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Early selection of task-relevant features
through population gating

Joao Barbosa 1 , Rémi Proville2, Chris C. Rodgers 3, Michael R. DeWeese4,
Srdjan Ostojic 1 & Yves Boubenec 5

Brains can gracefully weed out irrelevant stimuli to guide behavior. This feat is
believed to rely on a progressive selection of task-relevant stimuli across the
cortical hierarchy, but the specific across-area interactions enabling stimulus
selection are still unclear. Here, we propose that population gating, occurring
within primary auditory cortex (A1) but controlled by top-down inputs from
prelimbic region of medial prefrontal cortex (mPFC), can support across-area
stimulus selection. Examining single-unit activity recorded while rats per-
formed an auditory context-dependent task, we found that A1 encoded rele-
vant and irrelevant stimuli along a common dimension of its neural space. Yet,
the relevant stimulus encoding was enhanced along an extra dimension. In
turn, mPFC encoded only the stimulus relevant to the ongoing context. To
identify candidate mechanisms for stimulus selection within A1, we reverse-
engineered low-rank RNNs trained on a similar task. Our analyses predicted
that two context-modulated neural populations gated their preferred stimulus
in opposite contexts, which we confirmed in further analyses of A1. Finally, we
show in a two-regionRNNhowpopulation gatingwithinA1 could be controlled
by top-down inputs from PFC, enabling flexible across-area communication
despite fixed inter-areal connectivity.

The informational value of different stimuli can change dramatically
depending on the context, but animals can adapt with impressive
flexibility to virtually any contingency change. A classical example
of this feat is the so-called “cocktail party effect”, which refers to our
ability to focus on a specific, currently relevant conversation while
ignoring all the others. Understanding how stable neural circuits
implement this kind of flexible, context-dependent behavior has pro-
ven challenging. While there is a growing consensus that it emerges
from the interaction between different regions along the brain
hierarchy1–4, the specific interactions are unclear.

One possibility is that regions early in the hierarchy merely repre-
sent the incoming stimuli and propagate their representations down-
stream, where context-dependent rules are applied to effectively guide

behavior5–8. In line with this view, pioneering work combining artificial
neural networks and neurophysiological recordings from monkeys
performing a canonical context-dependent task9, shows that both
relevant and irrelevant stimuli are encoded as late as the frontal cortex,
suggesting that the selection of relevant stimuli indeed may occur late
in the cortical hierarchy. Empirical evidencedemonstrates however that
primary sensory areas are modulated by behavioral context4,10–13,
potentially through feedback interactions with downstream areas that
could control the selection of the relevant stimulus upstream14,15. This
evidence supports earlymodels of parallel distributedprocessing16, that
proposed that task-relevant stimuli encoding could be enhanced by
top-down inputs to sensory neurons. The prefrontal cortex17 is deemed
essential in providing these inputs, which push task-irrelevant units to
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the low-gain regionof their dynamic range, thereby effectively reducing
their sensitivity. While an attractive possibility, the specificmechanisms
through which different cortical areas cooperate to select the relevant
stimuli earlier in the cortex are unclear.

Here, we examine the population dynamics in the rat primary
auditory cortex (A1) and the prelimbic region of medial prefrontal
cortex (PFC), and propose a mechanism through which interactions
between these two areas flexibly select relevant stimuli within A1 in a
context-dependent task13. We found that both relevant and irrelevant
stimuli were encoded within a sensory subspace of A1, in line with
other studies of humans and other animals performing context-
dependent tasks2,4,13. However, we found that the relevant stimuli were
furthermore projected along an additional dimension, which we
named ‘selection axis’. On the other hand, PFC encoded only the
decision, fully determined by the selected stimuli. Both areas encoded
context robustly throughout the trial. To investigate how this con-
textual information could drive stimulus selection in A1, we trained
recurrent neural networks (RNN) on a similar task. Using the same
analyses, we found that the geometry of the relevant and irrelevant
stimuli representations resembled those of the rat’s A1. Reverse-
engineering the mechanisms employed by these networks18–20 pre-
dicted that context-modulated populations selectively gate the rele-
vant stimuli in a context-dependent fashion,with different populations
selecting specific stimuli in their preferred context. Further analyses of
neural recordings revealed a similar population structure in A1, vali-
dating the model prediction and suggesting it could subserve the
flexible communication of the selected stimulus with mPFC.

A possible interpretation of our within-area modeling and data
analyses is that context-dependent gain modulation occurring within
A1 could be controlled by top-down inputs from PFC16,17. A recent
hypothesis posits that different regions communicate through low-
dimensional subspaces21–23, but how the information being commu-
nicated could alternate flexibly to solve a context-dependent task is
unclear. Our final contribution is to show through network modeling
that within-area gain modulation19, controlled by across-area inputs,
could sub-serve such flexible communication along low-dimensional
subspaces. Specifically, we demonstrate that a previously proposed
class of RNNs constrained to have within-area low-dimensional
dynamics18–20 can be naturally extended to account for across-area
communication subspaces. In a two-region RNN,we show that relevant
stimuli information can be transmitted between A1 and PFC in a
context-dependent manner, despite fixed inter-area connectivity. Our
model is a neural implementation of the communication subspace
hypothesis22,23 that solves a cognitive task and suggests a specific
mechanism through which areas could interact flexibly along fixed
connectivity subspaces.

Results
Context-dependent stimulus representations in A1
To investigate how relevant stimuli are selected to guide flexible
behavior, we analyzed neural activity previously collected13 while rats
performed a context-dependent, go/no-go auditory task (Methods).
The animals were presented with an auditory stimulus (250 ms) con-
sisting of a pitch warble from both speakers mixed with a broad-band
noise lateralized to just one speaker (Fig. 1a, left). Contexts were
alternated in blocks and indicated the relevant stimulus feature, i.e.
pitch level (high or low) or noise location (left or right). The relevant
feature (e.g. left/right in the location task; Fig. 1a) indicated to the
animal which port it had to lick to obtain a reward in each context (e.g.
go-left/no-go, in the location task; Fig. 1a). Before contextual block
changes, the rats performed 20 “cue trials”, in which the rat heard only
relevant sounds without the irrelevant feature. Single-unit spike trains
were collected either from the primary auditory cortex (A1) or medial
prefrontal cortex (PFC) while the animals performed the task (Meth-
ods). In this study we focused on pseudo-trials (Methods) but results

were qualitatively similar when analyzing simultaneously recorded
neurons (Fig. S6). For a detailed description of the training procedure
as well as behavioral analyses after training, we refer the reader to the
original publication13.

