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ABSTRACT
Background  The predictive efficacy of current biomarker 
of immune checkpoint inhibitors (ICIs) is not sufficient. 
This study investigated the causality between radiomic 
biomarkers and immunotherapy response status in 
patients with stage IB–IV non-small cell lung cancer 
(NSCLC), including its biological context for ICIs treatment 
response prediction.
Methods  CT images from 319 patients with pretreatment 
NSCLC receiving immunotherapy between January 2015 and 
November 2021 were retrospectively collected and composed 
a discovery (n=214), independent validation (n=54), and 
external test cohort (n=51). A set of 851 features was extracted 
from tumorous and peritumoral volumes of interest (VOIs). 
The reference standard is the durable clinical benefit (DCB, 
sustained disease control for more than 6 months assessed 
via radiological evaluation). The predictive value of combined 
radiomic signature (CRS) for pathological response was 
subsequently assessed in another cohort of 98 patients with 
resectable NSCLC receiving ICIs preoperatively. The association 
between radiomic features and tumor immune landscape 
on the online data set (n=60) was also examined. A model 
combining clinical predictor and radiomic signatures was 
constructed to improve performance further.
Results  CRS discriminated DCB and non-DCB patients well 
in the training and validation cohorts with an area under the 
curve (AUC) of 0.82, 95% CI: 0.75 to 0.88, and 0.75, 95% CI: 
0.64 to 0.87, respectively. In this study, the predictive value 
of CRS was better than programmed cell death ligand-1 
(PD-L1) expression (AUC of PD-L1 subset: 0.59, 95% CI: 0.50 
to 0.69) or clinical model (AUC: 0.66, 95% CI: 0.51 to 0.81). 
After combining the clinical signature with CRS, the predictive 
performance improved further with an AUC of 0.837, 0.790 
and 0.781 in training, validation and D2 cohorts, respectively. 
When predicting pathological response, CRS divided patients 
into a major pathological response (MPR) and non-MPR group 
(AUC: 0.76, 95% CI: 0.67 to 0.81). Moreover, CRS showed a 
promising stratification ability on overall survival (HR: 0.49, 
95% CI: 0.27 to 0.89; p=0.020) and progression-free survival 
(HR: 0.43, 95% CI: 0.26 to 0.74; p=0.002).
Conclusion  By analyzing both tumorous and peritumoral 
regions of CT images in a radiomic strategy, we developed 

a non-invasive biomarker for distinguishing responders 
of ICIs therapy and stratifying their survival outcome 
efficiently, which may support the clinical decisions on the 
use of ICIs in advanced as well as patients with resectable 
NSCLC.

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Current biomarkers for immunotherapy such as 
programmed cell death ligand-1 rely on invasive 
examination, and their accuracy is limited. Previous 
studies reported CT-based machine learning strat-
egy could predict immunotherapy response for 
patients with advanced non-small cell lung cancer 
(NSCLC). However, the comparison of the peritumor-
al signatures and extensive application for earlier 
stage patients have not been explored.

WHAT THIS STUDY ADDS
	⇒ This multicentered study developed the radiomic 
model, an efficient and non-invasive method, for 
immunotherapy response prediction for patients 
with stage IB–IV NSCLC. This is the first study to 
explore the application of radiomic signature for im-
mune checkpoint inhibitors (ICIs) response predic-
tion in patients with both advanced and earlier stage 
NSCLC, from which the importance of peritumoral 
features is highlighted.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ This study provides insights into the application of 
radiomic biomarker from advanced to earlier stage 
NSCLC. It confirms the potential of radiomics to 
identify patients with NSCLC most likely to respond 
to ICIs-based therapies and underlying prognostic 
value. The radiomics model was not influenced by 
tumor volume or pulmonary lesion choice strategy 
and could be widely used to aid clinicians in making 
decisions of ICIs-based therapies for patients with 
NSCLC.
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INTRODUCTION
Immune checkpoint inhibitors (ICIs) for programmed 
cell death protein 1 (PD-1)/programmed cell death 
ligand-1 (PD-L1) have become the first-line stan-
dard therapy for advanced non-small cell lung cancer 
(NSCLC).1 Inspiringly, PD-1-based neoadjuvant therapy 
has been approved for patients with resectable NSCLC.2 
Abnormalities in the immune checkpoint pathway 
prompt tumor cells to escape immune surveillance and 
proliferate continuously. ICIs can reactivate the immunity 
to cancer cells and have been adopted in the therapy of 
malignant tumors because of their remarkable tumor-
killing effects and sustaining clinical benefits.3 Unfortu-
nately, the responder rate is heterogeneous in current 
clinical trials of immunotherapy, with 20–50%4–6 among 
advanced NSCLC and 24%7 in resectable NSCLC.

To filter potential responders, improve clinical outcome, 
save medical cost and provide insight into tumor immune 
evasion mechanisms, it is imperative to develop predic-
tive biomarker for immunotherapy response to stratify 
patients of different clinical outcomes. For this reason, 
many biomarkers have been explored, such as PD-L1 
expression,8 tumor mutational load9 and tumor infiltrate 
immune cells.10 However, due to intra-patient tumor 
heterogeneity and the sampling bias brought by intrinsic 
tumor heterogeneity, they are still insufficient to provide 
promising predictive efficiency.11

Radiomics is the science which converts medical images 
into high-dimensional minable data and analyzes them 
by applying bioinformatics algorithms.12 It has several 
advantages, including (1) non-invasive; (2) standard 
image acquisition widely adopted in clinical imaging; and 
(3) less sampling bias for acquisition of information for 
the whole tumor. Some investigators have revealed that 
the radiomic models could effectively identify patients 
with advanced NSCLC sensitive to immunotherapy and 
implied the associations between radiomic features and 
immunotherapy response.13–15 However, limited by the 
therapy background of advanced NSCLC, practically no 
routine pathological response could be evaluated and 
thereby pathological validation was usually absent in 
their findings. In addition, tumor immune microenviron-
ment played a crucial role in the cause of ICIs treatment 
failure,16 thereby the radiomic characteristics of peritu-
moral area may reveal some patterns of microenviron-
ment and reflect the local immune response. In many 
cases, angiogenesis can be observed near the tumor due 
to a pathological response to hypoxia.17 The disorgani-
zation of blood vessels around the tumor will generate 
anoxic areas in the tumor microenvironment, thus 
reducing the efficacy of drugs.18 Therefore, peritumoral 
pulmonary parenchyma probably might give substantial 
value for the pretreatment prediction of immunotherapy 
response in radiomic analysis, which was often ignored in 
previous studies.19–22

