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ABSTRACT
Introduction  Despite technological advancements in 
recent years, glenoid component loosening remains a 
common complication after anatomical total shoulder 
arthroplasty (ATSA) and is one of the main causes of 
revision surgery. Increasing emphasis is placed on 
the prevention of glenoid component failure. Previous 
studies have successfully predicted range of motion, 
patient-reported outcomes and short-term complications 
after ATSA using machine learning methods, but an 
accurate predictive model for (glenoid component) 
revision is currently lacking. This study aims to use a 
large international database to accurately predict aseptic 
loosening of the glenoid component after ATSA using 
machine learning algorithms.
Methods and analysis  For this multicentre, retrospective 
study, individual patient data will be compiled from 
previously published studies reporting revision of ATSA. A 
systematic literature search will be performed in Medline 
(PubMed) identifying all studies reporting outcomes of 
ATSA. Authors will be contacted and invited to participate 
in the Machine Learning Consortium by sharing their 
anonymised databases. All databases reporting revisions 
after ATSA will be included, and individual patients with a 
follow-up less than 2 years or a fracture as the indication 
for ATSA will be excluded. First, features (predictive 
variables) will be identified using a random forest feature 
selection. The resulting features from the compiled 
database will be used to train various machine learning 
algorithms (stochastic gradient boosting, random forest, 
support vector machine, neural network and elastic-net 
penalised logistic regression). The developed and validated 
algorithms will be evaluated across discrimination (c-
statistic), calibration, the Brier score and the decision 
curve analysis. The best-performing algorithm will be used 
to create an open-access online prediction tool.
Ethics and dissemination  Data will be collected adhering 
to the WHO regulation on data sharing. An Institutional 
Review Board review is not applicable. The study results 
will be published in a peer-reviewed journal.

INTRODUCTION
Anatomical total shoulder arthroplasty 
(ATSA) is used for glenohumeral arthropathy 
causing pain and/or a reduction in range of 
motion. Despite technological advancements 
in recent years, glenoid component loosening 
remains a common complication after ATSA 
and is one of the main causes of revision 
surgery. Glenoid loosening can be a trying 
complication to manage, and the optimal 
course of treatment remains unclear.1

Consequently, increasing emphasis is 
placed on the prevention of loosening. The 
predicted chance of glenoid component 
failure plays an important role in clinical 
decision-making such as patient selection 
for ATSA or which implants and techniques 
to use. Several previous studies assessing 

STRENGTHS AND LIMITATIONS OF THIS STUDY
	⇒ A large international database will be collected, 
which increases accuracy, validity and external 
applicability.

	⇒ A clinical prediction model using machine learning 
algorithms will be developed to estimate the prob-
ability of aseptic loosening of the glenoid after ana-
tomical total shoulder arthroplasty.

	⇒ An open-access prediction tool based on the best-
performing algorithm will be made available online 
that can guide medical professionals in personalised 
treatment decision-making.

	⇒ The study is dependent on data provided by third 
parties, which is a potential source of bias.

	⇒ Input variables will be selected and categorised 
based on completeness and uniformity across data 
sources, potentially decreasing the amount of detail 
in the study.
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risk factors of glenoid component loosening identified 
patient, treatment and prosthesis characteristics related 
to glenoid component loosening. For example, male sex 
and a higher critical shoulder angle have been associated 
with higher rates of loosening and revisions.2 3 Glenoid 
retroversion did not impact implant survivorship in one 
study of ATSA with minimal, non-corrective reaming.4 
However, a larger degree of retroversion may have more 
impact. Several previous studies have also identified 
aspects of the glenoid component design that correlated 
with the rate of loosening, such as whether the polyeth-
ylene is cross-linked, whether the component is pegged 
or keeled, or the usage of cement.5–9 In spite of these 
studies identifying influential factors, accurate prediction 
of aseptic loosening of the glenoid component remains a 
challenge with conventional methods.

