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brain and blood of patients with ASD. The complement 
and coagulation pathways may be activated in the periph-
eral blood of children with ASD and play a key role in the 
pathogenesis of ASD.

Keywords Autism spectrum disorder · Biomarker · 
Complement and coagulation cascade · Complement 
system · Machine learning · Multiple reaction monitoring

Introduction

Autism spectrum disorder (ASD) is a type of neurodevelop-
mental disorder characterized by social communication dis-
orders, as well as repetitive and restricted behavior patterns. 
Worldwide, ASD affects 1% to 2% of children [1–4]. ASD 
is more than three times more common in males than in 
females [5]. The situation is similar in different ethnic 
groups [6]. In China, the incidence of ASD in children aged 
6–12 is ~0.7% [7, 8].

ASD is a multifactorial disease and the interaction 
between genetic and environmental factors may play a criti-
cal role in its pathogenesis [9]. It is highly heterogeneous, 
has no precise diagnostic criteria, and is usually diagnosed 
using the Diagnostic and Statistical Manual of Mental Dis-
orders (DSM-V) [10]. This is not only subjective but also 
often causes a diagnostic delay or misdiagnosis. However, 
it is known that early diagnosis and intervention in children 
with ASD improve their outcomes [11]. As a result, there is 
an urgent need to find potential biomarkers to diagnose ASD 
at an early stage [12].

Blood is one of the most easily obtained samples and 
one of the best sources of diagnostic markers of disease. 
Blood-based biomarkers are more convenient for clini-
cal use. There have been some reports on blood protein 
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diagnostic biomarkers for ASD, and they have been well 
reviewed [12–16]. Among them, complement-related pro-
teins have been broadly reported to be altered in the blood 
of children with ASD [11–23], including our previous 
studies [11–14, 17] and the earliest ASD blood proteomic 
studies [18]. The immune system is composed of the 
innate immune system and the adaptive immune system. 
One of the main effector mechanisms of the innate immune 
system is the complement system, which serves to signal 
increased inflammation and clear pathogens and cell debris 
[24]. The complement cascade can be initiated by 3 major 
pathways: the classical pathway, the lectin pathway, and 
the alternate pathway. More than 40 proteins are now rec-
ognized as part of the complement system [25]. Of note, 
the relationship between complement proteins and neu-
ropsychiatric disorders, such as ASD, schizophrenia, Alz-
heimer’s disease (AD), multiple sclerosis, and Hunting-
ton’s disease, has recently been reviewed [26–31]. Beyond 
immune function, they participate in brain architecture and 
are involved in the development of these diseases [31]. 
Consequently, it is of interest to simultaneously investigate 
whether these proteins are altered in the blood of children 
with ASD. Besides, the complement system and coagula-
tion are interrelated. Indeed, several studies have shown 
the complement and coagulation cascade pathway to be 
associated with ASD [9, 13, 19, 24]. Thus, when detecting 
complement proteins, it is also important to include some 
proteins related to coagulation. By detecting the expres-
sion of these proteins in the blood of children with ASD, 
we can not only explore their association with ASD but 
also search for potential diagnostic markers. At present, 
the systematic investigation of protein changes in comple-
ment and coagulation pathways associated with ASD has 
not been reported.

The development of targeted proteomics technology 
has bridged the gap between screening and validation, as 
well as validation and transformation. Multiple reaction 
monitoring (MRM) is a classical method of target prot-
eomics, using a triple quadrant or quadrant-ion trap mass 
spectrometer to detect the parent and daughter ion mass 
spectrometry response signals of target molecules, and 
can detect multiple target proteins simultaneously in one 
experiment [32]. This technology has been applied to the 
study of markers for various diseases due to its conveni-
ence, high throughput, and accuracy [32–35]. In this study, 
we used MRM technology to detect 33 proteins involved in 
the complement and coagulation pathways in the plasma of 
children with ASD and healthy controls. On this basis, we 
further used machine learning to identify a group of differ-
entially-expressed complement and coagulation pathway 
proteins between these two groups, which may serve as a 
potential biomarker to assist clinicians in diagnosing ASD.

