number of bases between
position 20 of the sgRNA and the nearest NGG), and loca-
tion relative to the target gene (represented by TSS, TTS and
quartiles of gene sequence (Q1-Q4)). These calculated val-
ues resulted in an additional 5 features for each sgRNA
assessed.

Normalization and correlation assessment. The predictive
measure, cutting efficiency score, was min-max normalized
to ensure transferability across models, control, methods,
datasets and species. The distributions of high or low cut-
ting efficiency scores differed between species, and these
skews were maintained during normalization as to not bias
the technical efficiency of one species against the other.
Additionally, values were assessed for high levels of cor-
relation between features. When any two features resulted
in a correlation higher than 0.9 one of the features was re-
moved to eliminate the chance for split weights in feature
importance during model training. The feature set utilized
continuous and discrete variables with varied distributions.

Iterative random forest model

Random forest (RF) is a non-linear regression model which
incorporates an ensemble of decision trees that trace the al-
gorithm’s decision process. Iterative Random Forest (iRF)
expands on the Random Forest method and is described in
(52,53). Briefly, iRF is an advanced form of RF that imple-
ments a boosting and feature culling process based on the
feature importance values from the previous iteration’s ran-
dom forest. These processes further iterate and amplify the



features that repeatedly indicate high predictive capacity.
The boosting process produces a similar effect to Lasso in a
linear model framework. In iRF, a Random Forest is gener-
ated where features are unweighted and randomly sampled,
at any given node in the decision trees, with equal probabil-
ity. This process establishes feature importance scores that
are used to weight features in the next forest. This itera-
tive method provides an amplification effect, increasing the
chance that important features are evaluated at any given
node (52,53).

For this study, the process of weighting and generating
a new Random Forest is repeated 10 times with 1000 trees
and incorporates a 5-fold cross validation. For each run,
the data is separated into an 80/20 training/test split where
80% of the data is used for training the model and the re-
maining data (not utilized in model training) is used for
testing. Each feature is ranked by its importance in the
tree building step and the direction of impact is determined
based on the signed correlation of feature value and cutting
efficiency value. Specifically, the feature matrix described
above (incorporating positional encoding of the sgRNA
nucleotide composition through a one-hot binary method,
and quantum chemical properties) is utilized to predict the
sgRNA cutting efficiency. Multiple iRF models were pro-
duced with different feature sets to assess top importance-
scoring, highly-predictive features; details on these models
are in Table 1.

Model assessment across quantum calculations. The iRF
model was run using LC-DFT and DFTB3 quantum calcu-
lations for nucleotide base, base pair, and base-pair dimer k-
mers of the sgRNA to assess the variation in model output
when features were calculated at different levels of quantum
theory (Supplementary Figure S5). Both the predictabil-
ity of the iRF models (Supplementary Figure S5A) and
the top importance features (Supplementary Figure S5B)
were identified. The HL-gap, hydrogen bonding, and stack-
ing energies are maintained as key features across the mod-
els. These properties’ locations within the 3’ region of the
sgRNA are also conserved (Supplementary Figure S5B). It
is observed that 94 out of the top 100 features are consistent
between the two models.

Validation

Oligo design. As part of another project, 120000 unique
synthetic guide RNAs (sgRNAs) were synthesized by Ag-
ilent (Santa Clara, CA) as 90mers consisting of the 35-bp
J23119 Anderson promoter, the 20-bp spacer, and the 35-
bp 5’ end of the sgRNA. The pool of single-stranded DNA
molecules received from Agilent were dissolved in 200 pl
Elution Buffer (EB; 10 mM Tris, pH 8.0) and heated at 42°C
until all visible solids had dissolved.

The sgRNA sequences were picked to minimize potential
specificity issues. Namely, only sequences with unique seeds
and no matches to sequences adjacent to non-canonical
PAMs were chosen. Additionally, Cas9 was expressed at a
moderate rather than a high level, which should further re-
duce the effects of decreased specificity.