In this work, we investigated the correlation between 
response of immunotherapy and radiomic features and 
constructed series radiomic models based on different 

scales of peritumoral and tumorous area. We sought to 
explore whether radiomic features of both tumorous and 
peritumoral areas could identify the responders of IB–IV 
stage NSCLC from ICIs therapy. The radiomic signatures 
were subsequently validated in the external validation 
cohort and pathological validation cohort. The associ-
ations of these radiomic features with overall survival 
(OS) and disease-free survival in patients with advanced 
NSCLC were evaluated. Finally, the utility of the model 
coupled with clinical variables and the biological basis of 
radiomic signature were explored.

MATERIALS AND METHODS
Data sets and patient enrollment
In this multicohort study, five separated cohorts of 
patients diagnosed with NSCLC were retrospectively 
included (online supplemental figure S1). The discovery 
data set D1, the test data set D2 and pathological valida-
tion data set D4 included patients receiving ICIs therapy 
in Guangdong Provincial People’s Hospital (GPPH) and 
external validation data set D3 was from Jiangxi Cancer 
Hospital (JXCH); and the bio-validation data set D5 was 
downloaded from the databases of The Cancer Imaging 
Archive (TCIA) and The Cancer Genome Atlas (TCGA).

To develop the discovery data set D1, we identified 516 
patients with advanced NSCLC admitted between January 
2015 and June 2020 at GPPH, which were treated using 
PD-L1 or PD-1 single agent, or the combination of ICIs 
with platin-based regimen based on patient eligibility 
(figure  1). The major inclusion criteria were as follows 
(online supplemental appendix S1 for details): (1) above 
18 years old; (2) patients receiving PD-1/PD-L1 blockade 
and had pathologically confirmed NSCLC (stage III and 
IV); (3) the data of chest thin-slice (≤5 mm) CT within 30 
days before the first dose of immunotherapy were avail-
able. Patients with poor CT quality or whose pulmonary 
lesions were poorly discriminated from other lesions or 
adjacent tissues were excluded. Clinical statistics were 
obtained through manual abstraction from electronic 
medical records and patients whose follow-up period less 
than 6 months were excluded. Finally, 214 patients were 
included and randomly divided into training (n=149) 
and internal validation (n=65) cohorts for developing 
and validating the radiomic signature, respectively.

Four independent data sets were used to validate the 
radiomic signature. The same inclusion and exclusion 
criteria (details seen in online supplemental appendix S1) 
were applied to test data set D2 and external validation 
data set D3, retrospectively enrolling 54 patients in GPPH 
during July 2020 and June 2021, and 51 patients in JXCH 
during March 2019 and November 2021 respectively.

The pathological validation data set D4 consisted of 98 
patients with stage IB–III NSCLC receiving radical resec-
tion of lung carcinoma after ICIs therapy between May 
2019 and October 2021 at GPPH. This data set was to eval-
uate the prediction potential of the radiomic signature 
for the pathological response from ICIs and explore the 
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Figure 1  The patient eligibility of entire cohorts. The training cohort comprising clinical data and the corresponding extracted 
imaging data of the retrospective patients were used to train the clinics-radiomics signature and OS Cox models, which were 
further validated using an external validation cohort from Jiangxi Cancer Hospital enrolled according to the inclusion and 
exclusion criteria. DCB, durable clinical benefit; GPPH, Guangdong Provincial People’s Hospital; ICIs, immune checkpoint 
inhibitors; JXCH, Jiangxi Cancer Hospital; MPR, major pathological response; NDB, non-durable clinical benefit; NSCLC, non-
small cell lung cancer; OS, overall survival.
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Figure 2  The workflow for the development of the integrated model to predict the responders from patients with NSCLC. 
AUC, area under the curve; BMI, body mass index; CRS, combined radiomic signature; DCA, decision curve analysis; ECOG 
PS, Eastern Cooperative Oncology Group performance status; ICC, intraclass correlation coefficient; ICIs, immune checkpoint 
inhibitors; K-M, Kaplan-Meier; NLR, neutrophil-to-lymphocyte ratio; NLRpost, NLR after first cycle of therapy; RAD-CLi, 
radiomic-clinical prediction model; ROC, receiver-operator characteristic; TCGA, The Cancer Genome Atlas; TNM, tumor-node-
metastasis.
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concordance of the radiologic response with pathological 
response.

The biological validation data set D5 was extracted 
from the TCIA with available CT image data and corre-
sponding transcriptomic data from TCGA. TCGA-NSCLC 
data set has 66 samples with matching pretreatment CT 
imaging and transcriptomic data, of which 6 samples were 
excluded due to unsatisfactory image quality. This TCGA-
NSCLC data set with 60 patients was applied to validate 
the concordance between the radiomic signature and 
tumor microenvironmental characteristics.

Clinical endpoints evaluation
The primary predictor was the response status, durable 
clinical benefit (DCB) from immunotherapy, defined as 
partial response (PR) or sustained disease (SD) stabili-
zation lasting longer than 6 months based on Response 
Evaluation Criteria in Solid Tumor (RECIST) (V.1.1) 
criteria. Besides, OS was the secondary endpoint for long-
term efficacy, defined as from initiation of therapy to 
the date of last follow-up or date of death. The response 
outcome for the pathological validation data set is major 
pathological response23 (MPR) defined as less than 10% 
of a viable tumor in the primary tumor bed, and no viable 
tumor was observed in both tumor bed and lymph nodes 
were defined as a pathologic complete response (pCR). 
And the preoperative objective response rate (ORR) 
according to radiologic assessment adhering to RECIST 
(V.1.1) criteria was also recorded for further evaluation. 
Besides, the clinical stage of carcinoma was assessed based 
on the eighth TNM (tumor-node-metastasis) system and 
any discrepancy about the diagnosis of an illness was 
settled by consensus through discussion.