Materials and Methods

Study Population

The workflow used in this study is shown in Fig. 1 from the 
website of BioRender (https:// biore nder. com/). A total 
of 30 children with ASD (24 males and 6 females) were 
recruited from Bao’an Maternal and Child Health Hospital 
in Shenzhen, as well as a gender and age-matched control 
group. ASD children were diagnosed by the same child neu-
ropsychologist based on the ASD criteria defined in DSM-V 
[10]. Inclusion criteria: (1) meeting the DSM-V diagnostic 
criteria for ASD; (2) having detailed clinical data; and (3) 
having obtained written informed consent from the child’s 
caregiver. Exclusion criteria: (1) unclear diagnosis accom-
panied by other organic diseases of the nervous system; (2) 
serious physical disorders, such as heart, liver, and kidney 
disease; and (3) mental retardation, language developmental 
disorders, other mental disorders, and deafness. Children 
with ASD were also assessed using the Autism Behavior 
Checklist (ABC) and the Child Autism Rating Scale (CARS) 
[36]. The ABC score was 71.70 ± 19.37, while the CARS 
score was 35.57 ± 3.24 on average. There were no significant 
differences in age and body mass index between the ASD 
group and the control group (Table S1).

Blood Sample Collection

Blood samples were collected by a pediatric nurse under 
the supervision of a child psychiatrist. Venous blood was 
collected into a 5 mL EDTA tube (vacuum collector system; 
Becton Dickinson Inc., Plymouth, UK) in the morning while 
the subjects were in the fasting state, then centrifuged at 
1300 g at 4 ℃ for 10 min, and plasma was separated. Sub-
sequently, the inhibitor mixture (30 μL per 1 mL plasma) 
was added to the resultant plasma sample (cocktail inhibitor 
solution: 2.0 mol/L Tris, 0.9 mol/L Na-EDTA, 0.2 mol/L 
Benzamidine, 92 μmol/L E-64, and 48 μmol/L Pepstatin; 
Sigma, St. Louis, MI, USA). The plasma was stored at −80 
℃.

Establishment of the Data Dependent Acquisition 
(DDA) Database

Before MRM analysis, a background library was established. 
For each sample, 20 µL plasma was used to remove high-
abundance plasma proteins by using the Multiple Affinity 
Removal LC Column-Human 14 (Agilent, Santa Clara, CA, 
USA). The collected low-abundance protein was quantified 
by the BCA method [37], and 10 µg protein was taken from 
each sample and mixed to obtain DDA library samples. 
After reductive alkylation of the sample, digestion with 
trypsin (Promega, Madison, WI, USA) at a ratio of 1:30 at 
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37 ℃ overnight was carried out[9]. All enzyme lysis-treated 
samples were concentrated in a vacuum until dried.

The dried DDA database sample was reconstituted in 
100 µL of Mili-Q water (Milli-Q System, Millipore Corp.) 
before injection into an Agilent high-performance liquid 
chromatograph (Agilent Technologies, Santa Clara, CA, 
USA) equipped with a high pH RP column (Durashell, C18, 
250 mm × 4.6 mm, 5 μm; Bonna-Agela Technologies, Inc., 
Wilmington, DE, USA). The database sample was eluted, 
separated into 30 groups, lyophilized, and stored at –80 ℃. 
The DDA database was analyzed by using QTRAP 6500+ 
(AB SCIEX, Framingham, MA, USA). The specific pep-
tide segments and mass spectrum (MS) information of these 
proteins were screened by Skyline (http:// prote ome. gs. washi 
ngton. edu/ softw are/ skyli ne/) [38] and PeptideAtlas (https:// 
db. syste msbio logy. net/ sbeams/ cgi/ Pepti deAtl as/ GetTr ansit 
ions) [39]. 3–5 specific peptides were selected for each pro-
tein for qualitative and quantitative analysis.

MRM Analysis

For 60 samples (30 children with ASD and 30 controls), the 
protein concentration was quantified by the BCA method, 
and 100µg protein was taken from each sample for MRM 
analysis. The protein samples were reduced/alkylated, and 
digested with trypsin at a ratio of 1:30 at 37 ℃ overnight[9]. 
2 μg protein from each MRM sample was mixed as a quality 
control sample. In optimized conditions the mobile phase 
consisted of solvent A (0.1% formic acid with water) and 
solvent B (acetonitrile with 0.1% formic acid) using the fol-
lowing gradient: 0 min 5% B, 0.5 min 6% B, 25 min 22% B, 
31 min 35% B, 32 min 80% B, 36 min 5% B at a constant 
flow rate of 0.3 mL/min. The injection volume was 6 µL. 
The MS was operated in positive mode. Instrument param-
eters including collision energies were then optimized to 
yield the highest sensitivity for all peptides and transitions. 
The retention time of each peptide was identified using full 

Fig. 1  The experimental flow chart of this study.

http://proteome.gs.washington.edu/software/skyline/
http://proteome.gs.washington.edu/software/skyline/
https://db.systemsbiology.net/sbeams/cgi/PeptideAtlas/GetTransitions
https://db.systemsbiology.net/sbeams/cgi/PeptideAtlas/GetTransitions
https://db.systemsbiology.net/sbeams/cgi/PeptideAtlas/GetTransitions
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scan data. The MRM detection window was 100 s and the 
cycle time was 0.7 s. The target scan time was 0.7 s.