Previous decoding analyses of this dataset13 showed that A1
represents the ongoing context (Fig. S1) and both stimulus features,
regardless of their behavioral relevance (Fig. 1a, bottom). The specific
encoding format of these features across different contexts was not
examined, however. Here, we investigated if a given feature (pitch or
localization) was encoded in the same format across contexts24–27, i.e.
independently on whether it was relevant ("relevant context”) or irre-
levant ("irrelevant context”). In Fig. 1b, we illustrate three possible
encoding scenarios in the neural activity state space, where each
dimension represents a different neuron: (i) identical encoding, where
the coding axes for the same feature are parallel between the relevant
and irrelevant contexts; (ii) selection encoding, where the relevant go
stimulus is enhanced by adding activity along a selection axis; and (iii)
independent encoding, corresponding toorthogonal coding axes for the
same feature across relevant and irrelevant contexts. If an auditory
feature is encoded in similar formats across contexts (identical, Fig. 1b),
projecting the activity collected during one context onto the decoding
axis determined in the other context leads to similar separability
between conditions (identical in Fig. 1b, bottom). On the other extreme,
if the same feature is encoded in orthogonal formats in the two con-
texts, across-context projections are not separable (independent in
Fig. 1b, bottom). In between these twoextremes, for selection encoding,
the two conditions are equally separable along the decoding axes
determined in the irrelevant context (Fig. 1b, sensory axis), but not as
much along the decoder determined in the relevant context (selected in
Fig. 1.b, bottom). Note that the three scenarios detailed here do not
provide an exhaustive list of all the possible encoding geometries (see
Fig. S1c for two other scenarios). Importantly however, each encoding
geometry is fully characterized by the angle between relevant and
irrelevant axis and their across-context decoding performance (Fig. 1b).

To distinguish these possibilities, we trained stimuli-decoders on
trials collected during the irrelevant context and tested their perfor-
mance on trials during either context. We found that decoders trained
on irrelevant trials performed well in both relevant and irrelevant
contexts (Fig. 1c, left panel), evidence against an independent code
and instead suggesting a sensory axis (Fig. 1b) that is shared across
contexts. In contrast, the decoding accuracy of irrelevant trials was
substantially reducedwhen testedwith relevant decoders (Fig. 1c, right
panel), discarding an identical code and suggesting a selection axis
(Fig. 1b) along which a specific condition was enhanced in the relevant
context. We quantified the angle between relevant and irrelevant
decoding axes and found that they were aligned, but not parallel, as
expected in a selection code (Fig. 1d, e, insets on the left).We therefore
estimated the selection axis as the component of the relevant decod-
ing axis that was orthogonal to the sensory axis (Fig. 1b). To visualize
this particular encoding geometry, we then projected the trajectories
of activity elicited by identical stimuli in the two contexts along the
selection and sensory axes (Across-context decoding in Methods). We
found that stimuli elicited activity mostly along the sensory axis when
the stimuli were irrelevant (Fig. 1d, e, gray lines), but also along the
selection axis when the same stimuli were presented in the relevant
context (Fig. 1d, e, orange lines). To maximize the separation between
go andno-go trials,weperformed thedecoding analyses separately for
each context, but a common selection axis across context could be
found with similar dynamics (Fig. S1d).

To elucidate how these context-dependent transformations could
emerge in A1, we next trained a single-area RNN in a similar task.

Single-area RNN predicts a non-random population structure
We implemented the context-dependent task of ref. 13 using the
NeuroGym toolbox28. Our task was similar to those of previous
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studies9,19, but with a different output space consisting of 3 possible
actions, two of them activated in each context. Stimuli (A and B) were
delivered transiently (gray bar, Fig. 2c), while the contextwasdelivered
throughout the whole trial (Methods). Aiming to replicate the stimulus
selection seen in A1, we trained the network to select the relevant go
stimulus along a readout vector that was fixed across contexts. To
mimic our observations ofmixed selectivity in A1 (Fig. S1b), the stimuli
and the readout weights on individual neurons were generated
randomly29 and fixed during training (Trained A1 network in Methods).

To obtain easily interpretable RNNs, we constrained the recurrent
connectivity matrix to be of low rank, allowing us to reverse-engineer
the mechanisms employed by the trained networks18,19,30. We found
that a rank-one network was able to solve the task (Fig. 2a, bottom left;
Fig. S9), so that the connectivity matrix was defined by the outer
product of two vectors, the output and input-selection vectors (Low-
rank theory in Methods). After training, we froze the weights and col-
lected the dynamics of all units during all types of trials. As we did with
the biological units recorded from A1 (Fig. 1d, e), we projected the
activity of the same stimuli separatelywhen theywere relevant (Fig. 2b,

orange) or irrelevant (Fig. 2b, gray) onto the output and sensory axes
(Trained A1 network in Methods). This confirmed that, as in A1,
the network represented both stimuli along the same sensory axis,
independently on whether they were relevant or irrelevant in the
current context, but the relevant go stimulus was enhanced along an
additional axis.

We then used recently developed methods to reverse-engineer
the mechanism through which the network learned to solve the task.
Recent theoretical work has shown that context-dependent tasks such
as the one considered here require neurons to be organized in dif-
ferent populations, each characterized by its joint statistics of con-
nectivity parameters18,19. A key empirical test of this finding is that
networks with shuffled connectivity parameters should still solve the
taskwith an accuracy similar to trained ones, as long as the statistics of
connectivity within each population are preserved19. Performing this
analysis (Inferring populations in Methods), we found that our trained
networks relied on at least three populations, as resampling the con-
nectivity vectors from less than three populations did not achieve high
performance (Fig. 2a, bottom right). Due to differences in how these
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Fig. 1 | Relevant and irrelevant stimuli are encoded in different subspaces in A1.
a Left, schematics of the auditory discrimination go/no-go task. Rats were pre-
sented with an auditory stimulus with two features (pitch and location). Two
example trials (black vs gray rat) for the same stimuli (in orange, a noise burst on
the left speaker and in gray a high pitch warble on both speakers) in different
contexts (location, black; pitch, gray). Depending on the context, the animals had
to attend to one of the stimulus features and respond accordingly: go left in
location context or no go in the pich context, for this stimulus pair. Right top,
context-dependent go/no-go task rules specifying correct behavior for all stimulus
pairs. Highlighted (black box) is the stimulus pair illustrated on the left. Bottom,
both features are significantly decodable from A1, whether relevant (orange) or
irrelevant (gray)13. b Three possible scenarios for the encoding of the same feature
depending on its relevance in each of the two contexts (orange and gray), as
characterized by the geometric relationship of the coding axes across contexts.
Different transparency levels refer to different conditions (e.g. left vs right loca-
tion). Left: Identical encoding, where the coding axes are parallel in the two con-
texts; middle: enhanced encoding, where the go stimulus is enhanced by adding
activity along a selection axis; right: independent encoding, corresponding to
orthogonal coding axes. Bottom: to distinguish between scenarios, we project the

trials in one context (colored histograms) onto the decoding axis (colored line)
determined in the other context and inspect the resulting discrimination perfor-
mance. cAcross-context decoding (Across-context decoding inMethods) of location
during pitch context and during location context. Left, irrelevant decoders work
well both on irrelevant (gray) and relevant trials (orange). Right, relevant decoders
work substantially better in relevant trials than in irrelevant trials. Shaded area
marks the stimulus presentation period. See Fig. S5a for similar analyses on pitch
trials. d On the left, the angles between sensory and relevant axis before ortho-
gonalization, estimated during location blocks are shown in dark gray; for com-
parison, angles between random vectors (computed by shuffling the weights of
each neuron) are shown in light gray. On the right, visualization of the activity
elicited by relevant and irrelevant stimuli within the sensory-selection subspace
after orthogonalization (Methods). Colored circlesmark the stimulus onset. e Same
as (d), but for the pitch context. See also Slight asymmetry between contexts
in Supplementary Notes. All decoding accuracy computed as the mean accuracy
across n=1000pseudo-populations (Methods). All error-bars are bootstrapped95%
C.I (n=1000 bootstraps). Rat illustration in a) taken from Costa, Gil. (2020). Rat
from the top. Zenodo. https://doi.org/10.5281/zenodo.3926343.
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populations select distinct stimuli that we describe below, we labeled
these 3 populations post hoc as A, B and 0.