CT image acquisition and radiomic features extraction
Through the Picture Archiving and Communication 
System, contrast-enhanced thoracic CT completed within 
1 month of the initiation of ICIs therapy were obtained 
from two medical centers (details seen in online supple-
mental appendix S3). After quality and timing verifica-
tion, these slices were segmented semi-manually with 3D 
Slicer (http://www.slicer.org) software by two experi-
enced radiologists, SW (with 14 years of experience) and 
GW (with 18 years of experience) who were blind to the 
response status. After applying “draw”, “level tracing” and 
“smoothing” methods to outline the primary tumors in 
three orthogonally oriented planes, the three-dimensional 
(3D) volumes of interest (VOIs) of tumors were gener-
ated (details seen in online supplemental appendix S4). 
Radiologist LL (with 23 years of experience) assessed all 
tumor segmentations. Any disagreements were resolved 
by discussions between the three radiologists mentioned 
and three thoracic surgeons (QG, D-KZ, and HY).

The primary or largest pulmonary lesion was defined as the 
target lesion and 851 radiomic features were extracted from 
both VOIs of the tumor and peritumoral regions by applying 
the SlicerRadiomics package on the 3D Slicer platform. The 
effect of different lesion choice strategy was evaluated (details 

seen in online supplemental appendix S7.3). A two-way 
random intraclass correlation coefficient (ICC) model was 
applied to evaluate the impact of interobserver variability of 
the radiomic features between two radiologists (SW and GW) 
image segmentation and feature extraction process. Peritu-
moral regions were created by automated 20 mm dilation of 
tumor region, resulting in four annular rings of 5 mm each 
(figure 2).

Radiomic features selection and radiomic signatures building
To guarantee the stability of the signature, non-reproducible 
or non-robust radiomic features were filtered on the Refer-
ence Image Database to Evaluate Therapy Response24 
(RIDER, details seen in online supplemental appendix S5) 
data set using the ICC test. After filtered the highly-correlated 
features via the Spearman correlation analysis, the least 
absolute shrinkage and selection operator (LASSO) and a 
10-fold cross-validation method with optimal λ were applied 
to filter out redundant features further. We applied LASSO 
and stepwise logistic regression as definite classifier because 
this configuration reached the highest performance with the 
least amount of overfitting (online supplemental appendix 
S8 and table S7). To predict response status, radiomic signa-
tures were built based on predictive significant features of 
different regions of peritumoral areas using a binary stepwise 
logistic regression method. The performance and predictive 
efficacy of radiomic signatures were compared. Independent 
validations of the optimal radiomic signature were applied 
for the optimal radiomic signature in data sets D2 and D3 
respectively.

Survival analysis
We performed log-rank statistical tests and Cox proportional 
hazard model analysis to evaluate the univariable discrimina-
tive ability of the variables and estimate the prognostic value 
of radiomic signature on OS. The discriminative ability was 
compared with traditional biomarkers like PD-L1 expression 
in the PD-L1 expression available subset (n=138) derived 
from data set D1 and D2, where the independent prognostic 
advantage of the radiomic signature was evaluated. The effect 
of tumor volume on combined radiomic signature (CRS and 
long-term survival was also evaluated (online supplemental 
appendix S6).

The association between features of radiomic signature on 
the molecular pathway
The R package “limma” was applied to identify differentially 
expressed genes (DEGs) between the high-risk group and 
low-risk group based on the radiomic signature. The func-
tional annotation was analyzed using the Gene Ontology 
(GO) functional analysis while the pathway enrichment anal-
ysis of DEGs were investigated through the Kyoto Encyclo-
pedia of Genes and Genomes pathway analysis. In terms of 
the potential functional biological pathway between the two 
groups, Gene Set Enrichment Analysis (GSEA) was applied 
with annotated gene collection “​c2.​cp.​v2022.​1.​Hs.​symbols.​
gmt” for canonical biological pathways and “​c7.​immunesigdb.​
v2022.​1.​Hs.​symbols.​gmt” for immunologic signature genes 

https://dx.doi.org/10.1136/jitc-2023-007369
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through the Molecular Signatures Database (http://www.​
gsea-msigdb.org/gsea/msigdb/). A gene set of 28 immune 
cells were imported to a single sample GSEA to quantify the 
infiltration level of immune cells in the tumor microenviron-
ment by R package “GSVA”. Tumor Immune Dysfunction 
and Exclusion (TIDE, http://tide.dfci.harvard.edu/) score 
was estimated, indicating the potential condition of tumor 
immune exclusion and dysfunction. Responders of immune 

checkpoint inhibitors could be predicted by the TIDE algo-
rithm as well. Correlations of radiomic signature and tumor 
immune landscape were calculated by spearmen correlation 
analysis. All the analysis tasks and visualization were processed 
in R software.

Development of a radiomic-clinical prediction model
Based on clinical information (gender, histologic type, 
clinical stage, etc) collected from the subset of patients, we 
developed a clinical signature after recognizing significant 
risk variables via stepwise regression method. The radiomic 
signature and clinical signature were combined to form a 
nomogram using logistic regression based on the D1 set. To 
assess the generalization ability of radiomic-clinical predic-
tion model (RADCli), independent validation was applied to 
data sets D2 and D3.