Oligo processing and donor library production. Once in so-
lution, second strand synthesis proceeded by mixing 20 wl
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oligo solution, 2.5 wl 10 uM oWGA139, and 25 pnl NEB
2x QS5 Hot Start Master Mix into each of two 0.2 ml PCR
tubes. This reaction was placed in a thermal cycler and the
following program was run: 98°C 1 min, 68°C 10 s, 72°C 5
min, 4°C hold. Once the hold was reached, 2.5 pl 10 pM
oWGA140 was added to each tube, and the following pro-
gram was run: 98°C 1 min; 25 cycles of 98°C 5 s, 68°C for 10
s, 72°C for 15 s; 72°C for 5 min, 4°C hold. The PCR prod-
uct was purified by running on a 3% agarose gel in TAE
buffer until the band was halfway down the gel, removing a
gel slice containing the band, and purifying the DNA with
the NEB Monarch DNA Gel Extraction Kit. To clone this
purified double-stranded oligo, a PCR of the pSS9-gRNA
vector (62) was performed using the NEB Q5 Hot Start 2X
Master Mix as manufacturer’s instructions with the primers
oWGA137 and oWGA138. 5 wl Dpnl (NEB) was added di-
rectly to the PCR product and incubated at 37°C overnight.
This reaction was cleaned by adding 45 .l water and 40 .l
MagBio HighPrep PCR Cleanup magnetic beads and fol-
lowing manufacturer’s instructions. Quality of this back-
bone vector fragment was empirically tested by transform-
ing 100 ng into Lucigen E. cloni Supreme DUO electrocom-
petent cells per manufacturer’s instructions; as ~40 colonies
were produced in this reaction, the backbone was consid-
ered suitable for Gibson assembly. 100 ng of vector back-
bone and 17.56 ng oligo library PCR product were added
to a 20 .l NEBuilder HiFi Assembly reaction per manufac-
turer’s instructions (a 5:1 insert:vector ratio). Afterwards,
the reaction was cleaned via drop dialysis with a 0.02 mi-
cron nitrocellulose filter floated on 250 ml of 18.2 M2 wa-
ter. 2 wl of this dialysis product was added to each of 6
25-ul Lucigen E. cloni Supreme DUO comp cell aliquots,
and electroporation was performed using a BioRad Mi-
croPulser set to the E. coli 1 program. 950 w1 Lucigen Re-
covery Buffer was added to each transformation, these six
solutions were combined, and the totality was incubated at
37°Cfor 1 h. Afterwards, this recovery culture was added to
100 ml LB + 100 pg/ml carbenicillin and incubated at 37°C
overnight. The next morning, the culture was harvested, the
supernatant was discarded, and the cell pellets were sus-
pended in 200 ml + 200 pg/ml carbenicillin and incubated
at 37°C for four h. This fresh culture was harvested via cen-
trifugation, then plasmid DNA was extracted using a Zymo
Research Midiprep Kit. This library, referred to hereafter as
the Donor Library, was sent for sequencing by Illumina.

Host competent cell preparation. E. coli K12 MG1655
containing pX2-Cas9 was struck from a freezer stock to an
LB + 50 pg/ml kanamycin agar plate, and a single colony
was picked to 5 ml of LB + kan in a culture tube. This cul-
ture was incubated at 37°C overnight, then it was used to in-
oculate 110 ml of LB + kan + 0.2% arabinose to an OD600
to 0.1. Growth was monitored over the course of 3 h, and
100 ml of the cells were harvested once an ODygy of ~0.6
was measured. The cell pellet was washed 3x with 10% glyc-
erol, then suspended to a final volume of 1000 ul.