Data Pre‑processing and Quality Control

Raw MS files were processed using Skyline software. Peaks 
were manually checked, and peak integrations were adjusted 
accordingly where necessary. After automated integration, 
the chromatograms were controlled visually and then the 
integration results were exported to a Microsoft Excel 
spreadsheet.

Bioinformatics and Statistical Analysis

Principal component analysis (PCA) was applied using 
SIMCA-P 14.1 (V14.1, Sartorius Stedim Data Analytics AB, 
Umea, Sweden). OMICSBEAN online tools (http:// www. 
omics bean. cn/) were used for data standardization and statis-
tical t-tests. The cutoff value for up-regulation was a 1.2-fold 
change and for down-regulation was a 0.83-fold change, and 
a false discovery rate-corrected P-value <0.05 was estab-
lished for significantly differentially- expressed proteins 
(DEPs) between autistic children and controls [40]. The 
value of pathway activation intensity (PAS) was calculated 
by OMICSBEAN, which served as the activation profiles of 
the signaling pathways based on the expression of individual 
proteins [13]. The correlation matrix between age and DEPs 
was calculated using an online tool (https:// www. omics oluti 
on. org/). Pearson’s correlation analysis was applied to cal-
culate the correlation between the CARS and ABC scores 
using the R packages ggplot2 (v3.3.5) (https:// ggplo t2. tidyv 
erse. org) and ggpubr (v0.4.0) (https:// CRAN.R- proje ct. org/ 
packa ge= ggpubr). Gene ontology (GO), Kyoto Encyclope-
dia of Genes and Genomes (KEGG) pathway analysis, and 
the protein-protein interaction (PPI) network were analyzed 
by OMICSBEAN and STRING (https:// string- db. org/). 
Statistical graphs were drawn using a statistical t-test in 
GraphPad Prism software 8.0 (GraphPad Software, Inc., San 
Diego, USA). The data are presented as the mean ± stand-
ard deviation. A P-value <0.05 was considered statistically 
significant.

Screening Potential Biomarkers by Machine Learning 
Techniques

The most suitable algorithm for MRM data features was 
found among the five machine learning algorithms based on 
the decision tree model, including the adaptive boost classi-
fier (Adaboost) [41], categorical boosting (Catboost) [42], 
gradient boosting decision tree (GBDT) [43], extreme gra-
dient boosting (XGBoost) [44], and light gradient boosting 
machine (LightGBM) [45]. The four performance indexes 
of recall, precision, F1, and area under the curve (AUC) 

were used to select the best algorithm. The five-fold cross-
validation strategy was used to reduce the model over-fitting 
caused by random local data. Finally, the average value of 
each evaluation index was used as the basis for screening. 
After obtaining the most suitable integrated machine learn-
ing algorithm, the importance of each protein under this 
condition could be calculated. A feature with a high impor-
tance value indicated that it made a significant contribution 
to grouping. After the combined screening of correlation 
coefficient and cumulative AUC, a group of biomarker pan-
els with high information and the least number was obtained. 
To validate the correctness and classification performance of 
candidate markers, their classification ability on four clas-
sical models (decision tree (DT) [46], random forest (RF) 
[47], k-nearest neighbors (KNN) [48], and support vector 
machine (SVM)) [49] was evaluated.

Results

Establishment of the DDA Database

By examining the pooled blood samples from children with 
ASD and controls, the DDA database was established. More 
than 70,000 peptides were detected, which were involved 
in 1,747 proteins. Among these, 37 proteins related to the 
complement and coagulation pathway were found by back-
ground library database and website matching. We identified 
each protein using more than 3 specific peptides (Table S2). 
Twenty-seven proteins were associated with the comple-
ment pathway, and the other 10 proteins were involved in 
the coagulation cascade.

Identification of Differentially‑Expressed Complement 
and Coagulation‑Related Proteins by MRM Analysis

Further, through the identification and quantification of 
specific peptides unique to each protein, we quantitatively 
analyzed 33 proteins related to the complement and coagula-
tion pathways (Tables S3 and S4). As confirmed by STRING 
database analysis, among these 33 proteins, 32 were involved 
in complement and coagulation cascades, 22 were involved 
in complement activation (C1QA, C1QC, C1RL, C1S, C2, 
C3, C4A, C4BPA, C4BPB, C5, C6, C7, C8A, C8B, C8G, 
C9, CFH, CFHR1, CFHR3, CLU, CR2, and MBL2), while 
11 were involved in blood coagulation: C4BPB, F10, F11, 
F12, F13A1, F13B, F9, FGA, SERPINA5, SERPIND1, and 
PLG.