Statistical analysis
P value<0.05 was considered statistically significant in all two-
tailed tests. All statistical analyses were performed using R 
Project V.4.1.3 (http://www.r-project.org/) and SPSS V.23.0 
(IBM, Armonk, New York, USA). For categorical data, we 
adopted Fisher’s exact test, Mann-rank Whitney’s sum test, 
and analysis of variance test for continuous variables and 
differences for the clinical covariates between responder 
and non-responders were evaluated. Model efficiencies 
were evaluated quantitatively using the area under the 
receiver-operator characteristic where sensitivity, specificity, 
and accuracy were compared among every signature. The 
Hosmer-Lemeshow test was used to assess model goodness of 
fit, drawing calibration curves. In addition, a two-way random 
ICC test was applied to assess the agreement between two 
times VOIs from the RIDER database and features whose 
ICC larger than 0.75 remained as stable features. We used 
the Akaike information criterion to select the optimal signa-
ture. The clinical utility was evaluated on the training and 
validation cohort using DCA.25 The R packages applied in 
this investigation are summarized in online supplemental 
appendix S2.

RESULT
Clinicopathologic characteristics of cohorts
A total of 744 patients with NSCLC receiving ICIs therapy 
were identified and 409 patients were eligible for analysis 
(online supplemental figure S1). The number of partici-
pants in the training, validation, test, external validation, 
and pathological validation cohorts were 149, 65, 54, 51, 
and 98, respectively. The baseline characteristics of the 
patients in this investigation are summarized in table  1 
and online supplemental table S1. None of these char-
acteristics differed significantly between the training 
and validation cohorts (p>0.05). The advanced NSCLC 
cohorts (D1, D2, D3), comprising 319 patients in total, 
included 262 (82.1%) men and 214 adenocarcinomas 
(67.1%), with a mean age of 59.3 years. Most of the partic-
ipants received the anti-PD-1-based-regime (87.8%) and 
about one-half showed durable clinical benefit (52.4%). 

Table 1  Clinicopathological characteristics of the discovery 
data set

Non-
responder 
(N=113)

Responder 
(N=101) P value

Gender

 � Male 85 (75.2%) 91 (90.1%) 0.007

 � Female 28 (24.8%) 10 (9.9%)

Age

 � Mean (SD) 58.7 (12.5) 57.5 (14.6) 0.543

BMI

 � Mean (SD) 21.4 (3.01) 21.8 (2.95) 0.430

 � Missing 3 (2.7%) 1 (1.0%)

ECOG

 � 0–1 99 (87.6%) 96 (95.0%) 0.08984

 � ≥2 14 (12.4%) 5 (5.0%)

Smoking status

 � Never smoked 63 (55.8%) 36 (35.6%) 0.002

 � Current or former 
smoker

46 (40.7%) 63 (62.4%)

 � Missing 4 (3.5%) 2 (2.0%)

Smoking package year

 � Mean (SD) 15.0 (22.3) 18.9 (24.4) 0.226

 � Missing 1 (0.9%) 1 (1.0%)

Tumor histologic type

 � LUAD 86 (76.1%) 79 (78.2%) 0.747

 � LUSC 27 (23.9%) 22 (21.8%)

Pathological stage

 � III 9 (8.0%) 12 (11.9%) 0.004

 � IVA 30 (26.5%) 47 (46.5%)

 � IVB 74 (65.5%) 42 (41.6%)

LOT

 � First line 23 (20.4%) 42 (41.6%) < 0.001

 � Second line or more 90 (79.6%) 59 (58.4%)

ICIs

 � Anti PD-1 98 (86.7%) 80 (79.2%) 0.149

 � Anti PD-L1 15 (13.3%) 21 (20.8%)

BMI, body mass index; ECOG, Eastern Cooperative Oncology 
Group; ICIs, immune checkpoint inhibitors; LOT, line of therapy; 
LUAD, lung adenocarcinoma; LUSC, lung squamous cell 
carcinoma; PD-1, programmed death-1; PD-L1, programmed cell 
death-ligand 1.

http://www.gsea-msigdb.org/gsea/msigdb/
http://www.gsea-msigdb.org/gsea/msigdb/
http://tide.dfci.harvard.edu/
http://www.r-project.org/
https://dx.doi.org/10.1136/jitc-2023-007369
https://dx.doi.org/10.1136/jitc-2023-007369
https://dx.doi.org/10.1136/jitc-2023-007369
https://dx.doi.org/10.1136/jitc-2023-007369
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Table 2  Clinicopathological characteristics of the surgical data set D4

Non-MPR (N=41) MPR (N=57) Total (N=98) P value

Gender

 � Male 33 (80.5%) 52 (91.2%) 85 (86.7%) 0.141

 � Female 8 (19.5%) 5 (8.8%) 13 (13.3%)

Age

 � Mean (SD) 58.4 (9.85) 60.7 (9.39) 59.7 (9.60) 0.249

BMI

 � Mean (SD) 23.2 (2.88) 22.6 (2.78) 22.9 (2.82) 0.363

 � Missing 1 (2.4%) 2 (3.5%) 3 (3.1%)

Smoking

 � Never smoked 26 (63.4%) 27 (47.4%) 53 (54.1%) 0.151

 � Current or former smoker 15 (36.6%) 30 (52.6%) 45 (45.9%)

ECOG

 � 0 36 (87.8%) 55 (96.5%) 91 (92.9%) 0.126

 � 1 5 (12.2%) 2 (3.5%) 7 (7.1%)

Pathological type

 � LUAD 20 (48.8%) 11 (19.3%) 31 (31.6%) 0.002

 � LUSC 17 (41.5%) 44 (77.2%) 61 (62.2%)

 � NOS 4 (9.8%) 2 (3.5%) 6 (6.1%)

T stage

 � T1 6 (14.6%) 5 (8.8%) 11 (11.2%) 0.661

 � T2 17 (41.5%) 21 (36.8%) 38 (38.8%)

 � T3 11 (26.8%) 17 (29.8%) 28 (28.6%)

 � T4 7 (17.1%) 14 (24.6%) 21 (21.4%)

N stage

 � N0 7 (17.1%) 13 (22.8%) 20 (20.4%) 0.598

 � N1 13 (31.7%) 22 (38.6%) 35 (35.7%)

 � N2 19 (46.3%) 21 (36.8%) 40 (40.8%)

 � N3 2 (4.9%) 1 (1.8%) 3 (3.1%)

M stage

 � M0 40 (97.6%) 56 (98.2%) 96 (98.0%) 1.000

 � M1 1 (2.4%) 1 (1.8%) 2 (2.0%)