Host library production. To prepare the library for trans-
formation, 10 pg of library vector was mixed with 100 pg
each of pWGA128 and pWGA130 to provide internal con-
trols for escape and cutting, respectively. 52.5 wl of con-
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Table 1. iRF model summary and metrics
Model Source # of # of Test Pearson
species dataset sgRNAs Feature det Features Description dpecies R2 correlation
E.coli Guo et al. 40 468 Raw 5 summary values of sgRNA E. coli 0.0406861 0.2007612
2016 [32374 sequence including GC content,
train] Tm, MFE, gene density and
distance to PAM
Onehot 5911 binary positional encoding of E. coli 0.26004285 0.4914184
20bp sgRNA nucleotide
sequence
QCT 316 quantitative metrics for H-bond E. coli 0.24183122 0.4918057
and HL-gap based on positional
nucleotide sequence
Raw.Onehot 6916 Raw + Onehot E. coli 0.26028286 0.4931724
Raw.QCT 312 Raw + QCT E. coli 0.24177446 0.4939777
Onehot.QCT 6227 Onehot + QCT E. coli 0.24905183 0.500817
Full Matrix 6232 Raw + Onehot + QCT E. coli 0.24906667 0.5019173
H. sapien 0.00429969 0.06557198
Top 5 5 Based on the full feature matrix E. coli 0.11240746 0.3436711
iRF model run with E.coli data,
the top feature importance
scores were utilized to generate
new iRF modesl with
5,10,20,40100200500 and 1000
features.
Top 10 10 E. coli 0.15779734 0.4019815
Top 20 20 E. coli 0.2017236 0.4458406
Top 50 50 E. coli 0.24529071 0.4903894
Top 100 100 E. coli 0.25119027 0.4967809
Top 200 200
Top 500 500
Top 1000 1000
H.sapien Doench et al. 1278 Full Matrix 6172 Raw + Onehot + QCT based on H. sapien 0.389120714 0.6525512
2014 [1022 the H.sapien sgRNA sequence
train] set from Doench et al. 2014
H.sapien Chuai et al. 16 749 Full Matrix 6172 Raw + Onehot + QCT based on H. sapien 0.229489979 0.486193
2018 [13 399 the H.sapien sgRNA sequence
train] set from Chuai et al. 2018
H.sapien Doench et al. 17 421 Full Matrix 6172 Raw + Onehot + QCT based on  H. sapien 0.211671332 0.4964907
2014; Chuai [13936 the H.sapien sgRNA sequence
etal. 2018 train] set from Doench et al. 2014 and
Chuai et al. 2018
E.coli + Guo et al. 30000 Full Matrix 6172 Raw + Onehot + QCT based on E. coli + 0.486194 0.6972761
H.sapien 2016; Doench  [24000 the E.coli sgRNA sequence set H. sapien [E.coli 0.504]
et al. 2014; train] from Guo et al. 2016 and the [H.sapien
Chuai et al. H.sapien sgRNA sequence set 0.491]
2018 sfrom Doench et al. 2014 and

Chuai et al. 2018

trolled library solution was added to 525 .l of electrocom-
petent cells, and 55 pl of this mixture was electroporated in
a 1 mm gap cuvette by a BioRad Micropulser set to the E.
coli 1 program 10 times in total, adding 950 wl of SOC to
each electroporation immediately after the shock. These 10
ml of cells and media were combined into a culture tube,
then 1 pl of 1 ng/wl pWGA129 plasmid was added to the
culture to act as a control for washing. The recovery culture
was incubated at 37°C for 1 h, then centrifuged and the su-
pernatant aspirated. The cell pellet was suspended in then
entirely transferred to 100 ml of LB + kan + 100 pg/ml
carbenicillin and cultured at 37°C for 6 h. 50 ml of culture
had cells harvested, washed once with 50 ml DNAse I Wash
Buffer (10 mM Tris, 2.5 mM MgCl,, 0.5 mM CaCl,), then
the pellet was suspended in 1.5 ml of DNAse I Wash Buffer
and transferred to a 1.5 ml microcentrifuge tube. This pel-
let was washed two more times with 1.5 ml DNAse I Wash
Buffer, then suspended in 990 .l of the same. 10 wl of NEB
DNAse I was added, and the reaction was incubated for 15
minutes at 37°C. The cell pellet was harvested, and plasmid
DNA was extracted using the NEB Monarch Miniprep Kit.

This library, referred to hereafter as the Host Library, was
sent for sequencing by Illumina.

Illumina library preparation.  For both Donor and Host Li-
brary plasmid pools, PCR using ‘phased primers’ amplified
the gRINA spacers to be sequenced. Briefly, five forward and
five reverse primers were made, each that bound to the same
site of the library plasmids but possessing zero to four addi-
tional random bases at the 5" end; the purpose of these extra
bases is to alleviate issues inherent to sequencing amplicons
on [llumina platforms, as the very low complexity of am-
plicon molecules prevents high-quality base calls from be-
ing made by the Illumina system. These forward and reverse
primer mixes were used together with 30 ng of library vector
in a Q5 Hot Start PCR as per manufacturer’s instructions.
The PCR product was purified on 3% gel and isolated using
the NEB Monarch DNA Gel Extraction Kit, quantified us-
ing the Promega Quantus fluorometer and the QuantiFluor
ONE dsDNA System, and then used in the NEBNext Ultra
II DNA Library Prep Kit for [llumina. During the amplifi-
cation step, one forward and one reverse primer per library



from the NEBNext Multiplex Oligos for Illumina (Dual In-
dex Primers Set 1) kit was used to complete the protocol.