We explored the contribution of each population to the overall
dynamics leading to stimulus-selection along the output axis.With this
aim, we examined separately the dynamics of the 3 populations indi-
vidually by projecting their activity on the output axis in the two
contexts. We observed that two out of three populations showed dif-
ferent stimulus-specific dynamics in the two contexts (Figs. 2c and S2).
While population A selected the go stimulus A along the output axis
during context A, it did not select this stimulus during context B
(Fig. 2c, top), and vice versa for population and stimulus B (Fig. 2c,
bottom). Note that neurons within each population were selective to
both stimuli along the sensory axis, but collectively selected the go
stimulus along an additional axis. We quantified this context-
dependent dynamics by computing the context-dependent activa-
tion of each population (output gating, Methods) and compared it
against randomly chosen populations. We found that populations A
and B showed substantiallymore context-dependent activity along the
readout axis than population 0, whose dynamics were not different
froma randomly selectedpopulationof neurons (Fig. S2d). As found in
a recent study19, context-dependent modulation at the population
level relies on selective gainmodulationat the single-neuron level. This
gainmodulation is determined by theworking point of single neurons,
with neurons with higher firing rate exhibiting lower gain (Fig. 2d, left).
For neurons in population B, we calculated their gain as the slope of
the transfer function before the stimulus presentation (Fig. 2d, middle
Methods) and the corresponding firing rate (Fig. 2d, right) in each
context. While neurons from population B were operating at higher

levels of gain during context B, their gain was much lower during
context A. In turn, population 0 did not show any gain modulation
(Fig. S2d).

These analyses point to population gating through gain modula-
tion as a candidatemechanism for solving the context-dependent task.
To test whether population gating selects stimuli in the neural data, we
sought a procedure to identify the two relevant populations from
single-unit recordings. In the network model, the two populations are
characterized by their connectivity and gain modulation, but this
information is not directly accessible from extracellular recordings.
However, since gain modulation arises from contextual inputs that
shift the working point of individual neurons on their input-output
function (Fig. 2d,middle; see also different contextweight strengths to
each population in Fig. S2c), we found that gain modulation was
reflected in the neuron’s firing rate before stimulus onset (Fig. 2d,
right). Specifically, we found that the twokey populations in themodel
had decreased pre-stimulus firing rates in their preferred context.
Therefore, the network model predicted that the single-neuron pre-
stimulus firing rate would allow us to discriminate between neurons
that performthe stimulus selection in the two contexts.Wenext tested
this prediction in A1 data.

Pre-stimulus activity of A1 neurons predicts their population
structure
To test the prediction of different context-modulated neuronal
populations selecting different stimuli, we grouped all the neurons
recorded in A1 (n = 130) based on their context modulation during
the pre-stimulus period (Fig. 3a, Mann-Whitney U test corrected for

Fig. 2 | Trained RNN replicates A1 dynamics and predicts population gating
supports flexible selectionof the relevant stimuli. a Top, schematics of the RNN.
On each trial, the RNN receives 4 inputs (stimuli and contexts) andmust output the
correct choice (−1, 0 or +1, representing go left, no go or go right) onto a fixed
readout axis. Depicted in black are the weights that are trained with back-
propagation (i.e. contextual inputs and recurrent weights) and in gray those that
remain fixed (i.e. stimuli input and readout). Bottom, average responses of trained
(left) and resampled (right) networks separated by conditions and context (com-
pare with schematics in Fig. 1a). Left, trained networks achieve perfect accuracy in
both contexts. Right, clustering and shuffling the connectivity (Inferring popula-
tions in Methods) keeping an increasing number of populations shows at least 3
populations (population A, B and 0) are necessary to solve the task with compar-
able accuracy to trained networks (left). b) Similar to A1, the network represents

both stimuli but enhances the relevant go stimuli along an additional axis. Colored
circles mark the stimulus onset. See also Fig. 1d, e. c Dynamics of activity of
populations A and B projected on the output axis is reduced in opposite contexts,
effectively gating the relevant go stimulus into the output axis (b). Error-bars are
standard deviations from the mean. d Left, single neurons in each population have
different gain levels (left, ϕ0) in the two contexts (here shown only for population
B). Middle, illustration of the single-neuron gain modulation mechanism. Neurons
in population B receive strong contextual inputs (see also Fig. S2) in context A (red)
that shift the working point of individual neurons on their input-output function to
a low gain regime. Conversely for context B (blue). Thus, gain modulation is also
reflected in the single-neuron firing rate before the stimulus (right).
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multiple comparisons; see also Fig. S7 for a similar distribution in the
models). About a thirdof theneurons (n = 48/130) showed significantly
lower spontaneous activity in the location context (henceforth loca-
tion population) while another third (n = 36/130) showed decreased
spontaneous activity in the pitch context (pitch population). The
remaining (n = 46/130) neurons were not significantly modulated by
context during the pre-stimulus (population 0). Moreover, grouping
neurons by their modulation to context did not separate neurons with
opposite stimulus selectivity. Instead, neurons in either population
had non-random mixed selectivity to both stimuli (Fig. 3b).

As in themodel, we inspected separately the activity of each of the
two context-modulated populations projected on the output axis. We
estimated the output axis by decoding the twopossible outputs (go left
vs go right; Fig. 1a andMethods) fromeachpopulation andprojected its
activity along this axis, grouping trials by their context and correct
output. As predictedby themodel (Fig. 2), we found that thepopulation
of neurons showing low spontaneous activity in a specific context gated
the relevant go stimulus and ignored the irrelevant stimuli (Fig. 3c, top
left, and bottom right). Conversely, in the opposite context, the output
projection of the same population was essentially identical for all con-
ditions (Fig. 3c, top right, and bottom left; see also Fig. S3). This link
between context modulation and stimulus-related dynamics is not tri-
vial, as we grouped neurons during different time points (before and
during stimulus) and compared them along different variables (context
and stimulus). As done with the simulations, we quantified the level of
context-dependent population dynamics (output gating, Methods) and
compared it with randomly selected populations. We found that the
output gating of both populations (p =0.03 and p =0.004, location and
pitch populations, respectively), but not population 0 (p>0.25) was
significantly higher than in randomly selected populations (Fig. 3d,
Methods). Moreover, the location population output-gating strength
was significantly higher than population 0 (p <0.0025) and similarly
for the pitch population, albeit not significant (p <0.075).