Clinical stage

 � I 1 (2.4%) 4 (7.0%) 5 (5.1%) 0.706

 � II 8 (19.5%) 14 (24.6%) 22 (22.4%)

 � III 31 (75.6%) 38 (66.7%) 69 (70.4%)

 � IV 1 (2.4%) 1 (1.8%) 2 (2.0%)

PD-L1 TPS

 � <1% 5 (12.2%) 8 (14.0%) 13 (13.3%) 0.968

 � 1–49% 12 (29.3%) 14 (24.6%) 26 (26.5%)

 � ≥50% 9 (22.0%) 13 (22.8%) 22 (22.4%)

 � Could not be evaluated 15 (36.6%) 22 (38.6%) 37 (37.8%)

ICIs

 � Camrelizumab 2 (4.9%) 6 (10.5%) 8 (8.2%) 0.103

 � Durvalumab 2 (4.9%) 0 (0%) 2 (2.0%)

 � Nivolumab 26 (63.4%) 28 (49.1%) 54 (55.1%)

Continued
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An unbalanced baseline characteristic was observed 
between D1 and D2 cohorts due to an independent 
cohort design. In the discovery data set (table 1), gender, 
clinical stage, smoking status, lines of therapy (LOT), 
and neutrophil-to-lymphocyte ratio after the first cycle of 
therapy (NLRpost) were identified as significant predic-
tors for DCB (p<0.05).

In the pathological validation data set (table 2), most of 
them were men (86.7%) and non-smokers (54.1%), with 
a mean age of 59.7 years. The majority of histological type 
was squamous carcinoma (62.2%) and the predominant 
pathological stage was stage III (70.4%). Most partici-
pants received the carboplatin-based regime (81.6%) and 
nivolumab is the majority for ICIs choice (55.1%).

Radiomic signature construction and validation
There were 4255 features extracted from five VOIs and 3630 
features remaining with ICC>0.75 after the stability test. 
Next, they were processed by the LASSO algorithm to filter 
redundant and non-predictive features (online supplemental 
figure S2). Five radiomic signatures extracted from tumorous 
and four peritumoral areas, respectively, were constructed 
based on a backward stepwise logistic regression algorithm. 
The ability to clarify responders and non-responders of these 
four peritumoral radiomic predictors were compared in the 
discovery cohort (figure 3A; online supplemental table S2). 
The predictor of 20 mm peritumoral area outperformed 
others with superior goodness of fit (online supplemental 
table S3) and generalizability in internal validation cohort 
in accordance with the calibration curve analysis (figure 3C; 
online supplemental figure S3). In addition, combined 
with tumorous radiomic features, the CRS showed prefer-
able prediction efficacy and robustness in D2 (area under 
the curve (AUC)=0.750, 95% CI: 0.616 to 0.8848) and D3 
(AUC=0.764, 95% CI: 0.6327 to 0.8951) (figure 3B). A total 
of nine radiomic features selected for the radiomic score 

formula was displayed as in table  3. All radiomic features 
included exhibited good to excellent inter-rater reliability 
(details seen in online supplemental appendix S7.5 and table 
S8).

In DCA curve analysis we found that the CRS model would 
benefit in identifying responders and non-responders at most 
given threshold probability (figure 3D). Besides, both CRS 
and RADCli always showed more net-benefit than the clinical 
signature in predicting the probability of DCB. In data set 
D4, MPR recorded are not always consistent with ORR in D4 
and 17 of 43 participants with radiological PR or SD did not 
achieve MPR. The ability of CRS to predict MPR to immuno-
therapy was shown to have an AUC of 0.763 (95% CI: 0.666 
to 0.861; figure 3F) and the ability for ORR and pCR stratifi-
cation were relatively ordinary with AUC of 0.626 and 0.649, 
respectively (figure 3F).

Construction of clinical signature
Clinical variables including gender, clinical stage, 
smoking status, LOT and, NLRpost were significantly asso-
ciated with patients’ response status in univariate analysis 
(p<0.05; online supplemental table S5). These five char-
acteristics were introduced to develop a clinical signa-
ture via stepwise regression and performed with AUC of 
0.76 (95% CI: 0.674 to 0.846) in the training cohort and 
0.66 (95% CI: 0.509 to 0.811) in the validation cohort in 
receiver-operator characteristic (ROC) analysis (online 
supplemental figure S4). Despite the clinical signature 
showing acceptable goodness of fit in both the training 
cohort (p=0.121) and validation cohort (p=0.153), it was 
still a limited predictor due to a relatively low accuracy of 
prediction.

Nomogram RADCli construction and validation
To improve the performance of predictive signatures 
further and develop a clinically adaptable tool for the 

Non-MPR (N=41) MPR (N=57) Total (N=98) P value

 � Pembrolizumab 5 (12.2%) 13 (22.8%) 18 (18.4%)

 � Sintilimab 3 (7.3%) 1 (1.8%) 4 (4.1%)

 � Tislelizumab 3 (7.3%) 9 (15.8%) 12 (12.2%)

Course of preoperative therapy

 � Two or less 6 (14.6%) 8 (14.0%) 14 (14.3%) 0.650

 � Three 31 (75.6%) 39 (68.4%) 70 (71.4%)

 � Four or more 4 (9.8%) 10 (17.5%) 14 (14.3%)

Type of platinum therapy

 � Not platinum-based regime 2 (4.9%) 4 (7.0%) 6 (6.1%) 0.888

 � Carboplatin 33 (80.5%) 47 (82.5%) 80 (81.6%)

 � Cisplatin 3 (7.3%) 4 (7.0%) 7 (7.1%)

 � Lobaplatin 3 (7.3%) 2 (3.5%) 5 (5.1%)

BMI, body mass index; ECOG, Eastern Cooperative Oncology Group; ICIs, immune checkpoint inhibitors; LUAD, lung adenocarcinoma; 
LUSC, lung squamous cell carcinoma; MPR, major pathological response; NOS, not otherwise specified; PD-L1, programmed cell death-
ligand 1; TPS, tumor proportion score.

