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Abstract
To demonstrate that point-of-care multimodal spectroscopy using Near-Infrared (NIR) and Raman Spectroscopy (RS) can 
be used to diagnose human heart tissue. We generated 105 spectroscopic scans, which comprised 4 NIR and 3 RS scans per 
sample to generate a “multimodal spectroscopic scan” (MSS) for each heart, done across 15 patients, 5 each from the dilated 
cardiomyopathy (DCM), Ischaemic Heart Disease (IHD) and Normal pathologies. Each of the MSS scans was undertaken 
in 3 s. Data were entered into machine learning (ML) algorithms to assess accuracy of MSS in diagnosing tissue type. The 
median age was 50 years (IQR 49–52) for IHD, 47 (IQR 45–50) for DCM and 36 (IQR 33–52) for healthy patients (p = 0.35), 
60% of which were male. MSS identified key differences in IHD, DCM and normal heart samples in regions typically asso-
ciated with fibrosis and collagen (NIR wavenumbers: 1433, 1509, 1581, 1689 and 1725 nm; RS wavelengths: 1658, 1450 
and 1330  cm−1). In principal component (PC) analyses, these differences explained 99.2% of the variation in 4 PCs for NIR, 
81.6% in 10 PCs for Raman, and 99.0% in 26 PCs for multimodal spectroscopic signatures. Using a stack machine learning 
algorithm with combined NIR and Raman data, our model had a precision of 96.9%, recall of 96.6%, specificity of 98.2% 
and Area Under Curve (AUC) of 0.989 (Table 1). NIR and Raman modalities alone had similar levels of precision at 94.4% 
and 89.8% respectively (Table 1). MSS combined with ML showed accuracy of 90% for detecting dilated cardiomyopathy, 
100% for ischaemic heart disease and 100% for diagnosing healthy tissue. Multimodal spectroscopic signatures, based on 
NIR and Raman spectroscopy, could provide cardiac tissue scans in 3-s to aid accurate diagnoses of fibrosis in IHD, DCM 
and normal hearts.
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Background

Heart disease is the leading cause of hospitalisations, 
morbidity and mortality globally, but there are no point-
of-care instruments that can provide metabolic or mor-
phological diagnoses in real time. Current diagnostic 
modalities, such as angiograms, echocardiograms, mag-
netic resonance imaging or nuclear medicine scans, are 
either invasive or provide only anatomical assessments. 
They are poorly sensitive to molecular and metabolic (cel-
lular activity) changes. These assessments can only be 
achieved using endo-myocardial biopsies (EMB), which 
are fraught with life-threatening operative risks, are per-
sonnel and resource intensive and are therefore rarely used 

clinically [1]. This represents a significant unmet need, as 
the lack of a point-of-care instrument to detect morphol-
ogy and metabolic activity has significant diagnostic and 
prognostic implications on patient treatment. In Ischae-
mic heart disease, the leading cause of mortality globally, 
identifying “viability” or reversible ischaemia morphology 
could identify patients that would benefit from surgery to 
re-vascularize this tissue [2, 3]. In heart failure, the lead-
ing cause of hospitalisations globally, morphological and 
metabolic assessment could crucially identify the under-
lying cause heart failure, which is especially important 
when the aetiology is unknown or treatable with medical 
therapy (e.g. dilated cardiomyopathy, restrictive cardio-
myopathy, such as amyloidosis, sarcoidosis, hypersensitiv-
ity myocarditis, anthracycline cardiomyopathy, tumours 
and arrhythmogenic right ventricular cardiomyopathy). 
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In heart transplantation, there is potential to increase the 
number of hearts available for transplantation, as a rapid 
assessment of donor heart morphology can identify poten-
tially usable hearts that would otherwise be rejected. Fur-
thermore, for patients who are peri- or post-transplant, it 
could provide a non-invasive method of monitoring the 
progression of disease of heart tissue. Currently, evalu-
ation of rejection of transplanted hearts relies on routine 
EMB. The absence of a point-of-care instrument is there-
fore an unmet need that significantly amplifies the burden 
of cardiovascular disease globally. 