Interestingly, the PCA analysis showed that the expres-
sion pattern of the 33 quantified plasma proteins had a 
separation trend (Fig. 2A). Out of the 33 proteins, 16 were 
identified as DEPs between children with ASD and healthy 
controls (Table 1 and Fig. 2B): C1QC, C2, C3, C4BPA, 

http://www.omicsbean.cn/
http://www.omicsbean.cn/
https://www.omicsolution.org/
https://www.omicsolution.org/
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://CRAN.R-project.org/package=ggpubr
https://CRAN.R-project.org/package=ggpubr
https://string-db.org/
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C4BPB, C5, C6, C8A, C9, CFH, CFHR1, CFHR3, F11, 
F9, FGA, and SERPIND1. Compared with the controls, all 
of the proteins were up-regulated in the plasma of children 
with ASD. In addition, we analyzed the correlation between 
the expression of plasma DEPs and age in the ASD group, 
and the results were not statistically different. Similarly, 
there was no significant difference between the expression 
of plasma DEPs and age in the control group (Fig. S1). We 
also analyzed the correlation between the ABC and CARS 
scores of ASD children and the corresponding mass spectral 
intensity of each DEP. The results showed that there was 
no statistical difference between the correlation between 
the intensity of each DEP and the ABC score. In the cor-
relation analysis with the CARS score, the corresponding 
strength of SERPIND1 was positively correlated with the 

CARS score (R2 = 0.3, P = 0.0017; Fig. 2C), while the rest 
showed no significant difference (Figs S2 and S3). There was 
a significant difference in the expression level of SERPIND1 
between mild-moderate and severe ASD children (P < 0.05; 
Fig. 2D).

In‑depth Analysis of Pathways Related 
to the Differentially‑expressed Proteins

The results of GO analysis showed that the DEPs were 
mainly involved in the immune response and in the com-
plement and coagulation cascades (Table S5); all these 
pathways were activated (Fig. 3A). PPI analysis revealed 
a remarkably significant enrichment of known interactions 
among these 16 proteins (Fig. 3B and C), including the 

Fig. 2  Screening of differentially-expressed proteins in the com-
plement and coagulation pathways. A PCA analysis of complement 
and coagulation pathway-related proteins in plasma. B Volcano plot 
analysis and identification of differentially-expressed proteins. Red 
dots indicate P < 0.05 and fold change >1.2 (ASD vs control). C 

Correlation between the corresponding strength of SERPIND1 and 
CARS score in the ASD group. The y-axis represents the correspond-
ing strength of the mass spectrum. D The corresponding strength of 
SERPIND1 between mild-moderate (30–36) and severe (37–60) ASD 
children. *** P <0.001.
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Table 1  The DEPs between children with ASD and healthy controls

a  FDR-corrected p-value < 0.05 vs. the control.
b  No, not been reported.

No. Uniprot ID Protein name Gene name Fold change P-value a Reference b

1 P04003 C4b-binding protein alpha chain C4BPA 1.28 2.27E-04 No
2 P20851 C4b-binding protein beta chain C4BPB 1.24 6.72E-04 No
3 P00740 Coagulation factor IX F9 1.33 1.44E-04 No
4 P03951 Coagulation factor XI F11 1.23 2.36E-02 No
5 P02747 Complement C1q subcomponent subunit C C1QC 1.23 2.36E-02 [15]
6 P06681 Complement C2 C2 1.26 8.90E-03 [6]
7 P01024 Complement C3 C3 1.25 7.55E-04 [10, 15, 20]
8 P01031 Complement C5 C5 1.36 3.60E-05 [10, 11]
9 P13671 Complement component C6 C6 1.25 1.44E-04 [84]
10 P07357 Complement component C8 alpha chain C8A 1.24 1.11E-03 No
11 P02748 Complement component C9 C9 1.5 5.24E-05 No
12 P08603 Complement factor H CFH 1.24 1.60E-04 No
13 Q03591 Complement factor H-related protein 1 CFHR1 1.23 8.52E-04 [15]
14 Q02985 Complement factor H-related protein 3 CFHR3 2.78 1.48E-11 No
15 P02671 Fibrinogen alpha chain FGA 1.31 7.55E-04 [49]
16 P05546 Heparin cofactor 2 SERPIND1 1.26 2.42E-04 No

Fig. 3  Protein-protein interaction of differentially-expressed pro-
teins in the complement and coagulation pathway. A Based on 
OMICSBEAN, the PAS values of the GO-BP term in which DEPs 
are involved. Positive PAS values indicate the upregulation of molec-

ular pathways compared to controls. B, C PPI was analyzed by the 
STRING database (GO, KEGG, and Wiki databases). The colors rep-
resent the different pathways and the number of DEPs contained in 
them. The P-values are represented by the bar graph.