Table 2  Continued

https://dx.doi.org/10.1136/jitc-2023-007369
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https://dx.doi.org/10.1136/jitc-2023-007369
https://dx.doi.org/10.1136/jitc-2023-007369
https://dx.doi.org/10.1136/jitc-2023-007369
https://dx.doi.org/10.1136/jitc-2023-007369
https://dx.doi.org/10.1136/jitc-2023-007369


9Wu S, et al. J Immunother Cancer 2023;11:e007369. doi:10.1136/jitc-2023-007369

Open access

identification of responders from ICIs therapy, we estab-
lished a nomogram RADCli which included both radiomic 
and clinical signatures (figure 4). In multivariate logistic 
regression analysis, both radiomic (p<0.001) and clin-
ical signatures (p=0.001) could serve as significant than 
any other signatures independent predictor. RADCli 
displayed a superior predictive performance (figure 3E), 
with an AUC of 0.837 (95% CI: 0.768 to 0.907) in the 

training cohort, 0.790 (95% CI: 0.669 to 0.911) in the 
internal validation cohort and 0.781 (95% CI: 0.651 to 
0.911) in D2 data set (online supplemental table S4). In 
both training and validation cohorts, the RADCli model 
showed good agreement with the actual observations 
and classifications (online supplemental figure S5). As a 
result of the Hosmer-Lemeshow test, neither the training 
cohort (p=0.436) nor the validation cohort (p=0.826) 

Figure 3  Performance of clinical and radiomic signatures for predicting the responders to chemoimmunotherapy. (A) ROC of 
radiomic signatures in internal validation cohort. (B) ROC of CRS in different cohorts. (C) Calibration curve of CRS. (D) Decision 
curve analysis for the RADCli nomogram (red), CRS signature (blue), and clinical model (green). The analysis was performed 
across the most range of threshold probabilities at which a patient would be selected to receive immunotherapy. The y-axis 
indicates the net benefit; the x-axis indicates threshold probability, the value of the lowest suspected probability of DCB where 
the physician still may advise the patient to receive immunotherapy after balancing the benefit and harmfulness. The gray line 
represents the assumption that all patients receive immunotherapy. The black dotted line represents the hypothesis that no 
patient received immunotherapy. (E) ROC of RADCli nomogram (red), CRS model (green), and clinical model (blue). (F) ROC 
of CRS for ORR/pCR/MPR prediction in the surgical validation cohort. AUC, area under the curve; CRS, combined radiomic 
signature; DCB, durable clinical benefit; ICIs, immune checkpoint inhibitors; MPR, major pathological response; ORR, objective 
response rate; pCR, pathologic complete response; RADCli, radiomic-clinical nomogram; ROC, receiver-operator characteristic.

Table 3  The features list of radiomic signature and the coefficients, respectively

Feature Location Feature name Coefficients

(Intercept) 0.2656

T710 Tumorous wavelet-HHL_glrlm-LowGrayLevelEmphasis 0.2026

T55 Tumorous wavelet-HHL_glrlm-LowGrayLevelRunEmphasis 0.1385

A457 Peritumoral 0–5 mm wavelet-LLH_firstorder-Skewness 0.7839

A730 Peritumoral 0–5 mm wavelet-HHL_glcm-Imc2 0.7238

A765 Peritumoral 0–5 mm wavelet-HHL_glrlm-LongRunLowGrayLevelEmphasis 0.978

X2A194 Peritumoral 5–10 mm wavelet-HLL_firstorder-Mean 0.5813

X2A752 Peritumoral 5–10 mm wavelet-HHL_firstorder-Mean 0.7193

X3A287 Peritumoral 10–15 mm wavelet-LHL_firstorder-Mean 0.4865

X4A193 Peritumoral 15–20 mm wavelet-LHL_firstorder-Kurtosis 0.3795

https://dx.doi.org/10.1136/jitc-2023-007369
https://dx.doi.org/10.1136/jitc-2023-007369
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achieved statistical significance. In DCA analysis, we 
calculated the net benefit of our models and it indicated 
that both RADCli and CRS had a higher net benefit in 
predicting patients for receiving PD-L1/PD-1 treatment 
across most threshold probability values (details seen in 
online supplemental appendix S7.2).

Evaluation of radiomic and clinical characteristics on long-
term survival
The median PFS and OS of the D1 set are 192 days 
(95% CI: 143 to 245 days) and 500 days (95% CI: 390 
to 520 days) with an 849-day median follow-up. The two 
groups classified by CRS showed significantly different 
survival outcomes in discovery data set D1(figure 5A,B) 
and data set D2(figure  5C,D). The median PFS of 
outcomes of the high-risk and low-risk groups are 87 and 
313 days, respectively. And the median OS of outcomes 
of the high-risk and low-risk groups are 340 and 796 
days, respectively. We conducted a univariate analysis for 
every clinical variable for survival analysis (online supple-
mental table S4). We found CRS showed a promising 
stratification ability on OS (HR: 0.49, 95%CI: 0.27-0.89; 
p=0.020) and PFS (HR: 0.43, 95%CI: 0.26-0.74; p=0.002). 
LOT, gender and NLRpost could stratify both PFS and 
OS (p<0.05) alone, respectively. And we combine each 
characteristic with CRS for a two-variate analysis on OS 
and PFS separately based on Cox proportional hazard 
model (figure  6). Interestingly, only the combination 
of LOT and CRS could improve stratification of survival 
outcome, and both of them remained statistically signif-
icant for both OS (RAD: p=0.029; LOT: p<0.01) and 
PFS (RAD: p<0.01; LOT: p<0.01). Gender did not have 
significant performance for stratifying PFS (p=0.162) or 
OS (p=0.076) anymore after combination and another 
two variables clinical stage (clinical stage: p=0.013; RAD: 
p<0.01, figure 6A) and NLRpost (NLRpost: p<0.01; RAD: 
p<0.01, figure 6A) also have a good stratification perfor-
mance for PFS after combination. The effect of tumor 

volume on CRS and long-term survival was insignificant 
(online supplemental table S6).