In recent years, machine learning or artificial intelli-
gence has been used with increasing precision to predict 
outcomes after ATSA. A previous study using machine 
learning was able to accurately predict range of motion 
and patient-reported outcomes after ATSA. The most 
influential factors they reported were follow-up time, 
preoperative range of motion and patient-reported 
outcome measures, patients’ sex and surgery on the 
dominant upper limb.10 Another study was able to accu-
rately predict the improvement in American Shoulder 
and Elbow Surgeons (ASES) scores after shoulder arthro-
plasty using machine learning.11 The most relevant predic-
tive factors were preoperative ASES scores, preoperative 
pain scores, Walch classification, fatty infiltration in the 
supraspinatus and infraspinatus, and age. A previous 
study using artificial intelligence to predict patient satis-
faction 2 years after shoulder arthroplasty found baseline 
Single Assessment Numeric Evaluation score, exercise 
and activity, workers’ compensation status, diagnosis, 
symptom duration prior to surgery, body mass index 
(BMI), age, smoking status, anatomical versus reverse 
total shoulder arthroplasty and diabetes to be predicting 
factors.12 Two studies report predictive models on short-
term complications after ATSA. One study using machine 
learning to predict complications and 30-day unplanned 
readmissions found that a history of implant complica-
tion, severe chronic kidney disease, teaching hospital 
status, coronary artery disease and male sex were the most 
important features.13 The machine learning model found 
teaching hospital status and male sex as a markedly more 
important predictor compared with a logistic regression 
analysis of the same data. Another study on short-term 
complications after total shoulder arthroplasty found 
percentage haematocrit, BMI and operative time were 
of highest importance in outcome prediction.14 These 
studies demonstrate that machine learning may provide 
accurate predictions for the outcomes after ATSA. 
Machine learning is most effective with large amounts 
of data and is very dependent on the amount of detail. 
Furthermore, the algorithm needs to be widely appli-
cable; a varied and international database provides the 
highest external validity.

To our knowledge, there are no studies predicting the 
long-term complications such as aseptic loosening of the 
glenoid component using advanced machine learning 
techniques. Furthermore, previous machine learning 
studies are limited in accuracy and validity due to the 
sample size and homogeneity. Therefore, this study aims 
to develop a clinical prediction model for aseptic loos-
ening of the glenoid component using machine learning 
algorithms trained on a large international database using 
clustered data. The large combined dataset is less prone to 
overfitting, and allows direct validation of models across 
a range of populations and settings, thereby increasing 
generalisability.15 The predictive algorithm will be made 
available for clinical use through a publicly available 
online prediction tool.

METHODS AND ANALYSIS
Data collection
For this multicentre, retrospective study, individual patient 
data (IPD) will be collected from previously published 
studies reporting failure and revision of ATSA. A system-
atic literature search will be performed in Medline 
(PubMed) identifying all studies that report a cohort 
of ATSA including revision as an outcome, published 
between January 2000 and June 2023. The limit was set at 
January 2000 to increase the likelihood of the dataset that 
was used for the study still being available. The minimum 
required data retention period varies between countries 
but is generally 20 years or less. The full search strategy is 
available in online supplemental appendix 1. All original 
studies reporting revision or failure rates after primary 
ATSA will be included. Reviews and letters to the editor 
will be excluded, as well as studies published in languages 
other than English, Italian, Dutch and French. Authors 
will be requested to share the anonymised databases used 
for the identified studies. Only de-identified databases 
used for previous studies are included; authors are not 
required to gather additional data or access patient files. 
After sharing their data, the authors will be included in 
the Machine Learning Consortium. Inclusion criteria for 
individual patients within the provided databases are a 
minimum age of 18 years and a minimum follow-up of 
2 years. Patients who underwent ATSA with a fracture 
as the indication or patients who underwent concom-
itant procedures such as a cuff repair, tendon transfer 
or bone graft will be excluded. The aim is to combine 
the IPD from previously published studies to create a 
large international cohort which can be used to train a 
machine learning algorithm to predict aseptic loosening 
of the glenoid component after ATSA. Based on previous 
studies, we estimate a glenoid revision rate of approxi-
mately 2%.6 16 The minimum number of events per vari-
able to achieve sufficient accuracy differs per model and 
is not clearly defined for each technique.17 18 We aim 
to include at least 30 events per variable, resulting in a 
sample size of 7500 patients for a model with up to five 
predictive variables.

https://dx.doi.org/10.1136/bmjopen-2023-074700


3Macken AA, et al. BMJ Open 2023;13:e074700. doi:10.1136/bmjopen-2023-074700

Open access

Data curation and missing data
Completeness across data sources will be assessed for 
each variable in the compiled multicentre database, 
and variables with sufficient completeness (>70% 
complete) will be selected as input for the machine 
learning algorithms. Variables with >30% missing data 
will be excluded. For the remaining variables, missing 
data will be completed by imputation using multi-
variate imputation by chained equations.19 Unifor-
mity in reporting will be assessed for each variable. 
If possible, variables will be adjusted or categorised 
to ensure uniform reporting. In case uniformity of 
the reported variable across data sources cannot be 
achieved without guaranteeing correctness, the vari-
able will be excluded. Each dataset will be split into 
training (80%) and test (20%) subsets, stratified by 
outcome. Fivefold cross-validation of the training set 
will be used to develop the machine learning models.20 
Data curation and imputation will be performed using 
R (R foundation for statistical computing, Vienna, 
Austria).