1629X. Cao et al.: Complement-related Proteins in Autistic Children

1 3

complement and coagulation cascades (16 DEPs), comple-
ment activation (11 DEPs), innate immune response (11 
DEPs), adaptive immune response (10 DEPs), complement 
system in neuronal development and plasticity (10 DEPs), 
complement activation, classical pathway (9 DEPs), com-
plement activation, alternative pathway (5 DEPs), blood 
coagulation (5 DEPs), blood coagulation, and fibrin clot 
formation (3 DEPs). We further display the PPI of each 
pathway (Fig. 4). Eleven proteins were involved in com-
plement activation: C1QC, C2, C3, C4BPA, C4BPB, 
C5, C6, C8A, C9, CFH, and CFHR1. Five proteins were 
involved in blood coagulation: F9, F11, FGA, C4BPB, and 
SERPIND1. Of note, 10 DEPs were associated with neu-
ronal development and plasticity: C1QC, C2, C3, C4BPA, 
C4BPB, C5, C6, C8A, C9, and CFH.

Analysis of Candidate ASD Biomarkers Using Machine 
Learning Techniques

Among the five decisions tree-based machine learning mod-
els (Adaboost, Catboost, GBDT, LightGBM, and XGBoost), 
recall, precision, F1, and AUC were used as evaluation 
indexes, and the average value of each index was used as 
the basis for screening. We found that Catboost was most 
suitable for data features (Fig. 5A), so the importance of 
each protein was determined by using the Catboost model. 
The characteristics of CFHR3, C1QC, and FGA with large 
importance values were found from 16 DEPs, indicating 
that this characteristic contributes greatly to the grouping 
(Fig. 5B). Following the accumulation of the AUC, a group 
of biomarker panels with high information was obtained. 
We found that using the first 12 DEPs as a group, the AUC 
could reach 1, indicating that ASD and control groups could 

Fig. 4  Details of the PPI network associated with DEPs.
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be effectively separated (Fig. 5C). To verify the correctness 
and classification performance of candidate markers, their 
classification ability on four classical models (DT, RF, KNN, 
and SVM) was evaluated (Fig. 5D). We randomly divided 
the data into two groups (training set and test set), with a 
7:3 ratio between the two groups. The 12 proteins calculated 
above were used to identify ASD children from the control 
group, and AUC curves were obtained using the training 
and test sets. These 12 proteins are potential biomarkers for 
distinguishing ASD from the control group (Fig. 5E). The 
expression of marker proteins in each group is shown in 
Fig. 6.

Discussion

Proteomic analysis of proteins in the complement and coagu-
lation pathways was chosen for this study. Between children 
with ASD and control participants, 16 proteins implicated 

in the complement and coagulation pathways were identi-
fied as DEPs. All their levels were found to be higher in 
the plasma of children with ASD than in healthy controls. 
Apart from SERPIND1, there was no correlation between 
the expression levels of other proteins and the ABC and 
CARS scores. Of course, this needs to be verified with a 
larger sample size. Among the DEPs, 11 were associated 
with complement activation, 9 were related to activation of 
the classical pathway of complement, and 5 were related to 
the alternative pathway of complement activation. Consist-
ent with this, C1QC, C2, C3, C5, C6, and CFHR1 have been 
reported to be increased in the blood of autistic children in 
previous studies [9, 11–13, 18, 50]. To the best of our knowl-
edge, C4BPA, C4BPB, C8A, C9, CFH, and CFHR3 are first 
reported to be related to ASD and increased in the plasma 
of children with ASD. Indeed, in addition to the above pro-
teins, other complement proteins have also been reported 
to change in the blood of children with ASD. For example, 
elevated levels of complement C1s subcomponent (C1S) [9], 

Fig. 5  Screening for potential biomarkers through machine learn-
ing. A Based on the decision tree model, the fit model is screened. B 
Using the Catboost model, the importance of each protein under this 
condition is obtained. C The AUCs of different potential biomarker 
combinations in the Catboost model. D There is a good trend of sepa-