Stratified PD-L1 expression not associated with OS
PD-L1 expression score was available for 138 partic-
ipants in GPPH data sets. It was negative in 33 of 138. 
To compare the effectiveness of CRS to that of PD-L1 
in identifying responders and OS prediction, a subset 
analysis was carried out in these 138 patients. The 
median survival of this subset is 592 days (95% CI: 514 
to 874 days). ROC was drawn based on the prediction 
efficiency of the PD-L1 expression for responders and 
AUC of 0.594 with an optimal cut-off of 50.8% (sensi-
tivity=0.759, specificity=0.424). Although different cut-off 
values were selected (1%/10%/50%), none of them have 
significantly different OS in patients with corresponding 
low and high PD-L1 expression, according to the related 
Kaplan-Meier survival curves (online supplemental figure 
S6A,B). In contrast, the CRS prediction stratifies two 
groups of participants with significantly different survival 
outcomes in this subset (p=0.00032, online supplemental 
figure S6C,D).

Biological validation of the radiomic biomarker
A total of 60 patients with NSCLC with matching RNA 
sequencing (RNA-seq) and CT imaging were collected 
from GSE58661. The image and corresponding clinical 
data were downloaded from TCIA. This biological valida-
tion cohort was separated into relatively high-risk (n=35) 
and low-risk groups (n=25) according to the stratified 
via radiomic signature. DEGs were compared between 
high-risk and low-risk groups, with 321 upregulated genes 
and 369 downregulated genes significantly (figure  7A). 
Kaplan-Meier survival analysis suggested survival differ-
ences found among the two groups, suggesting better 
survival benefits in the low-risk group, although they did 
not reach statistical significance (online supplemental 
figure S7). We then investigated the association between 

Figure 4  Nomogram of RADCli and the ROC of RADCli in cohorts. (A) nomogram and (B) ROC analysis in several cohorts. 
RADCli displayed a superior predictive performance, with an AUC of 0.837 (95% CI: 0.768 to 0.907) in the training cohort, 0.790 
(95% CI: 0.669 to 0.911) in the internal validation cohort and 0.781 (95% CI: 0.651 to 0.911) in an independent validation set D2. 
AUC, area under the curve; RADCli, radiomic-clinical nomogram; ROC, receiver-operator characteristic.
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combined radiomic signature and oncological and biolog-
ical molecular pathways. GO analysis showed dysregulated 
genes enriched in chemokine receptor binding (online 
supplemental figure S8). Correlation analysis showed a 
correlation between radiomic signatures from tumor and 
peritumor region and immune checkpoints, immune 
cells, and immune-related pathways (figure  7B). Peri-
tumor signature P2 wavelet-HHL_glcm showed a negative 
correlation with the whole immune landscapes, especially 
for CD27, interleukin (IL)10, activated B cells, activated 
dendritic cells, macrophage, myeloid-derived suppressor 
cells (MDSC), and B cell receptor for signaling pathway 
significantly. Tumor signature T1 wavelet-HHL_glrlm, 
T2 wavelet-HHL_glrlm, P5 wavelet-HHL_firstorder, and 
P6 wavelet-LHL_firstorder showed a positive correla-
tion with immune landscape biomarkers, especially with 
IL10, activated CD4 cells, activated dendritic cells, type 
17 T helper cells and CD56-bright natural killer cells. 
For the prediction of immunotherapy, we use the TIDE 
algorithm to predict the responders according to RNA-
seq data. Low-risk groups showed a higher percentage of 
predicted responders than high-risk groups (figure 7C). 
For the distribution of TIDE score, the predicted non-
responders of immunotherapy have higher TIDE scores 

than responders, which indicates a higher level of tumor 
immune dysfunction in non-responders (figure 7D).

DISCUSSION
The early prediction of durable responders among 
patients who receive PD-L1/PD-1 inhibitors treatment is 
important for optimizing patient benefit and reducing 
social medical cost. We constructed multiple radiomic 
signatures based on pretreatment CT in this multicenter 
study. The optimal model combining predictive features 
of intratumoral and peritumoral areas demonstrated 
better predictive efficacy by applying a comparative 
strategy we applied in previous studies,26 27 and it was 
further validated in independent cohorts. We also found 
that the CRS has the potential prognostic ability for the 
long-term survival of advanced NSCLC and showed good 
stratification performance on MPR identification in 
resectable participants. In addition, mechanism analysis 
of RNA-seq data indicates a potential correlation between 
radiomic signature and immune checkpoints, immune 
cells, and immune-related pathways.

Nine radiomic features were incorporated in CRS, 
including two tumorous features and seven peritumoral 

Figure 5  The Kaplan-Meier survival analysis for CRS. Kaplan-Meier survival curves for PFS and OS on cohort D1 (n=214) for 
CRS. CRS, combined radiomic signature; OS, overall survival; PFS, progression-free survival.

https://dx.doi.org/10.1136/jitc-2023-007369
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features. Only hand-crafted features were extracted 
concerning its better expandability and generalization 
ability in a small-sample setting compared with deep 
learning algorithms. Among four higher-order features 
(glrlm and glcm parameters), LongRunLowGrayLev-
elEmphasis_HHL, one of the wavelet features derived 
from LongRunLowGrayLevelEmphasis, exhibited the 
strongest coefficient and had been found promising 
predictive efficacy in neoadjuvant chemoradiotherapy 
in esophageal cancer response and vascular endothelial 
growth factor expression prediction.28 29 The first-order 
variable of wavelet-LHL-kurtosis had shown significance 
in the identification of vessels around hepatocarcinoma, 
which is related to micro-metastasis.30 The dominant 
component of peritumoral features in the model also 
suggested the prime role in tumorous microenviron-
mental characteristics description and therapy response 
prediction.