We believe this unmet need can be addressed by com-
bining advancements in vibrational spectroscopy (Raman 
Spectroscopy, RS; Near Infra-Red Spectroscopy, NIRS; 
and mid infrared spectroscopy, MIRS) with computational 
methods (machine learning). These technologies have 
potential to provide non-perturbative, rapid and label-free 
tissue assessment of morphology and metabolism [4–7] 
at the molecular level [8, 9]. In the cardiovascular space, 
studies from animal or preserved tissue [4, 7, 10–16] 
demonstrate that these techniques can quantify myocar-
dial fibrosis by exploring collagen subtypes [17–20], cross 
linking [21, 22] and distribution [20, 23]. The techniques 
are complementary, with RS techniques being more sen-
sitive to metabolic data at a molecular level [24], and 
infrared-based techniques (such as MIRS, NIRS) better 
equipped to assess morphological changes [24]. Advances 
in machine learning have significantly reduced the pro-
cessing time for analysing these data, and bear potential 
for real-time diagnoses. Clinical translation is hindered by 
current studies being restricted to one modality of spec-
troscopy (RS, Mid IR or NIRS) and have not yet used 
point-of-care instruments on human tissue.

In this report, we combine RS and NIRS scans of cardiac 
tissue to obtain non-invasive multimodal spectroscopic sig-
natures (MSS) and use machine learning (ML) to compare 
its accuracy to conventional histopathology. These scans, 
which can be performed in 3 s, are iterative steps to gener-
ating a point-of-care and non-invasive morphological and 
metabolic diagnoses in heart disease.

Methods

Ethics statement

This study was approved by the Human Resources and Eth-
ics committee (HREC) at Austin Hospital, Heidelberg, Mel-
bourne, Victoria (HREC/73660/Austin-2021). Approval of 
the acquisition of human tissue from organ donors was as 
part of the Australian Donation and Transplantation Biobank 
(HREC/4814/Austin-2019) and Donate Life Victoria (DLV) 

through the Australian Red Cross Lifeblood Health Human 
Research and Ethics Committee (Ethics 2019#08). Human 
tissue from explanted hearts was with USYD HREC 
2021/122. Individual consent was obtained from either the 
patient or Senior Next Available next of Kin (SANOK) prior 
to accessing samples. Ethics approvals are in keeping with 
the Declaration of Helsinki.

Sample retrieval

Pathological human heart samples were obtained from the 
Sydney Heart Bank at the University of Sydney, New South 
Wales, Australia [25] from patient samples of dilated cardio-
myopathy and ischaemic heart disease pathologies. Physi-
ological control patient samples were prospectively collected 
from consecutive donors providing organs for transplanta-
tion in Victoria, Australia from the Australian Donation and 
Transplantation Biobank (ADTB) [26]. These were taken 
from hearts not utilised in transplantation, with the proto-
col having been described previously [26, 27]. For analysis, 
all fresh samples were thawed under standard laboratory 

Table 1  Machine learning performance metrics for validation data 
sets of (a) Near-Infrared (NIR), (b) Raman and (c and d) multi-
modal data using logistic regression (LR), stochastic gradient descent 
(SGD) and support vector machines (SVM), with combined “stack” 
(LR + SGD + SVM)

Bold values indicate values obtained from the stack algorithm and 
used for analyses

AUC Precision Recall Specificity

(a) NIR model
 Logistic regression 0.980 0.944 0.933 0.967
 SGD 0.550 0.281 0.400 0.700
 SVM 0.840 0.806 0.800 0.900
 Stack 0.933 0.794 0.800 0.900

(b) Raman model
 Logistic regression 0.985 0.940 0.929 0.960
 SGD 0.892 0.869 0.857 0.932
 SVM 0.992 0.940 0.929 0.960
 Stack 0.954 0.869 0.857 0.932