ration in various models. The classification performance of candidate 
biomarker combinations on the four classical models is evaluated. E 
Validation of potential marker combinations using ROC curves. The 
sensitivity of ROC in the training set is 1, and the sensitivity in the 
test set is 0.88.
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complement C1q subcomponent subunit A (C1QA), comple-
ment C1q subcomponent subunit B (C1QB) [18], and high 
complement factor I (CFI) [19] activity has been detected 
in the blood of children with ASD, while C4B levels in the 
plasma of children with ASD were significantly lower [51]. 
Another lectin pathway protein, collectin-10 (COLEC10), 
has also been found to be down-regulated in the plasma of 
children with ASD [9]. In the present study, 23 complement-
related proteins were found to be altered in the blood of 
children with ASD. They are involved in the three activation 
pathways of complement. Of these, 18 are complement acti-
vators and components: C1QA, C1QB, C1QC, C1S, C2, C3, 
C4, C4B, C4BPA, C4BPB, C5, C6, C8A, C9, CFH, CFHR1, 
CFHR3, and COLEC10, and 6 are complement regulatory 
proteins: CFI, CFH, C4BPA, C4BPB, CFHR1, and CFHR3. 
The expression of most complement-related proteins is up-
regulated in the peripheral blood of children with ASD, 
implying that the complement pathway may be activated in 
the periphery of children with ASD. Moreover, 5 proteins 
were associated with blood coagulation (C4BPB, F9, F11, 
FGA, and SERPIND1), of which, FGA has been reported to 
be increased in the blood of children with ASD [52], while 

C4BPB, F9, and F11 have not been reported to be associated 
with ASD. SERPIND1 has been reported to be increased in 
the peripheral blood mononuclear cells (PBMCs) in children 
with ASD [14]. From the perspective of genetic studies, this 
has also been reported to be associated with ASD [53] and 
developmental delay [54]. In the present study, the expres-
sion levels of SERPIND1 were positively correlated with 
CARS scores and were higher in children with severe ASD 
than in those with mild to moderate ASD, implying that 
it has the potential to classify the severity of diseases and 
deserves further investigation.

We then used the machine learning method to find a set 
of proteins with diagnostic potential from the 16 DEPs. 
We found that Catboost was the best fit for the data fea-
tures. After the combined screening of the correlation coef-
ficient and cumulative AUC, a group of biomarker panels 
that included 12 DEPs with high information content was 
obtained. Subsequently, we used four classical models to 
verify and evaluate the correctness and classification per-
formance of these candidate markers, which achieved high 
indexes of recall, precision, F1, and AUC. Among these 12 
DEPs, as noted above, C1QC, FGA, C3, C5, and C6 have 

Fig. 6  The expression of potential marker proteins identified in this study. The y-axis represents the corresponding strength of the mass spec-
trum. ** P <0.01; ***P < 0.001; ****P < 0.0001.
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been reported to be associated with ASD [13, 14, 18, 52], 
while CFHR3, C4BPB, C4BPA, CFH, C9, SERPIND1, and 
F11 have not been reported to be altered in ASD plasma. 
CFHR3, C4BPB, C4BPA, and CFH are regulatory proteins 
of the complement cascade that inhibit complement activa-
tion [55–58]. Their increased expression can inhibit com-
plement activation. There is a balance between activation 
and inhibition of the complement system in vivo [58]. The 
activity of the complement system is tightly regulated to 
protect host cells from indiscriminate attack [50]. Therefore, 
except for CFHR3, C4BPB, C4BPA, and CFH, the increased 
expression of these proteins implies activation of the periph-
eral complement system in children with ASD. C9 is a com-
ponent of the cell surface membrane attack complex (MAC), 
which is composed of C5–C9 and serves as the comple-
ment cascade’s final common pathway. The increase of its 
expression in plasma further supports the hypothesis that the 
peripheral complement system is activated in ASD children. 
The proteins involved in the complement and coagulation 

pathways in blood and associated with ASD are summarized 
in Fig. 7 [9, 11–14, 18, 19, 27, 51, 52, 59].

Based on bioinformatics analysis, our results showed 
that among the 16 DEPs identified in this study, 11 were 
involved in the innate immune response and 9 in the adaptive 
immune response. Accumulating evidence suggests that the 
immune system plays a potential role in the pathophysiology 
of ASD. Indeed, the complement system, which was origi-
nally identified as a component of the innate immune system 
and is a major mediator of inflammation, is essential in the 
host’s defense against infection and serves as an immune 
surveillance system by clearing cellular debris and apoptotic 
cells. Activation of the complement pathway results in the 
release of inflammatory mediators. It has been reported that 
the increased levels of inflammatory markers and abnormal 
immune function in children with autism may be the poten-
tial mechanism of ASD [14, 60]. A previous study has found 
that inflammatory factors are present in the postmortem 
brain and are activated in ASD [61, 62]. Hence, our results 

Fig. 7  Summary of complement and coagulation pathway proteins 
associated with ASD identified in previous studies and this study. 
A Complement activation pathways and complement-related pro-
teins associated with ASD. Red and pink mark DEPs, of which the 
red targets are 12 DEPs as potential markers. We compared the pro-
tein expression of the complement system in the brain and plasma in 

other articles. ↑ red, increased protein activity or expression in blood 
from patients; ↓ red, decreased protein activity or expression in blood 
from patients; ↑ black, increased RNA expression in brain tissue from 
patients; ↓ black, decreased RNA expression in brain tissue from 
patients. B Blood coagulation pathway and coagulation-related pro-
teins associated with ASD.
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suggest that the complement system and inflammatory reac-
tions are involved in the pathophysiology of ASD.