As the biomarker approved for immunotherapy, PD-L1 
did not achieve promising sensitivity or specificity11 yet and 
had inconsistent stratification performance for immuno-
therapy response and survival in previous clinical trials.31 32 

In this article, we did not observe a significant association 
between PD-L1 expression and OS, and the stratified effi-
cacy of PD-L1 for DCB identification was compromised 
compared with CRS. We optimized the model further by 
combining the CRS with clinical variables. RADCli nomo-
gram were constructed and outperformed in immuno-
therapy responder prediction than any other signatures 
constructed. As we know, it is the first investigation to 
incorporate laboratory results like NLR with CRS for the 
early prediction of immunotherapy. Because CRS also 
stratified patients by OS significantly, especially combined 
with LOT, it might also identify patients who are likely to 
derive long-term survival benefits from therapy beyond 
objective responses.

Genetic level analysis of matching CT imaging 
and RNA-seq data TCIA database showed a correla-
tion between radiomic signature and immune cells, 
suggesting the clustering of immune cells in the tumor 
immune microenvironment and the peritumoral region 
could be captured by radiomic analysis of CT image. 
Lung cancers with CD8+, CD3+, and PD-L1+ tumor-
infiltrating cells display a solid texture on radiologic 

Figure 6  Clinicopathological characteristics associated with CRS in immunotherapy responder prediction. Evaluation of CRS 
and various clinicopathological characteristics. (A) The p value of each clinical characteristic and CRS in two-variable analysis 
by Cox regression and the log-rank p value of its model for OS and PFS. (B) HRs of CRS and clinical characteristics in each 
two-variable model. BMI, body mass index; CRS, combined radiomic signature; ECOG PS, Eastern Cooperative Oncology 
Group performance status; ICIs, immune checkpoint inhibitors; NLRpost, neutrophil-to-lymphocyte ratio after the first cycle of 
therapy; RAD, radiomic features.
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lesions and surrounding parenchyma. High PD-L1 levels 
were correlated with wavelet radiomic features, while 
Non-Uniformity-related radiomic features in CT imaging 
such as Gray Level Nonuniformity were highly expressed 
in CD8+ T-cell-rich tumor microenvironment.33 The rela-
tionship between radiomic features and genetic path-
ways has been explored in this work. Radiomic features 
of soft tissue sarcomas were associated with dysregulation 
of Hedgehog and Hippo signaling pathways.34 Hypoxia 
pathway could also be predicted in ovarian cancer by 
CT-based radiomic biomarkers.35 Hence, it is acces-
sible and promising to validate the biological functions, 

related pathways, and mechanisms through functional 
annotations and pathway analysis for the explanation and 
understanding of radiomic signature. Concerning the 
underlying association, it is promising to adopt the deep 
learning algorithm for multi-module features integration 
and model training in larger-scale research.

Previous studies have revealed the significant associ-
ation between radiomic features and immunotherapy 
response, but they seldom performed further radiomic 
feature extraction and analysis on peritumoral regions,19 22 
which limited the further improvement of the model to 
some extent. The biological significance of immune cell 

Figure 7  Biological validation of CRS in TCGA-NSCLC cohort. (A) The volcano plot indicates differentially expressed genes 
in the TCGA-NSCLC cohort. (B) Correlation analysis between radiomic features with immune checkpoints, immune cells, and 
immune-related pathways. (C) Predicted responders of immunotherapy in TCGA-NSCLC cohort through transcriptomic data by 
TIDE algorithm. (D) Distribution of TIDE value TCGA-NSCLC cohort. CRS, combined radiomic signature; NSCLC, non-small cell 
lung cancer; TCGA, The Cancer Genome Atlas; TIDE, Tumor Immune Dysfunction and Exclusion.
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distribution in the peritumoral region has already been 
emphasized36 and Khorrami et al incorporated the peri-
tumoral region of 30 mm into their model in immuno-
therapy response prediction but they did not compare 
the predictive performance of different radiuses.15 This 
multicenter study was different from previous studies 
in these aspects as following. First, we incorporated the 
radiomic features extracted from both tumorous and 
annular peritumoral regions and the predictive value of 
the peritumoral area with different radii in this work was 
then investigated in a comparative strategy. Second, we 
tested the generalizability of CRS with two independent 
test cohorts (D2 and D3), which were from two different 
institutions across different immunotherapy agents. Even 
for participants in D3 treated with different ICIs agents 
(camrelizumab and sintilimab), CRS still yielded prom-
ising predictive accuracy. Third, we attempt to explore 
the extended value of CRS for pathological response 
prediction in a resectable NSCLC cohort in the neoadju-
vant setting. Notably, MPR was predicted by the signature 
with better performance than ORR and pCR, suggesting 
the underlying compatible association between DCB and 
MPR. They were both closely correlated with survival 
benefits. And DCB disciplined clinical benefit on a 
chronologic scale while MPR did in a spatial scale, which 
is adopted by clinicians in the different therapy settings.

Despite the considerable diagnostic efficiency of CRS 
and RADCli applying both tumorous and peritumoral 
features, several limitations should be acknowledged for 
this study. First, limited sample size and selection bias are 
noted due to the retrospective nature of this investiga-
tion, although the characteristic of cohorts was basically 
balanced. Larger-scale studies in a prospective design are 
still warranted. Second, NLR post-therapy included in 
the clinical signature may limit the practical application 
of the nomogram in a pretreatment prediction setting 
although it is a stable independent factor for response 
status. More pretreatment variables or delta variables 
should be investigated further. Third, for the surgical 
cohort, it remains unclear whether the radiomic features 
are associated with survival outcomes due to the earliest 
admitted patients being treated in 2019, which would be 
evaluated in future. Finally, the strategy of pulmonary 
lesion selection disabled the direct evaluation of extrapul-
monary metastatic status and disease burden, although 
this strategy decreased the heterogeneity brought by 
various metastatic lesion selection for metastatic disease 
and increased the feasibility and practicality of the model. 
More advanced feature extraction and auto-segmentation 
algorithm were guaranteed for this purpose.

Conclusion
The study constructed and verified CRS and integrated 
model for early non-invasive prediction of immuno-
therapy responders for patients with advanced NSCLC. 
It showed the potential association between radiomic 
features and pathological response of immunotherapy 

and laid the practical foundation of the radiomic predic-
tive value in the neoadjuvant setting.
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