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Abstract
Summary: Pangenomes are replacing single reference genomes as the definitive representation of DNA sequence within a species or clade.
Pangenome analysis predominantly leverages graph-based methods that require computationally intensive multiple genome alignments, do not
scale to highly complex eukaryotic genomes, limit their scope to identifying structural variants (SVs), or incur bias by relying on a reference
genome. Here, we present PanKmer, a toolkit designed for reference-free analysis of pangenome datasets consisting of dozens to thousands of
individual genomes. PanKmer decomposes a set of input genomes into a table of observed k-mers and their presence–absence values in each
genome. These are stored in an efficient k-mer index data format that encodes SNPs, INDELs, and SVs. It also includes functions for
downstream analysis of the k-mer index, such as calculating sequence similarity statistics between individuals at whole-genome or local scales.
For example, k-mers can be “anchored” in any individual genome to quantify sequence variability or conservation at a specific locus. This
facilitates workflows with various biological applications, e.g. identifying cases of hybridization between plant species. PanKmer provides
researchers with a valuable and convenient means to explore the full scope of genetic variation in a population, without reference bias.

Availability and implementation: PanKmer is implemented as a Python package with components written in Rust, released under a BSD
license. The source code is available from the Python Package Index (PyPI) at https://pypi.org/project/pankmer/ as well as Gitlab at https://gitlab.
com/salk-tm/pankmer. Full documentation is available at https://salk-tm.gitlab.io/pankmer/.

1 Introduction

Pangenomes consolidate genomic sequence data from multi-
ple individual organisms into a single data structure represent-
ing the genomes of a population, species, or clade.
Pangenomics was first applied to microbes, but has grown to
include a wide variety of eukaryotes (Medini et al. 2005,
Golicz et al. 2020, Li et al. 2022b). The advent of plant and
animal pangenomes coincided with the reduced cost of NGS
technologies. Crop plants were an early subject of pangenome
studies, including soybean, brassica, and wheat species (Li
et al. 2014, Golicz et al. 2016, Montenegro et al. 2017).
These pangenomes focused on genic sequence only, and they
were built by collecting short-read whole-genome sequencing
datasets and mapping to a reference, allowing relatively sim-
ple if biased assembly of multiple individual genomes.
Improvements in long-read sequencing technology and assem-
bly methods have enabled the construction of dozens or hun-
dreds of high-quality genomes for a single plant or animal
species. This has facilitated a wave of pangenome studies
based on collections of entire assembled genomes (Gui et al.
2022, Li et al. 2022a, Montenegro et al. 2022, Shang et al.
2022, Tang et al. 2022, Tong et al. 2022, Yang et al. 2022).

The transition from representation and analysis of single
genomes to pangenomes presents significant challenges. Most
studied populations include extensive structural variation (SV),

which means only a fraction of genes or intergenic sequences
are present in all individuals. This fraction is referred to as the
“core” genome, while the remainder is variously called
“dispensable,” “variable,” or “accessory” (Golicz et al. 2020,
Lei et al. 2021, Aggarwal et al. 2022). Furthermore, the core ge-
nome cannot be defined by a simple linear coordinate system. A
useful pangenomic dataset must identify the core genome and
facilitate analysis of the variable regions.

Currently, the dominant methodology is pangenome se-
quence graphs, which consist of nodes representing segments of
genomic sequence connected by edges which allow any individ-
ual genome to be traced as a path through the graph (Hickey
et al. 2020, Li et al. 2020, Baaijens et al. 2022, Bradbury et al.
2022, Montenegro et al. 2022). These graphs have replaced
“iterative assembly” methods to advance our understanding of
genomic diversity, especially of SV, and demonstrated utility
for crop breeding (Ruperao et al. 2021, Gui et al. 2022,
Montenegro et al. 2022, Shang et al. 2022). However, their
construction is far from a solved problem and generally relies
either on computationally expensive multiple genome align-
ment or on biased alignment to a single reference. Their appli-
cation to highly complex eukaryotic genomes, such as those of
plants, is limited (Bayer et al. 2020, Danilevicz et al. 2020,
Khan et al. 2020). Such graphs may be limited to as few as a
dozen input genomes (Zhang et al. 2021, Li et al. 2022a).
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Other methods gain efficiency by focusing on specific catego-
ries of variants (Li et al. 2020, Bradbury et al. 2022).

