Table 1.
AUC | Precision | Recall | Specificity | |
---|---|---|---|---|
(a) NIR model | ||||
Logistic regression | 0.980 | 0.944 | 0.933 | 0.967 |
SGD | 0.550 | 0.281 | 0.400 | 0.700 |
SVM | 0.840 | 0.806 | 0.800 | 0.900 |
Stack | 0.933 | 0.794 | 0.800 | 0.900 |
(b) Raman model | ||||
Logistic regression | 0.985 | 0.940 | 0.929 | 0.960 |
SGD | 0.892 | 0.869 | 0.857 | 0.932 |
SVM | 0.992 | 0.940 | 0.929 | 0.960 |
Stack | 0.954 | 0.869 | 0.857 | 0.932 |
(c) MSS: multimodal (NIR + Raman) to detect DCM vs. IHD vs. normal patients | ||||
Logistic regression | 0.975 | 0.841 | 0.828 | 0.917 |
SGD | 0.847 | 0.803 | 0.793 | 0.899 |
SVM | 0.971 | 0.853 | 0.828 | 0.917 |
Stack | 0.961 | 0.853 | 0.828 | 0.917 |
(d) MSS: multimodal (NIR + Raman) to detect pathological vs. normal patients | ||||
Logistic regression | 0.961 | 0.969 | 0.966 | 0.984 |
SGD | 0.944 | 0.967 | 0.966 | 0.923 |
SVM | 1.000 | 1.000 | 1.000 | 1.000 |
Stack | 1.000 | 0.944 | 0.931 | 0.969 |
Bold values indicate values obtained from the stack algorithm and used for analyses