(c) MSS: multimodal (NIR + Raman) to detect DCM vs. IHD vs. 
normal patients

 Logistic regression 0.975 0.841 0.828 0.917
 SGD 0.847 0.803 0.793 0.899
 SVM 0.971 0.853 0.828 0.917
 Stack 0.961 0.853 0.828 0.917

(d) MSS: multimodal (NIR + Raman) to detect pathological vs. 
normal patients

 Logistic regression 0.961 0.969 0.966 0.984
 SGD 0.944 0.967 0.966 0.923
 SVM 1.000 1.000 1.000 1.000
 Stack 1.000 0.944 0.931 0.969
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conditions. All samples were de-identified and anonymously 
catalogued at the time of excision and source blinded for all 
subsequent analysis.

Multimodal spectroscopic signatures

We acquired multimodal spectroscopic signatures from all 
fresh patient samples using near-infrared and Raman spec-
troscopy (Fig. 1). All scans were undertaken using com-
mercially available handheld point-of-care instruments, 
with a combined scanning time of 3 s. NIRS spectral of 
fresh patient samples were acquired with Metrohm NIRS S 

XDS Interactance OptiProbe Analyzer (Metrohm, Herisau 
Switzerland; wavelength range 400–2500 nm). Raman meas-
urements were taken using TacticID-1064 ST (Metrohm, 
Herisau Switzerland; wavenumber range 2500–176  cm−1). 
Patient samples were thawed with overnight refrigeration 
at − 4 °C, and then thawed at room temperature 4 h prior 
to analysis. Spectral acquisition was performed using the 
inbuilt Metrohm Software. The duration of each of the MSS 
scans was 3 s and comprised 4 NIRS and 3 RS scans per 
sample. To ensure each MSS scan was a holistic spectral 
representation of the underlying tissue, the positions for each 
of the 7 scans per sample were selected at random. Each 

Fig. 1  Algorithm for Multi-
modal Spectroscopic Signature 
acquisition from cardiac patient 
samples. Fresh tissue was 
acquired from 15 patients at 
time of cardiac transplantation, 
either from explanted dilated 
and ischaemic cardiomyopathy 
patients or healthy hearts at time 
of organ retrieval. Samples were 
scanned using separate Raman 
(3 scans per sample) and NIRS 
(4 scans per sample) instru-
ments to acquire an MSS (com-
bines the 7 scans per sample, 35 
in total for each pathology), and 
then entered into machine learn-
ing (ML) algorithms to assess 
their diagnostic accuracy. H&E 
haematoxylin and eosin, PSR 
picrosirius red, VG Van Gieson. 
Created with BioRender.com
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of the 15 samples was analysed separately and labelled to 
ensure accurate histological correlations. Histological evalu-
ations were performed of the tissues at the points of where 
the spectroscopic scans were performed. Instruments were 
positioned perpendicular to the tissue (Fig. 1) by hand, with 
complete apposition of the tissue with the probe surface to 
prevent infiltration of surrounding light.

Histopathological confirmation

Results from MSS scans were compared to the gold stand-
ard of histopathology. After analysis of fresh samples by 
MSS, each of the 15 samples were separately embedded 
in paraffin, sectioned and stained with Haematoxylin and 
Eosin, Picrosirius Red (PSR) and Van Geison’s (VG) stains 
for assessment of fibrosis. Samples were diagnosed by a 
qualified Anatomical Pathologist to confirm the explant 
diagnoses, classified as either (a) Dilated Cardiomyopathy, 
(b) Ischaemic Cardiomyopathy or (c) Healthy tissue.

Data analysis

Study data were collected and managed using Research 
Electronic Data Capture (REDCap) electronic data capture 
tools hosted at ADTB. Analysis of clinical data was done 
using Stata v15.0 (StataCorp. 2017. Stata Statistical Soft-
ware: Release 15. College Station, TX: StataCorp LLC), 
with clinical variables reported as either counts with corre-
sponding percentages, or median averages with interquartile 
range (IQR).