Variable selection
The primary outcome is a revision of the glenoid 
component for aseptic glenoid loosening. The input 
variables for both methods are dependent on the 
uniformity and completeness of the gathered data but 
will include demographics (eg, age, sex and ethnicity), 
patient-specific factors (eg, preoperative BMI, comor-
bidity, smoking, dominance, previous surgery), 
disease-specific factors (eg, affected side, indication, 
Walch classification, fatty infiltration of cuff muscles) 
and surgical characteristics (eg, corrective reaming, 
component design and type, component materials, 
cementing and sizes). Before training the machine 
learning models, relevant variables will be selected 
using random forest algorithms with recursive selec-
tion.21 At least 10 events for each predictor variable 
will be included in the model, adhering to the rule of 
thumb in predictive models of binary variables.22

Development of prediction models
Different machine learning models result in varying 
performance metrics based on the type of input data 
(continuous, categorical, dichotomous). Due to the vari-
ation in type of input variables in the dataset, several 
different machine learning techniques will be used and 
compared based on model performance. The following 
machine learning algorithms were chosen for modelling 
based on prior research23–27: stochastic gradient boosting, 
random forest, support vector machine, neural network 
and elastic-net penalised logistic regression. The algo-
rithms will be trained on the training dataset with 10-fold 
cross-validation repeated three times. Cross-validation 
means dividing data into a selected number of groups, 
also called folds. First, the data will be divided into 10 
equally sized folds. Then, the algorithms will be trained 
on 9 of the 10 folds (90% of the training data) and tested 

on the remaining fold (10% of the training data). Results 
will be averaged across all repetitions of this sequence. 
Machine learning algorithms will be developed using 
Python (The Python Software Foundation, Fredericks-
burg, USA). Hyperparameter tuning will be performed 
as recommended in the Python libraries. The statisti-
cian who performs the machine learning analysis will be 
blinded to the origin of the data, but the anonymised 
data source will be available to be included as a potential 
confounding factor.

Model performance
After training all models, the model performance 
will be analysed according to a proposed framework 
by Steyerberg et al including discrimination with the 
c-statistic, positive predictive value (PPV), true posi-
tive rate (TPR), precision-recall curve, calibration 
slope and intercept and the overall performance with 
the Brier score.28

The c-statistic (area under the curve of a receiver 
operating characteristic curve) is a score ranging from 
0.50 to 1.0 with 1.0 indicating the highest discrimina-
tion score and 0.50 indicating the lowest. The higher 
the discrimination score, the better the model’s ability 
to distinguish patients with and without the outcome 
of interest.20 23 The PPV is the proportion of true posi-
tive outcomes over the number of predicted positive 
outcomes. The TPR is the proportion of true posi-
tive outcomes over the number of observed positive 
outcomes. The precision recall curve is a plot of the 
PPV versus the TPR. A calibration plot plots the esti-
mated versus the observed probabilities for the primary 
outcome. A perfect calibration plot has an intercept 
of 0 (<0 reflects overestimation and >0 reflects under-
estimation of the probability of the outcome) and a 
slope of 1 (model is performing similarly in training 
and test datasets).20 23 28 The null-model Brier score, 
which equals the probability of glenoid revision in the 
dataset, will be used to benchmark the algorithm’s 
Brier score. A Brier score lower than the null-model 
Brier score indicates superior performance of the 
prediction model to this null benchmark. Perfect 
prediction would have a Brier score of 0, whereas a 
Brier score of 1 would indicate the poorest possible 
prediction.28

In addition, the decision curve analysis will be 
performed and visualised to investigate the net benefit 
(weighted average of true positives and false posi-
tives) of the conducted algorithms over the range of 
risk thresholds for clinical decision-making.23 28 29 The 
net benefit is a weighted average of true positives and 
false positives, formula=sensitivity×prevalence–(1–
specificity)×(1–prevalence)×(odds at the threshold 
probability). The decision curve of the model will be 
compared with decision curves of treating everyone 
as being at risk and treating no one as being at risk.23

Due to the large heterogeneity of the compiled dataset 
from different international sources and the internal 
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validation of the prediction models, the generalisability 
of the model can be intrinsically confirmed using the 
above-mentioned performance tests. Therefore, it is not 
strictly necessary to externally validate the final algorithm. 
However, this study’s primary aim is model development. 
External validation in a specific setting is advised before 
applying the algorithm to clinical practice.