Illumina library sequencing.  Sequencing libraries were val-
idated on an Agilent Bioanalyzer using a DNA7500 chip,
and the final library concentration was determined by Qubit
(Thermo Fisher Waltham, MA) with the broad range dou-
ble stranded DNA assay. A paired end sequencing run
(2 x 75 bp) was completed on an Illumina MiSeq instru-
ment (Illumina, San Diego, CA) with 20% PhiX spike in
using v3 chemistry following the manufactures denaturing
and loading recommendations. The Donor Library was se-
quenced using three separate sequencing runs, while the
Host Library was sequenced using two separate runs.

Data processing. Paired end reads were merged using
the USEARCH -fastq_mergepairs command with the -
fastq_maxdiffs option set to 10 (63,64). The merged
pairs were then matched to the original design file in
FASTA format using USEARCH (usearch -usearch_local
path/to/reads.fastq -db path/to/designs.fasta -strand both
-threads 30 -id 0.9 -top_hit_only -target_cov 1 -userout
path/to/output.tsv -userfields query + target + id + qrow-
dots + trowdots + qrow + trow). The output .tsv file was
parsed in Python to count the instances of perfect reads
for each design in the design file and to calculate the abun-
dances of perfect reads for each design (calculated as num-
ber of perfect reads for a design divided by the number of
merged pairs used in the initial USEARCH matching, and
these data for all runs were combined into a single spread-
sheet. In that spreadsheet, new columns to calculate values
for the average donor library reads, average donor library
abundance, average host library abundance, host wash con-
trol correction, delta, logydelta, and P-value for each design.
Briefly: average donor library reads, donor abundances, and
host abundances were calculated with the AVERAGE func-
tion in Excel; the host wash control corrected abundance
was calculated as the average host library abundance minus
the product of the ratio of the average host abundance of
the pWGA 129 wash control sequence, the ratio of the total
mass of DNA used (1 wg) to the ratio of wash control plas-
mid added to the recovery (1 ng), and the donor abundance
of the cassette; delta was calculated as the host wash con-
trol corrected abundance divided by average donor library
abundance; logydelta was calculated by log2 delta; and the
P-value was calculated by the Student’s ¢-test function in
Excel for a two-tailed heteroscedastic test. Designs possess-
ing either less than 10 average donor library reads or a P-
value equal to or greater than 0.05 were moved to ‘grave-
yard’ tabs in the spreadsheet and excluded from any further
analysis. The resulting validation data are contained in Sup-
plementary Table 6.

The iRF model was run using the same criteria as de-
scribed in the ‘Iterative Random Forest Model” section
above. A classification iRF model using five-fold cross-
validation with 1000 decision trees per random forest and
ten iterations was trained with the Guo et al. Cas9 sgRNA
dataset. Classes were defined by sgRNAs with bad (0) or
good (1) cutting efficiency scores as determined by the 2500
guides at each tail of the Log2 normalized score distribu-
tion. The cross-validation test resulted in an ROC AUC of
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0.8606. This model was then used to predict the class for
a novel 120k sgRNA E. coli dataset as described above.
Specifically, the 2500 guides at either tail of the Log, nor-
malized score distribution were assessed and found to have
an accuracy of AUC = 0.7633. See supplemental for classi-
fication model test results (Supplementary Figure S5).

Advanced feature engineering metrics

In combination with iterative Random Forest, in-house
scripts for advanced interpretation of machine learning out-
put were utilized:

Random_intersection trees (RIT) uses binary predictor
variables to identify interactions among features in a model.
In short, RIT starts by collecting the full set of matrix vari-
ables in a ‘high level interaction’. Classes of observations are
assigned to each variable and then, through iteratively mak-
ing a random observation and identifying which variable
were predictive of that observation, the interaction set is
narrowed to a subset of patterns in the prediction variables
(53,54). This process is repeated for each observation class.
The algorithm works by assessing the node-split forest paths
from iR F to find features that occur consecutively along the
path (more often than would be expected by chance). The
result of RIT is a set of interactions that are retained with
high probability, potentially in a non-linear manner, and are
therefore considered informative to the model as a whole
when the features are in combination.