Machine learning

NIRS and RS data (Fig. 2) were entered into a pre-process-
ing algorithm using Quasar [28], which included keeping a 
region of spectra, and a Savitzky–Golay filter to ensure nor-
malised and baseline corrected data. The pre-processing for 
NIRS was undertaken using previously established protocols 
[28], by keeping 600–1750 nm, Savitzky–Golay filter (win-
dow = 15, polynomial order = 2, derivative order = 2) and 
area normalisation peak from 0. The pre-processing for RS 
was done by keeping 600–1750 nm, Savitzky–Golay filter 
(window = 19, polynomial order = 2, derivative order = 2), 
SNV normalisation and baseline correction. The data from 
each of the 4 NIRS and 3 RS scans were combined for each 
sample, to generate one MSS per patient (i.e. 15 MSS in 
total). Principal Component (PC) analysis was used to 
identify potential model outliers. Pre-processed data were 
then entered into Logistic Regression (LR), Support Vec-
tor Machine (SVM) and Stochastic Gradient Descent (SGD) 
machine learning (ML) algorithms [29, 30]. LR had regu-
larisation type Lasso (L1) and strength C = 3. SVM used 
v-SVM with regression cost = 1.0, complexity bound = 0.5, 

RBF Kernel with g = auto, numerical tolerance of 0.01 and 
iteration limit of 100. SGD used an optimal learning rate 
with 1000 iterations and a tolerance of 0.001, Lasso (L1) 
regularisation with strength 0.01, and the Loss function 
and was classified by squared loss with Huber regression at 
0.1. The parameters for these models are continuously used 
across NIRS and RS data. The “stack” ML algorithm uses a 
boosting technique to incrementally combine all individual 
methods (LR, SGD, SVM), and data for NIRS, RS and MSS 
are reported separately. To avoid overfitting, the validation 
dataset was obtained by compiling averages of the techni-
cal replicates acquired from each sample. This was set to 
avoid overfitting of models thereby avoiding the “technical 
replicate trap” [31]. Four metrics on the validation dataset 
are presented, with area under the receiver-operator curve 
(AUC) providing an aggregate measure of performance 
across all possible classification thresholds, precision meas-
uring rate of detecting positives across all true positives, 
recall measuring true positives amongst those who test posi-
tive, and sensitivity measuring true negative amongst those 
true negatives. The diagnostic capability of the model was 
assessed using confusion matrices with classification rates.

Results

Demographics

We generated 105 spectroscopic scans, which comprised 4 
NIR and 3 RS scans per sample to generate a “multimodal 
spectroscopic signature” for each heart, done across 15 
patients, 5 each from the dilated cardiomyopathy (DCM), 
Ischaemic Heart Disease (IHD) and Non-Diseased patholo-
gies. These were compared to the gold standard of histopa-
thology in final analysis. The median age of patients was 
49 years (IQR 43–52), of which 60% (n = 9/15) were male, 
with stratification based on disease shown in Fig. 1. The 
averaged NIRS (Fig. 2a) and RS (Fig. 2b) spectra for each 
disease subtype are shown in Fig. 2. On visual assessment, 
MSS showed variation in the wavenumber values typically 
associated with cardiac fibrosis [32] and collagen [33, 34]. 
In the NIRS (Fig. 2a), these were bands at 1433, 1509, 1581, 
1689, and 1725 nm, and in Raman (Fig. 2b), these were at 
1658, 1450 and 1330  cm−1. Band assignments are listed in 
the supporting information.

Principal component analysis

We aimed to demonstrate that variation in chemical sig-
natures between DCM, IHD and normal patients could be 
attributed to the differences visualised in absorption and 
scattering at key regions (or Principal Components, PC) 
as identified above (Fig. 2). PC analysis is demonstrated in 
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Fig. 3, where we differentiate the three disease classes (IHD, 
DCM and Normal) using near-infrared (NIRS; Fig. 3a and 
b), Raman (RS; Fig. 3c and d) and multimodal (MSS; Fig. 3e 
and f) spectral profiles. The corresponding loadings plots 
are shown in the appendix. The NIRS data demonstrated 
best discrimination, with 99.2% explained variance (Fig. 3b) 
using 4 principal components (PC). The visual scores plot 