In sum, we found that neurons grouped by their pre-stimulus
context-modulation collectively selectdifferent stimuli, aswaspredicted

by reverse-engineered RNNs. Specifically, individual populations in
A1 output the go stimuli in their preferred context but do not in the
opposite context.

mPFC encodes only the relevant stimulus along a selection axis
After characterizing a potential mechanism for the stimulus gating
observed in A1, we investigated the existence of context-dependent
neural dynamics within mPFC. Previous work has shown causal invol-
vement of mPFC in action-selection during flexible behavior (13,31), so
we expected to see strong encoding of the stimulus relevant for the
decision. As similarly done in A1, we tried decoding both relevant and
irrelevant stimuli (Methods). mPFC indeed encoded the relevant sti-
mulus (Fig. 4a, left orange), but it did not encode the irrelevant sti-
mulus (Fig. 4a, gray). We also visualized mPFC context-dependent
dynamics along a sensory and selection axis, estimated similarly to A1
(Fig. 1; Population decoding in Methods). In contrast to A1, mPFC
dynamics evolved exclusively along the selection axis and only very
weakly along the sensory axis during the irrelevant context (Fig. 4b).
Notably, decorrelating the animal’s choice and the relevant stimuli
with error trials, we found that both PFC and A1 encoded the relevant
stimulus above and beyond choice (Fig. S5c). Furthermore, separating
neurons according to their pre-stimulus activitywhen their activitywas
strongly selective to context (Fig. S1) did not reveal robust population
gating (p >0.1, p =0.22, p =0.083 for population 0, 1 and 2, respec-
tively; output-gating permutation test; Methods. See also Fig. S8). In
sum, PFC neurons encode context (Fig. S1) and decision along ortho-
gonal directions (Fig. 4). In contrast to A1, they do not encode the
irrelevant stimulus and their activity seems to bewell described by one
population. Next, we incorporate these observations in a multi-area
network.

Multi-area RNNwith across-area population gating replicates A1
and PFC dynamics
Our within-area modeling and data analyses suggest that gain mod-
ulation occurring within A1 could be controlled by top-down
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contextual inputs. To formally show how across-area interactions can
lead to the context-dependent population activity observedduring the
task, wemodeled thewithin-area dynamics observed in the rat’s A1 and
PFC in a singlemodel that performed the task (Figs. 5a and S4). For the
across-area interactions, our model instantiated the recent hypothesis
that different regions communicate through low-dimensional
subspaces21–23. Under this view, some information within an area is
transmitted to a second area through a so-called communication
subspace, while the rest remains in a private subspace. While an
interesting empirical observation, a concrete network model per-
forming a cognitive task is lacking21,22. To directly implement this
hypothesis, we engineered a two-region network model by starting

from two low-rank networks representing A1 and PFC, and then con-
nected them by adding low-rank interactions between areas (A1-PFC
network in Methods). Note that our approach here is in contrast to the
single areaRNNcase (Fig. 2),which are trained. This is becausewewere
interested in exploring the specific hypothesis of flexible commu-
nication through across-area gain modulation, rather than generating
new hypothesis through network training32.

Specifically, we set the connectivity geometry of A1 similarly to
the trained network (Fig. 2), meaning that when biased by contextual
inputs it selected the relevant stimuli along the A1 output axis through
population gating (Figs. 2, 3). In turn, PFC was set up to store the
current context in persistent activity20 using only one population, as

ba trained on 
relevant context

trained on
irrelevant context location subspace pitch subspace

Fig. 4 | PFC encodes only the selected stimuli along the selection axis. a Across-
context decoding (Across-context decoding in Methods) of location during pitch
context and during location context. Left, irrelevant decoders fail both on irrele-
vant (gray) and relevant trials (orange). Right, relevant decoders work well in
relevant trials but not irrelevant trials. Shaded areamarks the stimuluspresentation

period. Decoding accuracycomputed as themean accuracy across n=1000pseudo-
populations (Methods). Error-bars are bootstrap 95% C.I. See also Fig. 1c. b visuali-
zation of the activity elicited by relevant and irrelevant stimuli within the sensory-
selection subspace. Colored circles mark the stimulus onset. See also Fig. 1d, e.
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Fig. 5 | Engineered multi-area model replicates A1 and PFC dynamics and
produces predictions for across-area interactions. a The interaction between A1
and PFC was set to occur through low-rank connectivity in opposite directions
(feedforward in orange and feedback in gray). In contrast to the trained network,
context is delivered transiently to PFC (dashed), stored in persistent activity and
fed back to A1 (context, gray). In turn, stimuli are delivered to A1 and are not
communicated to PFC, thus remaining in a “private subspace” of A1 (bottom left).
The relevant stimulus, which is selected within A1 by integrating the stimuli and
context, is communicated to PFC along the selection axis (selection, orange). Solid
black circles represent the two variables that are shared across areas. On the bot-
tom, connectivity schematics illustrates the geometric relationshipbetweenwithin-
and across-area connectivity vectors, with similar colors illustrating strong overlap.
b Relevant stimuli are encoded earlier in A1 than in PFC, as seen in the data for
location (middle) and pitch (left). Full circles mark 25 ms bin with decoding sig-
nificantly above chance (p <0.05, one-sided bootstrap test; not corrected for

multiple comparisons). Blackbarmarks timebinswhereA1decoding is significantly
above PFC decoding. Error-bars are SEM. c Estimation of the communication sub-
spaces using canonical correlation analyses separately for each context (Commu-
nication subspace estimation in Methods). On the left, cross-validated correlation
along different canonical dimensions is significant for two dimensions (boot-
strappedmean and error bars are 95%C.I.). Highlighted in gray is the first canonical
dimension of each context, used in the remaining panels. In the middle, we show
that the first canonical dimensions of context A and B (left) are orthogonal, i.e. that
A1 and PFC communicate through orthogonal subspaces in opposite contexts (red
and blue, Methods), despite fixed connectivity. However, we show that these
orthogonal subspaces are aligned along the output axis (mA, purple). On the right,
we show that these orthogonal subspaces are supported by different populations.
Neurons of population A have mostly null coefficients on the communication
subspace during context B; conversely for neurons in population B.
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suggested by the data analyses. Given our empirical observations
(Figs. 1 and 3), our hypothesis was that the sensory stimuli information
remains private within A1, while the selected stimulus information is
communicated downstream (Fig. 5a). To set up this communication
channel (feedforward in Fig. 5a), we implemented the connectivity
from A1 to PFC as a rank-one matrix (JA→P = IA→P⊗nA→P), setting nA→P to
be aligned with the output axis of A1 (mA). On the other hand, context
is stored in working memory within PFC, but communicated to A1
along another dimension, also implemented by a rank-one matrix
(JP→A = IP→A⊗ nP→A) representing the connections from PFC to A1 (feed-
back in Fig. 5a). As in the feedforward case, we set nP→A to be aligned
with the output axis of PFC (mA). This configuration is illustrated in 5a,
with similar colors showing axis with strong overlap. Altogether, the
connectivity between A1 and PFC was defined by two axes within each
area, therefore its dimensionality was n = 2.

