Skip to main content
. 2023 Aug 22;38(12):1476–1485. doi: 10.1007/s00380-023-02292-3

Table 1.

Machine learning performance metrics for validation data sets of (a) Near-Infrared (NIR), (b) Raman and (c and d) multimodal data using logistic regression (LR), stochastic gradient descent (SGD) and support vector machines (SVM), with combined “stack” (LR + SGD + SVM)

AUC Precision Recall Specificity
(a) NIR model
 Logistic regression 0.980 0.944 0.933 0.967
 SGD 0.550 0.281 0.400 0.700
 SVM 0.840 0.806 0.800 0.900
 Stack 0.933 0.794 0.800 0.900
(b) Raman model
 Logistic regression 0.985 0.940 0.929 0.960
 SGD 0.892 0.869 0.857 0.932
 SVM 0.992 0.940 0.929 0.960
 Stack 0.954 0.869 0.857 0.932
(c) MSS: multimodal (NIR + Raman) to detect DCM vs. IHD vs. normal patients
 Logistic regression 0.975 0.841 0.828 0.917
 SGD 0.847 0.803 0.793 0.899
 SVM 0.971 0.853 0.828 0.917
 Stack 0.961 0.853 0.828 0.917
(d) MSS: multimodal (NIR + Raman) to detect pathological vs. normal patients
 Logistic regression 0.961 0.969 0.966 0.984
 SGD 0.944 0.967 0.966 0.923
 SVM 1.000 1.000 1.000 1.000
 Stack 1.000 0.944 0.931 0.969

Bold values indicate values obtained from the stack algorithm and used for analyses