(Fig. 3a) demonstrates that healthy (Normal) patients are 
discriminated from diseased (IHD and DCM) patients along 
PC 4 (y axis), where the PC 3 (x axis) then further discrimi-
nates IHD from DCM. Raman data demonstrated 81.6% of 
explained variance with 10 components and complements 
NIR data. Healthy patients are well discriminated in both 
PC 5 and 6, where PC 5 discriminates the disease subtypes 

Fig. 2  Average spectroscopic 
signatures (i.e. not pre-pro-
cessed) for dilated cardiomyo-
pathy (blue), ischaemic heart 
disease (red), and healthy tissue 
(green) using a near-infrared 
spectroscopy (NIRS) and b 
Raman spectroscopy (RS)
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(IHD vs. DCM) best. In MSS analysis (NIR and Raman), we 
demonstrate 99.0% of explained variance in 26 components, 
where a plot between PC6 and PC10 stratifies the three dis-
ease classes (IHD vs. DCM vs. Normal) best. This dem-
onstrates that most of the variation (81.6–99.2%) between 
disease types can be attributed to a series of key components 
(PCs) in our chemical signatures.

After identifying outliers and testing the robustness of 
our data through Principal component analysis, we entered 
NIR, Raman and Multimodal data into Logistic Regression, 
Stochastic Gradient Descent (SGD) and Support Vector 
Machine (SVM) Machine Learning algorithms and then a 
combined (stack) algorithm. Using a multimodal technique 
(NIR + Raman) and combining ML techniques, our model 
had a precision of 85.3%, recall of 82.8%, specificity of 
91.7% and AUC of 0.961 in distinguishing between IHD, 
DCM and Normal disease types. When simplified into deter-
mining Pathological (DCM and IHD) from Normal patient 
samples, our model had a 94.4%, recall of 93.1%, specificity 
of 96.9% and AUC of 1.00.

Confusion matrices

Using the stack machine learning model, we plotted confu-
sion matrices (Fig. 4) where MSS’ predictions (Predicted) 
are plotted against the true (Actual) classifications. The mul-
timodal approach demonstrated a classification accuracy of 
80% for detecting dilated cardiomyopathy, 80% for ischae-
mic heart disease and 100% for diagnosing healthy patient 
samples. When simplified into an instrument to detect Nor-
mal vs. Pathological (IHD and DCM), we observe 100% 
classification accuracy. Sub-stratifications based on modality 
(NIR and RS) are shown in Fig. 4.

Discussion

To our knowledge, this is the first multi-modal spectro-
scopic analysis of human cardiac tissue. We have used a 
set of hand-held instruments with point-of-care capacity to 
generate multimodal spectroscopic signatures (MSS), which 
are done in 3-s, and used it to diagnose cardiac disease. We 
derive the following key findings. First the key differences in 
MSS of IHD, DCM and healthy patients are in regions asso-
ciated with myocardial fibrosis and collagen deposition. This 
is consistent with our observations in principal component 
analysis, where a handful of key differences (principal com-
ponents, PC) in the MSS explains the majority of variance. 
In NIRS, we can explain 99.2% of the variance in 4 PCs; in 

RS 81.6% with 10 PCs; and 99.0% with 26 PCs in the final 
combined MSS scans (NIR + Raman). When deployed as a 
machine learning (ML) model, MSS had excellent accuracy, 
with a precision of 94.4%, recall of 93.1%, and specificity of 
96.9% and AUC of 1.00. When implemented as a diagnostic 
instrument, MSS demonstrated a classification accuracy of 
100% in identifying abnormal patients. 