After setting the two-area network to interact through low-rank
subspaces, we tested its performance. This was done similarly to the
trained network, but now stimuli were presented only to A1 and
context only to PFC. At the end of each trial, we read out the final
response from PFC. In isolation, A1 represents all stimuli and PFC
stores the current context in persistent activity (Fig. S4a), but they do
not select the relevant stimulus in a context-dependent fashion
(Fig. S4a, b). When we connect the two areas as described above,
contextual information is propagated from PFC to A1, targeting
specific neural populations to select the relevant stimulus within
A1 (Fig. S4a, bottom). The selected stimulus is then propagated
downstream to PFC, from which the final response was read out,
effectively solving the context dependent task (Fig. S4b). Due to
this model architecture, relevant stimuli are encoded earlier in A1
than in PFC (Fig. 5b, left), as seen in the data (Fig. 5b), even when
artificially decorrelating decisions and relevant stimuli with error
trials (Fig. S5c).

We then developed predictions about the interaction between
A1 and PFC that could potentially be tested in datasets with simul-
taneously recorded areas. First, we validated a previous approach
to estimate communication subspaces in experimental data23.
To this end, we computed the canonical correlation dimensions
(cross-validated, Methods) between A1 and PFC, after removing
condition-averaged activity and separating trials by context. Using
this approach, we estimated the dimensionality of the communica-
tion subspace to be two-dimensional in both contexts (Fig. 5b, left).
Interestingly, we found that the networks communicate through
context-specific subspaces that are orthogonal to each other
(Fig. 5c, middle; Fig. S4b), demonstrating that the communication
between A1 and PFC alternates flexibly along different channels in
opposite contexts, despite their fixed across-area connectivity. Our
model therefore shows how the switch between different commu-
nication channels can be controlled by top-down inputs from PFC
to A1. Specifically, top-down inputs select which population
participates in the communication subspace (Fig. 5c, right), thereby
determining what information is selected in A1 for propagation
downstream.

All together, ourmodel replicates the dynamics within A1 and PFC
and show how across-area population gating can subserve their flex-
ible communication, despite fixed connectivity.

Discussion
Previous studies of neural activity during context-dependent behavior
have found that both relevant and irrelevant stimuli are encoded
across the cortex4,9,13,33. Here, we used cross-context decoding to
characterize the specific encoding geometry of these stimuli in the rat
auditory cortex (A1). We found evidence for the selection of the rele-
vant stimuli along an axis ("selection axis”) orthogonal to the axis
encoding the stimuli ("sensory axis”). This encoding geometry, which
we termselection code, is related to previous work on ’cross-condition

encoding’26. As it happens, this encoding geometry has several
advantages relative to the alternatives illustrated in Fig. 1. First, it
allows for sensory information invariance along the sensory axis, even
across potentially very different contexts. In view of this, a pear will
look like a pear, regardless of your current appetite. Then, despite
encoding similar stimuli along a common axis, it allows for their flex-
ible selection depending on their current relevance, in line with the
previous findings in the ferret A1 that show that go stimuli are
enhanced upon task engagement34.

By reverse-engineering RNNs trained with backpropagation to
employ a selection code, we postulate specific mechanisms that could
support this code in A1. We found a non-random population structure
in the trained RNNs, with two populations selecting different go sti-
muli. In our model, context-dependent gating of the relevant stimulus
was accomplished through gain modulation of specific populations.
The model predicted that this population structure could be inferred
from pre-stimulus firing rates in electrophysiological recordings.
Indeed, we found evidence for such a structure in A1, but not in PFC
where the irrelevant stimuluswasnot encoded. Note that in contrast to
our model, which was perfectly symmetric, our decoding analyses of
A1 revealed that pitch-related activity was weaker than location, but
this does not change the interpretation of our results (see Slight
asymmetry between contexts in Supplementary Notes).

Our final contribution is to incorporate our empirical findings
within A1 and PFC in a multi-area network that postulates their inter-
actions through low-rank communication subspaces. Previous work
modeling communication subspaces have focused on noise correla-
tions in spontaneous activity and feedforward interactions35,36; see
also37 for a model of ‘output-null’ subspaces in the context of motor
preparation38. In contrast, our multi-region network solves a concrete,
context-dependent task by setting the areas to interact in both feed-
forward and feedback directions. Crucially, PFC acts as a controller of
A1, dynamically selecting the appropriate communication subspace
for the ongoing context. Our model is an explicit implementation of
the Miller and Cohen model of PFC17, (see ref. 39 for a recent review)
and complements a large body of computational work focusing on
multi-area interactions (see ref. 40 for a recent review). Our major
contribution is to propose a single-neuron mechanism (i.e. gain
modulation) for flexible selection of different subspaces through
population neural dynamics3,41,42, despite fixed connectivity. We have
focused on feature-selection13, a specific kind of context-dependent
tasks39, and future work will be necessary to extend our results to
other types of context-dependent task, such as fear conditioning
extinction43,44 or task switching39,43,45.

In our model, gain modulation is accomplished by selectively
targeting specific units with different contextual inputs (Fig. S2c,19),
pushing individual units to the non-linear regime of their input-output
function. How gain modulation is accomplished in A1 remains to be
fully elucidated46, but possible ways in which neuronal populations in
A1 could have reduced gain after increased activity include synaptic
non-linearities, such as depression46, or (loose) balance between inhi-
bitory and excitatory neurons (see ref. 47 for a recent review). Future
work is necessary to determine the specific mechanism. In some stu-
dies probing context-dependent behavior, actions are decoupled from
stimuli with careful task design, while here we tackle this possibility
only indirectly (Fig. S5; see also Discarding motor execution confounds
in Supplementary notes); notwithstanding, the mechanisms proposed
here for stimulus selection through gain-modulation would straight-
forwardly apply to decision selection within A1.

In our model, there is a division of labor: A1 represents all stimuli,
but when biased by the current context it selects the relevant stimulus;
in turn, PFC reads out the relevant stimulus and uses it to effectively
guide behavior and could in principle infer the current context
through trial and error. We leave for future work the question of how
the current context is inferred. Crucially, these two areas communicate
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the key task variables, context and the selected stimulus, through rank-
one subspaces in opposite directions. We have assumed that mPFC
interacts directly with A1, but the control of stimulus selection in A1
could be accomplished through a third area, such as the thalamus48 or
the amygdala44. Furthermore, it is possible that A1 and PFC commu-
nicate other variables in addition to, or insteadof, ongoing context and
the currently selected stimuli. For instance, it is not necessary for PFC
toboth act as receiver of the relevant go information andproviding the
context. Both the interaction through a third area and the commu-
nication of different variables could be accounted by specific across-
area connectivity profiles.