For these analyses, we use internal R and Python scripts
designed for iterative and extensive tree-based random for-
est decision processes. These scripts extend conventional
RIT methods for enhanced feature engineering and model
comparison. They provide metrics for feature interpreta-
tion, including normalized importance scores (for compari-
son across models), and feature effect scores (the magnitude
and direction of that feature’s influence on the model). We
also identify and characterize interacting features. For this,
the number of samples captured, RIT (prevalence of a fea-
ture set in the model), adjusted RIT (the difference between
the model and expected prevalence of a feature set), and set
importance, are key indicators.

RESULTS
Feature importance with iterative random forest

We assess iR F-based predictive models that leverage quan-
tum descriptors for multiple degrees of base-pair polymer-
ization. This data captures interactions within the sgRNA
nucleotide sequence, along with properties of the individual
bases. This approach combines the increased interpretabil-
ity of XAl methods for feature interpretation with the
novel incorporation of quantum chemical properties to fur-
ther mechanistic understandings of CRISPR-Cas9. Models
were generated for sgRINA efficiency in E. coli and H. sapi-
ens. Variations in feature importance across kingdoms were
also assessed.

A publicly available E. coli dataset was used to gener-
ate a detailed feature matrix to determine highly influen-
tial properties for predicting CRISPR-Cas9 cutting efficien-
cies (Figure 1). In this model, the dependent variable (Y-
vector) is the experimental cutting efficiency score for each
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analyzed with an iterative Random Forest (iRF) method.

sgRNA. We used quantum chemical features of nucleotides
to capture the intricacies of the multi-step CRISPR-Cas9
mechanism. In addition, base-pair oligomers (k-mers) up
to tetramers were incorporated, describing nucleotide po-
sition in the sgRNA structure with binary encoding (one-
hot k-mers) and quantum chemical properties (quantum
k-mers). These k-mers assess the subsequence structure of
the 20bp sgRNA by segmenting the sequence into frag-
ments of one to four bases. These features provide a basis
for interpreting the influences of independent and depen-
dent nucleotides on sgRNA efficiency, and progress struc-
turally informed understandings of sgRNA efficiency. Fea-
tures previously determined to influence CRISPR-Cas9 ef-
ficiency in mammalian species were also encoded, includ-
ing GC content, melting temperature, and one-hot encod-
ing of single and paired nucleotides in the target sequence.
We also included metrics such as the distance between the
target sequence and the nearest PAM (NGG sequence) and
location of the target sequence relative to the nearest gene.
To sharpen insight into the contributions of each feature,
predictive capabilities were assessed by Pearson correla-
tions and accuracy (R?) metrics (Supplemental Table 1).
The iRF model using the complete feature matrix results
in a predictive accuracy of 0.51, which is competitive with
the most predictive models currently available. Quantum
k-mers and one-hot k-mers contribute the largest feature
set contributions, isolating essential features for sgRNA
engineering.

Feature engineering highlights the role of quantum mechanics

A feature engineering approach clarifies the factors influ-
encing sgRNA efficiency by identifying the model’s most
important variables. A total of 6232 features were used in
an iRF model for E. coli (the full E. coli feature set; Sup-
plementary Table S2). This model was trained on 32 374
sgRNA and tested on 8094 sgRNA sequences. This com-
plete feature matrix cast as an iRF framework resulted in
significant correlations between predicted and experimental
sgRNA cutting efficiency values (Figure 2A). Furthermore,
high prediction levels were found in the iRF model using
only the quantum chemical properties feature set; and ac-
curacy increased incrementally as additional features and k-
mers were incorporated (Figure 2A; Supplementary Figure
S1; Supplemental results). Below, we focus on a subset of
features that were the most predictive of sgRNA efficiency
(Figure 2B, C).