Circulating complement proteins are mostly produced by 
liver cells, but many immune cells, especially macrophages 
and dendritic cells, produce complement locally when acti-
vated [21]. Due to the presence of the blood-brain barrier, 
the central nervous system (CNS) does not receive the same 
composition of circulating complement factors unless it is 
damaged [63]. In the brain, complement proteins can be 
locally synthesized by neurons, astrocytes, and microglia 
[25]. Therefore, peripheral and central complement produc-
tion remains isolated [25]. Of note, in addition to their role 
in the innate immune response, complement proteins appear 
to play an important role in neurodevelopment, including 
neurogenesis, neuronal migration, and synapse pruning and 
remodeling [64]. The function of the complement system 
in the CNS is being under extensive investigation. Animal 
and in vitro cell models have shown that specific comple-
ment components play an important role in regulating neu-
rogenesis in embryonic and adult brains [63]. Studies have 
shown that knockout of C1q and C3 in postnatal mice leads 
to increased brain wiring [59, 65, 66]. In mouse embryos, 
C1s and C3 knockout or knockdown results in reduced neu-
ronal migration [67]. In mouse embryos, C3 gene knockout 
or knockdown causes increased proliferation of neural pro-
genitor cells [67]. C3-, MaSp1-, or MASP2-deficient mice 
show radial migration disorder, resulting in improper locali-
zation of neurons and disorder of the cortical layers [67]. In 
addition, C3a and C5a are pro-inflammatory peptides that 
interact with and activate immune cells through their recep-
tors (C3a and C5a receptors) [27]. Interestingly, knocking 
out, knocking down, or inhibiting these receptors has an 
effect similar to knocking out or knocking down the cor-
responding complement proteins, while activating them has 
the opposite effect [27]. Together, previous studies suggest 
that the complement cascade plays a role in the pathogenesis 
of neurodevelopmental disorders [21, 25, 68].

Indeed, altered complement proteins in the brain have 
been reported to be associated with ASD [21, 25, 69]. It 
has been shown that the levels of C2, C5, and MASP1 
mRNA are increased, but C1q, C3, and C4 mRNA levels 
are decreased in the middle frontal gyrus of ASD subjects 
compared to controls [50]. Another study reported overex-
pression of C1q, C3, and CR3 genes in ASD brains [70]. 
More recently, a study has shown that C4 is reduced in the 
induced pluripotent stem cell-derived astrocytes of ASD 
subjects [22]. C1q, C3, and C4 participate in synapse elimi-
nation [71–74]. Their deficiency may limit the synaptic 
pruning process. Dendritic spine density is increased in the 
cortex [75], while a higher spine density has been reported 
in the temporal cortex of ASD patients [76]. C3 deficiency 
in mouse brains results in ASD-like behavior [50, 72]. In 
this study, bioinformatics analysis showed that 10 DEPs 

associated with the complement system were related to neu-
ronal development and plasticity. The altered expression of 
complement RNA expression in the brains of ASD patients 
reported in the previous studies is summarized in Fig. 7 [21, 
22, 50, 69, 70].

Overall, the results of this study and previous studies have 
shown that the levels of most complement-related proteins 
in the peripheral blood of ASD children are elevated. How-
ever, in the brain of ASD patients, conflicting results in the 
expression of C1q and C3 genes have been reported [27, 50, 
70]. Likewise, a recent study that offspring whose mother 
has a low IL-10 level have decreased complement expression 
in the periphery and an increase in complement in the brain 
[77]. In addition, although a previous study found that the 
permeability of the blood-brain barrier is increased in some 
people with autism [78], it is unclear whether the changes of 
complement molecules in the CNS are related to peripheral 
changes [50]. Therefore, the involvement of the complement 
system in the pathogenesis of ASD is complex. Neverthe-
less, the existing evidence supports the conclusion that the 
complement system plays a key role in the pathogenesis of 
ASD. Dysregulation of complement proteins in peripheral 
blood may be a common feature in children with ASD [9, 
11, 12].