The computational advantages of our model modularity are
unclear when considering a single task, as was the focus of this work.
Considering instead a more realistic case, in which rats are trained on
more than one task, for instance two contexts-dependent task of dif-
ferent modalities (e.g. auditory and visual), the advantages become
apparent: in principle, PFC could be reused in both tasks, storing the
current context and biasing currently relevant networks. Similarly, A1
could conceivably route different stimuli to another area, instead of
only the relevant stimulus to PFC. In this work, we opted to model the
simplest hypothesis that could explain our findings within A1 and PFC.
Regardless, this model is to our knowledge the first neural imple-
mentation of the communication subspace hypothesis22 that performs
a cognitive task (but see ref. 35,36). While future theoretical work will
be necessary to fully flesh out the implications of the communication
subspace hypothesis22,23, our model reveals several interesting
insights. First, it shows that communication subspaces, empirically
shown to play a role during passive viewing22,23, can be exploited
during flexible behavior. In themodel, PFC controls A1 with contextual
inputs, biasing it to select and communicate the relevant stimulus.
Using canonical correlations analyses (CCA)22,23, we show that this
communication occurs along orthogonal subspaces that are explored
flexibly in different contexts, but within the fixed subspace set by the
network connectivity. This analysis is a specific prediction that can be
tested in multi-area recordings from animals performing context-
dependent behavior. Second, while the subspaces estimated with CCA
are aligned with those implemented in the model, we used decoding
analyses as baselines to show that this estimation is imperfect, mixing
feedforward and feedback communication along the same dimensions
(Fig. S4c).

With the advent of large-scale recordings, it is becoming clear that
animal behavior implicates multiple areas. In a rare tour-de-force, a
recent study recorded simultaneously from six areas along the primate
visual pathway, while subjects were engaged in a visual context-
dependent task1,4. This study shows clearly, perhaps unsurprisingly,
that visual sensory information is quickly and more strongly encoded
in the visual cortex (V4) compared to associative areas, indicative of
the feedforward flow of sensory information. On the other hand, the
current context and the monkey’s decision are encoded earlier and
more prominently in higher-order areas, such as PFC4, consistent with
the feedback flow of contextual information in our model. Both types
of information are eventually encoded in all of the recorded areas,
suggesting inter-area communication in feedforward and feedback
directions. Interestingly, both relevant and irrelevant stimuli were
decoded across the brain hierarchy, generalizing a previous finding in
themonkey frontal eyefield9,33. In contrast, wedid notfind encodingof
irrelevant stimuli in mPFC, consistent instead with early selection of
the relevant stimuli. This discrepancy might be due first and foremost
to differences in animal species, but also to task differences. However,
another recent study3 recording simultaneously from several areas
across the monkey brain (V4, FEF, Parietal, and PFC), shows that visual
areas (V4) encode strongly both relevant and irrelevant stimuli, but
areas downstream such as FEF or PFC give clear preference to the
relevant stimulus and are more predictive of the upcoming action - in
line with the view taken here. Similarly, a recent MEG study of humans

performing a context-dependent task49, shows that decoding of irre-
levant features from the dorsal premotor cortex, to which the pre-
limbic part of the rat mPFC is arguably reminiscent50, is substantially
lower than the decoding of relevant features. Similarfindings have also
been reported in human fMRI2. Our model reflects these empirical
findings and proposes that different areas, with different computa-
tional roles, could alternate their communication through orthogonal
low-rank subspaces22,23, despite fixed connectivity. Together with
recent work on multi-area interactions40,51 our work motivates an
exciting new perspective on previous and future multi-region
recordings21.

Methods
Animal training and electrophysiology
All procedures were approved by the Animal Care and Use Committee
at the University of California, Berkeley. We are reanalyzing a pre-
viously collected dataset, so we are describing the experimental pro-
cedures here only briefly. For a complete description, we refer the
reader to the original publication13.

Task. Six rats were trained to respond to either of two simultaneously
presented sounds, in a context-dependent fashion. The rats initiated
each trial by holding their nose in the center port of a three-port
behavior box. Each stimulus was 250 ms in duration and consisted of
two different features, location and pitch. More specifically, the sti-
mulus consisted of a noise burst played either from the left or right
speaker (location feature), and a high or low pitched frequency-
modulated tone (pitch feature), played from both speakers simulta-
neously. The task alternated between blocks of localization and pitch
discrimination trials. Each localization block began with 20 “cue trials"
in which only the localization stimulus played, followed by 60 trials on
which both localization and pitch discrimination stimuli played
simultaneously. Pitch discrimination blocks similarly began with 20
cue trials of pitch stimuli, followed by 60 trials of both stimuli simul-
taneously. Localization and pitch discrimination blocks alternated
throughout the entire session. The session lasted for approximately
one hour, and rats were allowed to do as many trials as they wished
during this period of time. On each contextual block, one of the fea-
tures was the relevant feature and its value determined the correct
response, while the other feature was deemed irrelevant. During
localization blocks, the reward could be collected on the left port (go
left) when the stimulus was presented on the left speaker; no reward
could be collected when the stimulus was presented on the right (no
go), but animals were penalized with a timeout if they left the center
port. Conversely, during pitch block, the reward could be collected on
the right port (go right) when the pitch was of low frequency; no
reward could be collected for high frequency (no go). Correct
responses were rewarded with water, while mistakes were penalized
with a 2–6 s timeout. Incorrect responses and ‘cue trials’wereexcluded
from all the analyses.

Single-unit recordings. After training, tetrodes were implanted into
the rats’brains, targeting eitherA1or theprelimbic regionofmPFC and
single-unit spikes trains were collected while the animals performed
the task. Here, we only analyzed units with a sort quality defined
as ’great’ or ’good’ in the CSV file (https://github.com/cxrodgers/
Rodgers2014) recordedduring at least 10 correct trials of eachkind. All
analyses were performed on raw spike counts computed within win-
dows of 50ms. See the original publication for more details13.

Single-cell analyses
Single-neuron selectivity. To estimate single-neuron selectivity, we
counted all the single neuron spike while the stimulus was presented
(250 ms) and regress them against a linear combination of all task
variables of interest9, namely location, pitch, decision, and context.We
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considered a task variable to be significantly encoded by a neuron if its
regressionweights were significantly different than0, as accessedwith
the statsmodels python package. Neurons with only one significant
weight were considered to have pure selectivity and otherwise mixed
selective (Fig. 3).

In the original study13, we considered the possibility that a dif-
ference in encoding between the blocks might arise from a slow firing
rate drift over the entire session. To test for this, we fit a linear model
that explained each neuron’s response as a combination of block
number within the session as well as block identity (localization or
pitch discrimination). Only a small minority of neurons (3.5%) showed
an apparent difference between the blocks that was explained by a
significant effect of block number and not block identity.

Identification of distinct populations by pre-stimulus modulation.
To test theRNNprediction laid out in Fig. 2, weaveraged each neuron’s
firing rate before stimulus (1 s) onset separately in each context. For
each neuron, we then tested for their different firing rates in the two
contexts (Mann-Whitney U test), corrected for multiple comparisons
(Benjamini/Hochberg). Out of n = 130/131 neurons in A1/PFC, some
neurons had significantly lower firing rates during the location context
(n = 48/58 in A1/PFC), others during the pitch context (n = 36/36) and
were thus labeled as location and pitch population, respectively.
Neurons that did not show significant context modulation (n = 46/37)
were labeled as “population 0”.