Based on feature importance values produced by
iRF (Supplementary Table S4), top features emphasized
positionally-encoded k-mers of quantum chemical proper-
ties and one-hot encoding of the target sequence (Figure
2B). These top features were maintained as highly impor-
tant across two quantum chemical methods (Supplemen-
tary Figure S5). Top features were localized to positions 18
through 20 of the target sequence. This region is proximal
to the sgRNA tailpin structure, the target DNA PAM se-
quence, and cut site for the Cas9 nuclease. The most im-
portant feature was the HOMO-LUMO energy gap for
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the base pair at position 20 of the target sequence (Fig-
ure 2B). This feature alone accounted for more than 6%
of the variance in empirical sgRNA efficiency. The next
most important feature was the base-pair dimer stacking
energy at bases 19 and 20; accounting for ~3% of the vari-
ance. Hydrogen bonding energy of the base pair at posi-
tion 20 shows a similar contribution. Following these fea-
tures in importance, we observe several position-dependent

base pair dimer, trimer, and tetramer quantum chemical
properties. Each of these features accounted for 1-2% of
the dataset variance. Several one-hot encoding sequences
were also important features, including cytosine positions
15 and 16 (CC posl5) and a CCA beginning at position 19.
Additionally, several features with high feature importance
scores are consistent with trends in the literature, including
GC content and melting temperature (31).
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Each decision tree within an iRF model selects features
based on their contribution to the predictive ability against
the experimental dataset. Because of complex relationships
between features and sgRNA, individual features may not
be influential for each sgRNA in the model. Therefore, each
feature’s average number of affected sgRNAs was also cal-
culated for all decision trees within the iRF model. This
average was compared with the total number of training
data sgRNAs to determine the relative proportion of sgR-
NAs that each feature influenced (Figure 2C). The twenty
highest-magnitude features affected between 20% and 85%
of sgRNA samples. The three most-commonly influential
features included the base pair 20 HOMO-LUMO gap en-
ergy, the base-pair 19-20 dimer hydrogen bond energy, and
the base-pair 1-4 tetramer hydrogen bond energy (Figure
2C). These top features span both positive and negative as-
sociations with predicted cutting efficiency scores.

Assessing feature association with sgRINA efficiency

Each feature was assigned a direction (positive or negative)
and effect size, calculated with a random intersection tree
(RIT)-based approach (32) (Figure 3A, Supplementary Fig-
ure S3). These components describe a feature’s relationship
with the cutting efficiency score, allowing for greater inter-
pretation of that feature’s role in the CRISPR-Cas9 mech-
anism. For example, it has been shown that higher melt-
ing temperatures and greater GC content decrease guide
efficiency (31). This anti-correlated relationship is demon-
strated in our model by a negative feature effect value (Fig-
ure 3A, C). Among the important features, both positive
and negative correlations with the predicted cutting effi-
ciency score were observed (Figure 3).

The top positional encoding features also showed var-
ied directions of correlation with sgRNA cutting efficiency.
Two essential features are the HOMO-LUMO gap and the
hydrogen bond strength at position 20 between the sgRNA
and target sequence (Figure 3A, C, Supplementary Fig-
ure S2). The HOMO-LUMO gap is positively correlated
with sgRNA cutting efficiency, while the hydrogen bond
strength at the same position is anti-correlated. Further,
the direction of the hydrogen bond strength feature effect
value varies with position and encoding length—whether
base-pair monomers, dimers, trimers, or tetramers are
considered. Hydrogen bond strength at positions 18-20
have negative effects, while hydrogen bond strength at po-
sition 1 has a positive effect. This contrast indicates var-
ied preferences for hydrogen bonding energy across regions
of the target sequence. One-hot encoding indicates posi-
tion 15 CC as anti-correlated, while position 19 GC is pos-
itively correlated with sgRNA cutting efficiency. Addition-
ally, our model indicates that increased distance to PAM is
anti-correlated with sgRNA cutting efficiency.

Quantum chemical insights into kingdom-specific dynamics

Current species-trained models are inadequate for predic-
tion across organisms. To assess the organism specificity
of our iRF model, we tested the efficacy of the full E.
coli-trained model on several publicly accessible H. sapiens
datasets (10,33). The resulting predictions were extremely

poor, with a Pearson correlation of 0.016. This supports
that key features identified by models trained on experi-
mental data from a single species are not predictive across
species, particularly where varied CRISPR-Cas9 interac-
tions and complex DNA structures contribute.