This adds to the literature in providing the next iterative 
step in providing a point-of-care diagnostic tool for cardiac 
tissue in a non-invasive manner. So far, the closest rendition 
has been the assessment by Adegoke et al. [35] who dem-
onstrated good discrimination of NIR in identifying murine 
renal fibrosis. In the present study, fresh frozen tissue from 
human patients was used, where there were definitive histo-
pathological diagnoses: samples were either end-stage heart 
disease patients who had hearts explanted (IHD or DCM), or 
healthy tissue from organ donors. We provide a large number 
of spectra (n = 105) of fresh human tissue. Human tissue that 
is unprocessed, has been historically challenging to access. 
As a consequence, studies to date have been on animal or 
preserved tissue. Lastly, fresh tissue that has not been subject 
to conventional processing for histopathology was scanned 
and analysed, thereby emulating in vivo use. These find-
ings are also consistent with emerging data that have shown 
spectroscopy in assessing cardiac tissue, albeit with bulky 
laboratory instruments [13, 33, 34]. We validate these find-
ings using a range of ML techniques (Logistic Regression, 
SGD, and SVM) and find that the “stack” algorithm in the 
multimodal models does not vary drastically from the results 
of the individual ML models (Table 1). Although analyses in 
this study were done post hoc, we believe that advancements 
in ML will enable to be this done in an instantaneous manner 
in the future iterations. 

A point-of-care instrument that is able to diagnose under-
lying morphology has significant diagnostic and prognostic 
implications on patient treatment. In ischaemic heart dis-
ease, the leading cause of mortality globally, identifying 
“viability” or reversible ischaemia can identify patients 
that would benefit from surgery to re-vascularize this tis-
sue [2, 3]. In heart failure, the leading cause of hospitalisa-
tions globally, morphological and metabolic assessment can 
crucially identify the underlying cause heart failure, which 
is especially important when the aetiology is unknown or 
treatable with medical therapy (e.g. dilated cardiomyopathy, 
restrictive cardiomyopathy, such as amyloidosis, sarcoidosis, 
hypersensitivity myocarditis, anthracycline cardiomyopathy, 
tumours and arrhythmogenic right ventricular cardiomyopa-
thy). In heart transplantation, one could potentially increase 
the number of hearts available for transplantation, as a rapid 
assessment of donor heart molecular or metabolic changes 
can identify potentially usable hearts that would otherwise 
be rejected. This may have implications in xenotransplanta-
tion as well [36]. Furthermore, for patients who are peri- or 

Fig. 3  Principal component analysis showing a NIR scatter plot with 
b PCA components plot; c Raman scatter plot with d ROC curve; e 
multimodal scatter plot combined with f ROC curve

◂
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post-transplant, it can provide a non-invasive method of 
monitoring the progression of disease or heart tissue; a 
method that currently relies on routine EMB. These would 
need catheter-based adaptation of the technology [37]. A 
point-of-care instrument can therefore significantly reduce 

the economic, quality-adjusted life years (QALY) and mor-
tality of heart disease globally.

The weaknesses of this study are as follows: Due to the 
scarcity and challenging nature of obtaining these tissues, 
we have only been able to obtain multiple samples from 15 
patients which allows us to present preliminary data, and 
had to use a validation dataset that represents an average of 
technical replicates. This may lend itself to over-optimistic 
results, but we are undertaking larger studies in order to 
improve its robust diagnostic capability. To negate this, 
we undertook several ML techniques (LR, SGD, SVM), 
and even though results for SVM were superior to other 
techniques, present results from the “stack” algorithm as 
a method of increasing the number of methods by which 
our dataset has been validated. This study was not powered 
enough for higher level functions, such as quantifying per-
centage of fibrosis, or diagnosing subtypes of disease pat-
terns, aetiology of dilated cardiomyopathy or pattern of 
hypertrophy for ischaemic heart disease. Larger scale studies 
will have the capacity to do this. Furthermore, Raman data 
only makes marginal improvements to the performance of 
our model, and the 26 PCs of RS are less reliable than the 
4 PCS of NIRS. However, adding Raman data is an impor-
tant iterative step in demonstrating its capacity for assessing 
human cardiac tissue which has so far not been done in any 
study to our knowledge. In an era where ML techniques can 
make instantaneous predictions using advanced computing, 
this hurdle be easily overcome once the robustness of MSS 
is established, which we hope these findings help establish. 
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