Several methods have adopted a format based on a
De Bruijn graph representing overlaps of k-mers (genomic
substrings of length k) rather than the sequence graph
(Sheikhizadeh et al. 2016, Almodaresi et al. 2018, Holley and
Melsted 2020, Jonkheer et al. 2022). One such method is
PanTools, which defines the pangenome as a comprehensive
representation of multiple annotated genomes and provides
functions enabling gene-level analysis, sequence alignment,
and phylogenomics.

k-mer decomposition is an alternative to graph-based pan-
genomes. In this framework, the space of genomic sequences
across a population is represented by a set of k-mers. Each in-
dividual is represented by a subset: all k-mers observed in a
single genome. This view does not depend on any coordinate
system and therefore sidesteps the difficulties of multiple ge-
nome alignment and graph construction. Kmer-db demon-
strated the use of k-mer decomposition for efficient analysis
of microbial genomes (Deorowicz et al. 2019). k-mers have
many applications in genomics and pangenomics, and they
have recently been used as markers for GWAS (Holley et al.
2016, Sheikhizadeh et al. 2016, Aun et al. 2018, Khan et al.
2020, Voichek and Weigel 2020, Gupta 2021, Jayakodi
et al. 2021, Jonkheer et al. 2022, Karikari et al. 2022, 2023).

Here we present PanKmer, a non-graphical k-mer decom-
position method designed to efficiently represent and analyze
many forms of variation in large pangenomic datasets, with
no reliance on a reference genome and no assumption of
annotation.

2 Features and implementation

2.1 k-mer index

The foundational component of PanKmer’s pangenome repre-
sentation is the k-mer index. It is constructed from a set G of
input genomes by decomposing them into a set K of all unique
canonical k-mers and noting for each input genome which
k-mers are present and which are absent (Fig. 1A). This is sim-
ilar to the content of Kmer-db’s k-mer database (Deorowicz
et al. 2019). Each k-mer is considered equivalent to its reverse
complement and is recorded in canonical form. The k-mer in-
dex X is then a jKj by jGj table of binary values indicating
presence/absence of each canonical k-mer in each genome.
The index can integrate an arbitrary number of genomes from
one or several species, requires no reference genome, and ena-
bles a range of downstream analyses.

The index is constructed by scanning all jGj input genomes
sequentially, recording newly encountered k-mers, and updat-
ing presence/absence values with each new genome scanned.
To make efficient use of all available CPU’s, this process is
parallelized across the theoretical k-mer space. The set j of all
possible canonical k-mers has size jjj ¼ 1

2 j4, which is divided
among n segments j1 . . . jn. Index construction is then
divided into n subprocesses, each of which constructs a sub-
index Xi skipping k-mers not included in ji. To efficiently
store and access the k-mer index on disk, each k-mer is con-
verted to an integer value.

The resultant index is robust to varying contiguity in the in-
put genomes, so chromosome-level assemblies can be directly
compared to unscaffolded contigs or unaligned reads. The
implementation presented here uses k ¼ 31, chosen for three
reasons. First, 31-mers are short enough to be encoded as

64-bit integers (Rahman et al. 2018). Second, they are long
enough to impose a low rate of non-unique k-mers occurring
by chance (Sheikhizadeh et al. 2016). Finally, 31-mers have
been used successfully to define variation in previous studies
(Rahman et al. 2018, Voichek and Weigel 2020).

2.2 Adjacency matrix

Once the k-mer index is constructed, each input genome gi is
represented by jKj binary values representing presence or ab-
sence of each k-mer in K. This provides a natural means of
calculating pairwise similarity/adjacency values for the input
genomes. PanKmer includes a function to calculate the num-
ber of shared k-mers between all pairs of input genomes and
return them as an adjacency matrix. Subsequently, the adja-
cency values can be used to perform a hierarchical clustering
of input genomes and plot adjacency values as a heatmap.
The adjacency values may also be converted to Jaccard, QV
as described in MerQury (Rhie et al. 2020), a symmetric ver-
sion of QV, or average nucleotide identity (ANI) (Fig. 1B).

2.3 Genome anchoring

While the k-mer index does not rely on any specified reference
genome, it can be used to contextualize individual sequences.
Given a sufficient k-mer length (e.g. the default k ¼ 31), we
can assume that each k-mer present in an individual genome
gi occurs approximately once in gi. Therefore, we can quan-
tify variation across any locus in an “anchor” genome gi by
walking along the sequence, checking the k-mer that corre-
sponds to each position, and calculating the fraction of
genomes in G which share that k-mer. We refer to this frac-
tion as the “k-mer conservation” value at each position. High
k-mer conservation values indicate core loci which are con-
served in many individuals across the pangenome, while low
values indicate variable loci which are present only in gi and a
small number of other genomes. Hence, core sequences will
have high k-mer conservation levels in all target genomes,
while variable sequences will have relatively lower levels in
each genome that features them.