E. coli and H. sapiens represent different kingdoms, Eu-
bacteria and Animalia. These classifications span single-
celled to multi-celled organisms; varied organellar makeup;
and diversity in genomic and epigenomic structures and
compositions. To compare the predictive capability of the
newly integrated feature set across kingdoms, we gener-
ated a model trained on H. sapiens-specific data (10,33).
The full feature matrix was generated as described for the
E. coli model, using the specified sgRNA sequences in the
Doench et al. 2014 (1278 sgRNAs) and Chuai et al. 2018
(16749 sgRNAs) datasets (Supplementary Table S3). The
iRF model was prepared with the same five-fold cross val-
idation scheme as for the E. coli models. The resulting
model had a Pearson correlation of 0.50 (Table 1). This
is competitive with several of the top predictive cutting
efficiency models currently available for human genome
editing (4).

To explore this result, we cross-examined the twenty
highest-scoring features for each species-trained model
(Figure 3). Similarly to those identified in the E. coli model,
quantum chemical tensors in the target sequence’s seed re-
gion (sgRNA position 10-20, closest to the PAM sequence)
appear to drive the H. sapiens model prediction (Figure 3B).
While quantum chemical properties as a feature set are im-
portant for sgRNA efficiency in both E. coli and H. sapi-
ens, the most predictive features vary considerably between
models. In E. coli, the occupancy of frontier orbitals for
PAM-adjacent nucleotides was a driving factor in CRISPR-
Cas9 cutting (Figure 3C). In the H. sapiens model, how-
ever, properties in central regions of the target sequence
were highlighted (positions 5-15; Figure 3D). Key features
for this model emphasize hydrogen bonding energy and
stacking interactions, along with electron occupancy (Fig-
ure 3B/D). These features signpost novel mechanistic inter-
pretations focused on central regions of the target sequence
that can be explored in future biological studies.

DISCUSSION

Current sgRNA efficiency prediction models are limited by
a narrow range of species data for training. To enhance
the predictive accuracy, many models use deep learning
techniques that can obscure interpretability of their fea-
ture effects. This work expands understanding of the fac-
tors influencing sgRNA efficiency for a bacterial dataset
with an explainable-Al method. Furthermore, we incorpo-
rate quantum chemical properties to provide novel insights
into sgRNA efficiency, dynamics, and propose interpreta-
tions for the CRISPR-Cas9 mechanism.

A panel of E.coli sgRNA sequences were encoded into a
matrix incorporating PAM sequence distance, sgRNA melt-
ing temperature, GC content, one-hot binary encoding, and
quantum chemical properties. This detailed feature set was
used to train an XAI iRF model against experimentally
calculated cutting efficiencies. The goal of this model
was to predict on-target CRISPR-Cas9 activity to better
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understand sgRNA efficiency in the genome. The predictive
capacity of the machine learning model was enhanced by
advanced k-mer features (binary and quantum) and is com-
petitive with currently available models. The XAI method-
ology permitted investigation of the underlying features by
quantifying feature importance scores.

Quantum chemical properties carried the highest im-
portance for prediction of sgRNA efficiency. This feature
set is novel in the domain of CRISPR-Cas9 models and
enhances the model’s biological interpretability. Beyond
position-specific sequence information, which is commonly
encoded in a binary matrix, quantum chemical properties
signpost the varied nucleotide interactions that mediate the
CRISPR-Cas9 mechanism. The sgRNA seed region fea-
tured quantum properties with high predictive capacities.
Descriptors of hydrogen bonding energy, stacking inter-
actions, and HOMO-LUMO gaps enrich the interpreta-
tion of why this region plays a vital role in CRISPR-Cas9
efficiency. Particularly, we note indications of mechanis-
tic competition for preferred structural features. We focus
on three main themes: locality in the ‘seed region’, degree
of base-pair polymerization, and mechanistic competition
(Figure 3C).

The ‘seed’ region, the five to ten base pairs on the target
sequence’s 3’ end nearest to the PAM sequence and cleavage
site, has been a focus of sgRNA construction across mam-
malian species. Several of the top E. coli-based features, es-
pecially quantum properties for base-pair and dimer struc-
tures, are essential in positions 18-20 (Figure 3A; Figure
3C). In contrast, tetramer features in the seed region are
highlighted further from the PAM sequence. These differ-
ences suggest a structure-activity relationship and may in-
dicate separate mechanistic steps involving these regions.

Looking to the multi-step CRISPR-Cas9 mechanism, we
postulate that considering both DNA-DNA double helix
unwinding and subsequent DNA-RNA binding are essen-
tial for interpreting these results.