Population analyses
Pseudo-population decoding. All decoding analyses were performed
on ‘pseudo-trials’, pooling across all animals52. We opted to decode
from pseudo-trials to maximize decoding accuracy. This is particular
important to support our claims of lack of decodability (e.g. irrelevant
decoding in mPFC). Crucially, our results do not depend on these
methodological choices and are qualitatively similar when decoding
from simultaneously recorded populations of 1 to 13 neurons (Fig. S6).
Specifically, we build pseudo-simultaneous populations by resampling
with repetition 50 pseudo-trials from each condition and neuron. We
repeated this process 500 times, leading to 500 folds across which we
computeddecoding variability. All decodingperformanceswere cross-
validated by splitting the training and testing dataset in two halves
(50% trials for testing). Importantly, the dataset splitting was per-
formed independently for each fold. We decoded the variable of
interest – context, location or pitch – using the scikit-learn package
sklearn.linear_model.LogisticRegression. To estimate the output axis
in Fig. 3, we computed the distance between the average activity
during go and no-go condition34. We then projected the activity
separated for each condition along the same axis.

Across-context decoding. To investigate the stimuli encoding geo-
metry within and across contexts, we performed across-context
decoding26,27. In this case, we also used pseudo-populations, but
training and testing was done with datasets collected during different
contexts. For instance, we trained logistic regression decoders to
discriminate the location of the stimuli (left vs right) during pitch
(location) blocks and then tested thesedecoders either onpitch blocks
or on location blocks (Fig. 1c). When training and testing within the
same context, we set aside 50% of trials for cross-validation. This was
not necessarywhen this process was done across contexts, but we also
subsampled 50% of the trials within each fold to avoid unfair com-
parisons. We repeated this process for all time points (Fig. S5) and
found that selection and sensory axes were stable during stimulus
presentation. For all decoding analyses we therefore used the average
weights during this period.

For the visualization of activity along a decoding axis, we
removed the non-linearity of logistic regression. Specifically, we
collected the weights trained with logistic regression and projected

the activity elicited by go and no-go stimuli on these weights. We
then plotted the distance between these two conditions (without
applying the logistic non-linearity). Importantly, before projecting
on these weights, we orthogonalized the sensory and selection axis
using QR decomposition9.

Output-gating permutation test. To quantify the degree of output
gating seen in A1 (Fig. 3), we calculated the following ratio during
stimulus:

jGOctx =pop � NoGOctx =popj
jGOctx≠pop � NoGOctx≠popj

ð1Þ

With GO (NoGO) corresponding to the average activity elicited along
the output axis for the go (no-go) stimuli and pop∈ {location, pitch}.
This value was high when a specific population was strongly modu-
lated by context, i.e. with large activity values along the output axis for
its corresponding context and low activity values in the opposite
context. We also computed the same ratio for population 0 (con-
sidering either contexts as the relevant context) and for randomly
labeled neurons. In the latter case, we permuted trial labels for each
neuron and relabeled them based on the recomputed pre-stimulus
activity with permuted trials. We then used the distribution of output
gating calculated on permuted trials to evaluate a permutation
test (Fig. 3).

Communication subspace estimation. For the multi-area network
simulations (see below), we estimated the communication subspaces
using Canonical Correlation Analyses (CCA), which is a common
approach for aligning neural representations53–55 and more recently to
studymulti-area interactions22,23. Here, as done previously for studying
multi-area interactions22,23, we focused on noise correlations. Specifi-
cally, we started by running 1000 trials of the go/no-go context-
dependent task. We then focused on the activity during the stimulus
presentation, where the selected stimulus and context information
wasflowing feedforward and feedback, respectively.We then removed
the mean activity of each neuron and stimulus conditions22,23 and
computed the canonical dimensions in the following way. First, to
avoid overfitting we reduced the dimensionality of the neural activity
collected from both areas using PCA (scikit-learn python package56),
keeping only the 10 dimensionswith themost variability.We thenused
CCA (scikit-learn python package56) to find the canonical dimensions,
alongwhich the activity from the two areas weremaximally correlated.
We did this on one half of the trials and then computed the Pearson
correlation with the other half of the trials and repeated this process
250 times (folds). When keeping 10 dimensions, we found that the
communication subspace was 2D, as expected. However, we noticed
that the number of correlated dimensions was sensitive to the number
of principal components that we kept in the preprocessing step
(Fig. S4c). We estimated the canonical dimensions either using data
from all trials or separating by context.

Angle between subspaces. To quantify the alignment between the
estimated communication subspaces, we computed the subspace
overlap57. Specifically, we computed the arccosine of the largest sin-
gular value of BT B̂, where B and B̂ are the basis defined by the across-
area connectivity vectors and the estimated subspace, respectively.

Recurrent Neural Networks
Go/no-go context-dependent decision-making task. We imple-
mented an abstraction of the task in the original publication13 using the
NeuroGym toolbox28. Briefly, the input was 4-dimensional, reflecting
thepitch and location feature in the rat’s experiment, in this case called
A and B, and the two contexts, context A and context B. During sti-
mulus presentation, we added gaussian noise with σ = 1 on top of the
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stimuli mean levels. The stimuli features had two levels (-1,1) as well as
the contextual inputs (0,1). Before the stimulus presentation, which
lasted 10 timesteps, there was a pre-stimulus period of 4 timesteps.
Contextual inputs were delivered during both periods, in contrast to
the stimuli that were delivered exclusively during stimulus presenta-
tion. As was the case for the rats, the network had to select the relevant
stimuli level and ignore the irrelevant stimuli, depending on the con-
text level (A=-1, B=* in context A, and A=*, B=-1 in context B).

Continuous-time RNN. The dynamics of each unit i were determined
by the of recurrent weights Jij and feedforward inputs weights Ili :

τ _xiðtÞ= � xiðtÞ+
1
N

X
j

JijϕðxjðtÞÞ+
XNinput

l

ulðtÞIli +ηiðtÞ ð2Þ

Withϕ = tanh. The time constant τ= 100mswas the same for all neurons
i. For simulation and training, the equation was solved using Euler’s
methodwitha time stepΔt =20ms. The independentwhitenoise termηi
was simulatedbydrawing at each time step fromagaussianwithmean0
and standarddeviation0.05. To calculate the gain of each neuronϕ0ðxiÞ,
we passed each neuron activity through ϕ0ðxiÞ= 1� tanhðxiÞ2.

Trained A1 network. For the A1 network in isolation, the connectivity
matrix J was constrained to be low-rank during training. We found
empirically during training that a rank-one network could solve the
task, meaning that Jij =minj. The network received Ninput = 4,
(uA, uB, uxA, uxB), corresponding to stimulus A, B and context A, B.
The input vectors (e.g. IA) defined the sensory axes. We trained the
networks using backpropagation through time to minimize the fol-
lowing mean squared error loss function during the last timestep of
each trial t:

L=
X
t

ðzt � XTwÞ2 ð3Þ

Where zt is the correct responseon trial t, X the network activity during
the last timestep andw the readout vector. Only the contextual inputs
(IxA, IxB) and recurrent weights (m, n) were optimized during 64000
trials (in batches of 160 trials each). Optimizationwas carried out using
Adam58 in pytorch59 with the decay rates of the first and second
moments of 0.9 and 0.999, and learning rate of 0.001.