Open-access clinical prediction tool
The best-performing prediction algorithm will be used to 
create an open-access clinical prediction tool, in the form 
of a publicly available web application accessible on desk-
tops, tablets and smartphones.

Statistical analysis
Categorical variables will be described as absolute 
numbers with frequencies, and continuous vari-
ables as medians with IQRs. The model performance 
metrics will be calculated with 95% CI. Given the 
retrospective study design, post hoc power analyses 
will be conducted to evaluate the sample size of the 
study with an alpha value of 0.05.

Guidelines
The study set-up will be performed following the Trans-
parent Reporting of Multivariable Prediction Models for 
Individual Prognosis or Diagnosis Guideline for Clus-
tered data.15

Patient and public involvement
None.

Ethics and dissemination
For safe multicentre data exchange and analysis, 
our Machine Learning Consortium will adhere to 
the WHO regulation ‘Policy on Use and Sharing of 
Data Collected by WHO in Member States Outside 
the Context of Public Health Emergencies’.30 An 
Institutional Review Board (IRB) approval has been 
obtained for each of the included studies and the 
provided data are anonymised and de-identified; no 
additional prospective data are collected and contrib-
uting authors are not required to access any patient 
files. No IRB review is required for this study. Patient 
consent for publication is not applicable to this study.

The study results will be disseminated through publica-
tion in a peer-reviewed journal. To facilitate reproduction 
of the results and external validation of the algorithm, 
the (anonymous) code of the developed predictive algo-
rithms will be made available upon request with the 
authors.

Data collection for this project is currently ongoing. 
The analysis will start in December 2023. The expected 
time of completion for the project is July 2024.

DISCUSSION
For an informed decision when considering ATSA, it 
is important to be able to make an accurate prediction 

of arthroplasty failure. Previous studies have demon-
strated several factors that affect complications and 
revision after ATSA, including male sex, comor-
bidities such as chronic kidney disease or coronary 
artery disease, percentage haematocrit, a higher 
critical shoulder angle, teaching hospital status, 
operative time, and the material and design of the 
prosthesis.2 3 5–9 13 14 Psychological studies have shown 
that in human judgement, only a limited amount of 
variables can be taken into account, and that predic-
tion models are generally more accurate and less 
subject to bias.31 Machine learning algorithms have 
been shown to be an effective method in developing 
patient-specific prediction tools, which may comple-
ment human judgement when counselling patients in 
clinic.32 Creating an online tool for aseptic loosening 
of the glenoid component after ATSA can help guide 
surgeons in selecting patients who will most benefit 
from this treatment and considering alternatives in 
cases of high-risk estimates.

The strength of this project is the large amount of 
data that will be gathered from authors participating 
in the Machine Learning Consortium, aiming to 
include a minimum of 7500 patients in total. Using 
a large, heterogeneous international database for 
development of the algorithm and prediction tool will 
result in high external validity and may improve appli-
cability worldwide.15 However, most machine learning 
techniques require a larger sample size to achieve 
an accurate prediction compared with traditional 
regression models. The minimum events per vari-
able are not clearly defined and differ per technique. 
Furthermore, in gathering data retrospectively from 
various sources, the study is subject to variances in the 
included variables. Low completeness and large vari-
ability of reporting may introduce bias. However, only 
variables that are consistently reported in multiple 
data sources will be included in the final analysis; 
variables will be categorised to increase uniformity 
and missing data will be imputed where possible. The 
exclusion and categorisation of variables will have to 
be balanced with the amount of detail in the final 
analysis. Furthermore, the accuracy of data collec-
tion is dependent on third parties providing the data; 
the method of data collection cannot be verified for 
all sources. However, the data source will be consid-
ered as a confounder. Furthermore, the variety in 
data sources will increase the external applicability of 
the algorithm. Last, as machine learning prediction 
models for a dichotomous outcome are limited to 
risk classification, the individual risk must be inter-
preted in the clinical context when used for medical 
decision-making.
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