This distinction can be seen when interpreting a positive
correlation between the hydrogen bond stacking energy at
position 18 of the target sequence (Figure 3A). Mechanisti-
cally, this indicates that position 18 is important for DNA—
RNA binding. Once helix melting has been initiated at the
target sequence’s 3’ end, the remaining sequence composi-
tion is potentially less important for unwinding. Therefore,
we suggest that while lower hydrogen bond strength at po-
sition 20 is energetically preferable for DNA double helix
melting, higher hydrogen bond strength at position 18 is im-
portant for strong DNA-RNA binding (Figure 3A).

In another view, a positive correlation between the
HOMO-LUMO gap energy and cutting efficiency is ob-
served at position 20. The HOMO-LUMO gap may capture
conformational changes that are occurring during the initial
integration of the CRISPR-Cas9 complex. We note recent
work identifying the ‘phosphate lock loop’ in this interpre-
tation. When the PAM sequence is identified and bound,
the DNA kinks to enable DNA helix unwinding and per-
mit DNA-RNA binding. These structural events are stabi-
lized by a phosphate lock loop proximal to the PAM (34—
37). While a high HOMO-LUMO gap in this region may
describe a change in molecular stability, the weaker hydro-

gen bonding may relate to the DNA double helix unwinding
that follows.

A further discovery was the variation in influential prop-
erties for sgRNA efficiency across species. The novel quan-
tum chemical property feature set is transferable across
species because of its construction from simple nucleotide
sequences. While the model does not provide a comprehen-
sive view of nucleotide binding and interactions in complex
genomes, it does provide a structural grounding for mecha-
nistic interpretations that cannot be captured with conven-
tional binary encodings. Species-tailored iRF models gen-
erated utilizing E. coli and H. sapiens data exemplify this
increase in interpretability. Moreover, the H. sapiens model
provides sufficient predictive power while also allowing for
feature engineering insight. Such analytical interpretability
is not currently available with other top predictive models in
the field due to their deep learning focus (38). Furthermore,
our model performance points to the beneficial integration
of quantum chemical properties, not only for interpretation
but also for sgRNA efficiency prediction.

This novel feature set was shown to be of high impor-
tance across species; with each species model emphasizing
different quantum chemical properties or locations of inter-
est. This highlights uses for understanding complex mech-
anisms across diverse species and datasets. For example, re-
cent work, including that by Palermo et al., has made strides
in its combination QM /MM description of the S. pyogenes
CRISPR-Cas9 system, with particular focus on the scissile
phosphodiester bond [1, 2]. In light of our work, sampling
a larger region of the guide and a range of transcript can-
didates, focusing on the p-20 to p-15 region, could provide
powerful insight into the S. pyogenes CRISPR-Cas9 mech-
anism and its relationship to guide sequence composition
(60,61).

Variation in feature importance across models supports
critiques that organism-tailored models are not transfer-
able across species. This was further emphasized by the very
low performance of the E. coli trained model as a predictor
of H. sapiens sgRNA efficiency. Not only is model explo-
ration across species needed; new datasets with standard-
ized scoring methodologies are required for such studies to
be conducted. Current publicly accessible cutting libraries
vary across factors that can greatly influence the calculated
cutting efficiency scores; including sgRNA sequence length,
type of assay, and the use of a dead Cas9 (dCas9), Cas9 with
a non-complementary sequence as the guide, no Cas9 or no
guide as a control. Each of these variations influence the
reported efficiency values and complicate synthesis of mul-
tiple datasets within a single model or comparison across
datasets. There are further challenges in assessing cutting
specificity in bacteria due to the general lack of NHEJ ma-
chinery. This causes many double stranded breaks to result
in cell lethality. Future work will generate genome-wide cut-
ting efficiency libraries to expand on currently available data
as well as standardize libraries across species for compari-
son and model integration.

This work established a novel feature set, with quantum
chemical tensors, that advances the mechanistic interpreta-
tion and predictive accuracy of the model and will become a
resource for continued work in the field. Initial insights into



essential variables for understanding the CRISPR-Cas9
mechanism have been identified through feature engineer-
ing techniques. These advances provide avenues for improv-
ing CRISPR-Cas9 sgRNA generation and identify points
of interest for experimental follow-up in the CRISPR-Cas9
mechanism. Furthermore, these advances provide insights
into species variation of CRISPR-Cas9, and indicate meth-
ods for predictive model enhancement.
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