Low-rank theory.We found empirically that rank-one connectivity (i.e.
J =m⊗ n) was enough to solve the task of interest. It can therefore
be shown that the network activity is constrained to be at most
(1 +Ninputs) dimensional:

xðtÞ= κðtÞm+
XNinput

l

vlðtÞIl ð4Þ

Where v(t) is the low-pass filter version of the input u(t)19. In this
setting, n canbe seen as the input-selection vector andm as the output
vector of a single latent variable κ. Previous theoretical workhas shown
that computations performed by low-rank networks, including those
trained through back-propagation, are fully determined by the rank of
their connectivity matrix and the geometric relationship of its
connectivity vectors - m, n, IA, IB, IxA, IxB for the case of the trained A1
network. This relationship is characterized by the overlaps between
the different connectivity vectors (e.g. σmn =mTn), which can be
subdivided into an arbitrary number of subpopulations19. While the
rank determines the number of latent variables κ that can be
manipulated, the number of populations P constrains the possible
computations on the latent variables. For a given rank-one network,

with P populations, it can be shown that in the limit of N→∞ the
dynamics of the latent variables κ is described by:

_κ = � κ +
XP
p

~σðpÞ
nmκ +

XNinput

i

~σðpÞ
nIi
vi

2
4

3
5 ð5Þ

With ~σðpÞ
mn = σ

ðpÞ
mnhϕ0iðpÞ, which can be seen as the functional connectivity

– i.e. a function of the effective connectivity σðpÞ
mn and the population

average gain hϕ0i. Different populations can have different functional
connectivity, depending on their average gain, which is itself a recur-
rent function of x and the active inputs18,19.

Inferring populations
To infer the minimal number of populations necessary to solve the
task, we followed a previously proposed approach19. Briefly, we used
the method BayesianGaussianMixture from the scikit-learn python
package56 to cluster neurons in an increasing number of independent
populations. After clustering, we calculated the empirical means and
covariance matrices of each cluster (i.e. population) independently.
We then sampled new connectivity vectors frommultivariate gaussian
distributions defined by these mean and covariance matrices and
concatenated across populations, effectively destroying each neuron
identity but keeping the overall correlations. Finally, we evaluated the
performance of networks with the sampled connectivity.

One solution for context-dependent, go/no-go tasks. We found out
that rank-one connectivity with 3 populations solves our task. Neurons
in all populations are selective to all external stimuli, but they differ in
which stimulus is integrated into the latent variable (or output axis).

While the first 2 populations select 1 stimulus (i.e. σð1Þ
nIA

>0,σð2Þ
nIB

>0) and

should ignore the other (i.e. σð1Þ
nIB

=0,σð2Þ
nIA

=0), the third population

must have negative feedback (σð3Þ
nm <0), which we found out to be

essential to implement the no-go condition (κ = 0)18. See Fig. S2e,f for
the dynamics of this model.

A1-PFC network. In contrast to the A1 RNN, in which we trained the
connectivity vectors, we directly engineered the A1-PFC RNN. Specifi-
cally, we adapted the low-rank framework to describe across-area
dynamics. To model multi-area interactions, we represent the con-
nectivity matrix J in terms of a block structure:

J =
A=mA � nA JP!A = I

P!A � nP!A

JA!P = I
A!P � nA!P P =mP � nP

" #
ð6Þ

Recurrent connectivity A and P populates the diagonal and feedfor-
ward JA→P and feedback JA→P the off diagonal. Our key assumption is
that each block has a rank-one structure, and is thus defined by the
outer product of two connectivity vectors (e.g. A =mA⊗nA). Under
this constraint, we can separate the recurrent, feedforward, and
feedback inputs in a compact formfor thedynamicswithin A1 andPFC:

_xi = � xi +
mA

i

NA

X
j2A

nA
j ϕðxjÞ+

IP!A
i

NP

X
k2P

nP!A
k ϕðxkÞ+

XNA
input

l

uA
l ðtÞIli , i 2 A:

ð7Þ

_xi = � xi +
mP

i

NP

X
j2P

nP
j ϕðxjÞ+

IA!P
i

NA

X
k2A

nA!P
k ϕðxkÞ+

XNP
input

l

uP
l ðtÞIli , i 2 P:

ð8Þ

For the purpose of this study, we assume that context information
(ux) was delivered only to PFC along Ix. Moreover, to ensure a rank-one
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feedback communication subspace from PFC to A1, we assume A1
receives an additional constant input Ik, the details of which are
described at the end of this section. In turn, stimuli (uA, uB) are
delivered exclusively to A1. Thus, NA

input = 2 and NP
input = 1. Under these

assumptions, in the limit of N→∞ and assuming again P populations,
the dynamics of the high-dimensional A1-PFC network can be reduced
to the dynamics of the following latent variables in A1:

_κA = � κA +
XP
p

~σðpÞ
nAmAκA +

XNinput

l

~σðpÞ
nAIl

vl + ~σðpÞ
nAIP!AvP!A

2
4

3
5+ ~σnAIk ð9Þ

_vP!A = � vP!A +
XP
p

~σðpÞ
mPnP!AκP ð10Þ

And in PFC:

_κP = � κP +
XP
p

~σðpÞ
nPmPκP + ~σðpÞ

nP Ix vx + ~σðpÞ
nP IA!P vA!P

h i
ð11Þ

_vA!P = � vA!P +
XP
p

~σðpÞ
mAnA!PκA ð12Þ

In addition to the internal latent variables κA, κP, there are now two extra
latent variables corresponding to the communication subspace
vA→P, vP→A. The key new elements in this formulation are the overlaps
(e.g. σnA!Pm) between the output vectorswithin an area, such asm in A1,
and the corresponding input-selection vectors populating the off
diagonal of J, such as nA→P. Reminiscent of the case for within area
dynamics18–20, non-negative overlap leads to the communication of the
corresponding latent variables. Generally speaking, there is oneof these
overlaps for each within-area variable. In the simplified case addressed
here, we set all the overlaps to zero, except for those related to the
within-area latent variables. For simplicity, we set nA→P =m and nP→A =mP,
ensuring both across-area overlaps were non-zero. The overlaps within
A1were set similar to the trainedRNN, andwhenmodulated by context,
this network integrated the relevant stimuli along the output axis m
with the samemechanism as the trained network. In turn, the geometry
of PFCwas set so it integrated its inputs (i.e. context) into oneof the two
fixed points. Specifically, we set σmn>0 and σnI >0.

To encode context through a one-dimensional communication
subspace in the feedback direction, we introduced a bias term. This
bias term, which was fixed and present in all trials and timepoints was
defined as Ik =

IctxA + IctxB
2 . This way the context value (-1 or 1) was pro-

jected along one dimension, which we conveniently defined as
Ix =

IctxA�IctxB
2 , making the net input IctxA when context = 1 and IctxB when

context = −1.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data are currently available at crcns.org/data-sets/pfc/pfc-1.

Code availability
The code necessary to replicate all figures are available at https://
github.com/jmourabarbosa/multi-area-ctx.
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