Complement proteins are abundant in the blood, account-
ing for about 10% of serum protein. Consequently, they are 
suitable as potential diagnostic biomarkers for ASD. How-
ever, ASD is not only caused by changes in this pathway [11, 
12, 79, 80]; many diseases also cause changes in the comple-
ment system [27–31, 81, 82]. Nevertheless, they still have 
the potential to become diagnostic markers. From the exist-
ing data, whether it is the brain or the periphery, the specific 
complement proteins that are changed in these diseases do 
not completely overlap [27, 28, 83–86]. For example, the 
types of changes in peripheral blood complement protein in 
patients with AD, schizophrenia, and multiple sclerosis are 
not completely consistent with those reported in the present 
study [27, 28, 82, 83]. Therefore, there may be differences in 
complement changes in different neurological diseases, and 
the similarities and differences between them deserve further 
study. The changes in complement proteins in different neu-
ropsychiatric diseases may be different from those of ASD. 
Meanwhile, in practical applications, these proteins can be 
used as panels as described in this study, rather than as mark-
ers in the form of individual proteins. On the other hand, 
diseases with multiple factors or multiple pathogeneses may 
need to involve different types of markers, and complement 
proteins can be used as one or a class of them, which can be 
combined with other proteins to become markers. This may 
be a better strategy to improve the specificity of a diagnosis 
[11, 12]. This is easily achieved using the MRM technique 
used in the current study. Taken together, complement and 
coagulation system proteins have the potential to serve as 
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independent biomarkers of ASD. However, it is important 
to note that this study is preliminary, with small sample size, 
and needs to be further validated by other cohorts as well as 
studies with larger sample sizes. Currently, while the data 
of this experiment conforms to the machine learning model, 
the 5-fold cross-validation effectively reduces the occur-
rence of over-fitting. Nevertheless, caution is needed as the 
AUC value for a panel consisting of 12 proteins is 1. There-
fore, it is still crucial to validate another independent sample 
database in future experiments. More data could validate 
whether this group of proteins could provide an auxiliary 
diagnosis for children with ASD.

Moreover, post-translational modifications of comple-
ment proteins have also been investigated. Seven (C1QC, 
C1RL, C4BPB, C5, C8A, C8B, and CFHR2) and four 
(C1QA, C1QB, C8G, and CFH) glycosylated complement 
proteins have been found to be up-regulated and down-reg-
ulated in ASD patients, respectively [17, 52, 87]. The car-
bonyl levels of C8A are significantly higher in the plasma of 
autistic children than in healthy controls [17]. Complement 
C3 was also found to be up-regulated in the PBMCs of chil-
dren with ASD in our previous study [14]. These changes 
deserve attention and further research. Together, the changes 
in the complement system in peripheral blood, PBMCs, and 
the brain of ASD patients highlight that this system may play 
a key role in the pathogenesis of ASD.

Furthermore, abnormal complement expression during 
brain development may be a causative factor for ASD that 
is independent of inflammation [27]. This is due to genetic 
factors more than anything else. Gene association studies 
have shown an increased frequency of a complement C4B 
gene null allele in patients with ASD [88–90]. On the other 
hand, abnormal complement activation systemically and in 
the CNS due to inflammatory insults or maternal immune 
activation during prenatal or early postnatal neurodevel-
opment also plays a role in the pathophysiology of ASD 
[27]. For example, maternal infection during pregnancy 
increases the risk of ASD in offspring [91]. This can be 
attributed to environmental factors more than anything 
else. The cross-sectional design of this study limits the 
strength of inferred causal relationships and may not reflect 
dynamic changes and exposure during the development of 
ASD. The relationship between complement and coagula-
tion cascades and the development of ASD is worthy of 
further study.

In conclusion, we used MRM proteomics analysis to sys-
tematically investigate differences in peripheral blood com-
plement and coagulation-related proteins between children 
with ASD and controls. The results identified 16 proteins 
as DEPs between these two groups, and they were all up-
regulated in children with ASD. Using machine learning 
methods, 12 DEPs were identified as a group of potential 
biomarkers for ASD diagnosis. Among them, the expression 

of SERPIND1 was positively correlated with the CARS 
score and has the potential to classify the severity of the 
disease. We also summarized the complement and coagula-
tion-related proteins associated with ASD, including those 
found to be altered in the brain and blood in the present and 
previous studies. These results support the conclusion that 
the complement and coagulation pathway is activated in the 
periphery of children with ASD and suggest that this path-
way plays a critical role in ASD pathogenesis. Moreover, it 
would also be interesting to use MRM technology to study 
proteins from other pathways associated with children with 
ASD, or to select proteins that are significantly changed in 
different pathways to form a panel of diagnostic markers to 
be studied.
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