3 Results

To demonstrate the utility of PanKmer, we constructed a
cross-species pangenome of cattail downloaded from NCBI
SRA: 10 Typha domingensis (TD) and 3 Typha latifolia (TL)
genomes (Fig. 1B) (Supplementary Table S1). Three of the TD
genomes (TD01, TD22, TD23) were highly heterozygous
(Supplementary Fig. S1 and Table 1). We used k-mer profiles
to compute two measures of adjacency, the number of shared
k-mers and ANI (Fig. 1B). The three TL genomes were highly
similar to one another, with an average ANI of 99.85%
(186M shared k-mers) for TL–TL comparisons, while the av-
erage ANI of TD–TD comparisons was 98.94% (151M
shared k-mers) (Supplementary Tables S2 and S3). The aver-
age ANI of TL–TD comparisons was 96.14% (64M shared
k-mers). We also constructed single-species pangenomes of
T.domingensis and T.latifolia (Supplementary Fig. S2 and
Tables S4–S7). One TD genome, TD01, was an outlier rela-
tive to other TD, with ANI of only 98.03% (127M shared
k-mers) on average. Conversely, TD01 showed relatively high
ANI with TL genomes, averaging 98.60% (148M shared
k-mers). To inspect TD01 more closely, we calculated average
k-mer conservation in 100 kb bins across its assembled con-
tigs and observed a mixture of TD and TL sequences. A close
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examination of variability anchored in TD01 revealed the
presence of large and small introgressions (Fig. 1C and
Supplementary Fig. S5). High heterozygosity together with

the presence of introgressions suggest TD01 is the descendant
of a recent TD–TL hybridization event.

To explore suitability for larger eukaryote genomes and
sample sizes, we benchmarked PanKmer on several published
pangenomes and super-pangenomes, including Solanum,
Zea, Homo sapiens, Arabidopsis thaliana (Table 2 and
Supplementary Fig. S7 and Table S12) (Alonso-Blanco et al.
2016, Woodhouse et al. 2021, Montenegro et al. 2022, Liao
et al. 2023). PanKmer successfully built k-mer indexes for all
input pangenomes (Supplementary Fig. S8). We compared the
performance of PanKmer to Kmer-db (Supplementary Fig. S9
and Table S13). We found that PanKmer had a smaller mem-
ory footprint than Kmer-db, due in part to its ability to divide
k-mer decomposition into multiple rounds (Supplementary
Material).

4 Conclusion

PanKmer enables k-mer-based analysis of pangenome data-
sets. It accepts as input a collection of genome assemblies or
unaligned reads in FASTA format, and produces a k-mer

Figure 1. PanKmer enables the rapid estimation of relatedness across the pangenome as well as analysis of specific loci. (A) Schematic of procedure for

constructing the k-mer index. In the example, each genome G0–G2 is decomposed into canonical 3-mers. Each 3-mer is equivalent to its reverse

complement, and the lexicographically first is the canonical form. Each 3-mer is assigned an integer value, and its presence/absence is recorded for each

genome in the index. (B) Relatedness heatmap of Typha pangenome, ANI values shown. (C) Genome anchoring plots of representative contigs in TD01.

Average k-mer conservation of 100-kb bins shown, where k-mer conservation is the fraction of TD or TL genomes that include each k-mer along the

contig.

Table 1. Basic statistics of T.domingensis and T.latifolia genome

assemblies.

Name Predicted Heterozygosity Contig N50 GC content
genome (%) (Mb) (%)
size (Mb)

TD01 214 4.12 1.0 37.7
TD03 222 0.13 11.5 37.6
TD04 226 0.45 4.8 37.7
TD07 263 0.14 7.7 37.6
TD08 213 0.05 13.8 37.7
TD12 224 0.22 6.1 37.5
TD22 218 2.60 1.0 37.8
TD23 213 2.60 0.7 37.8
TD25 210 0.12 8.3 37.7
TD36 215 0.15 8.9 37.6
TL01 234 0.07 14.5 37.9
TL05 218 0.07 14.5 37.8
TL17 215 0.07 13.5 37.7
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index which is similar to the database of kmer-db (Deorowicz
et al. 2019). The index is agnostic to the contiguity of assem-
blies. A powerful feature of PanKmer is the ability to anchor
the index in any individual genome and identify core or vari-
able loci. This allows users to explore the full scope of genetic
variation, without incurring bias from the choice of a single
reference. PanKmer includes tools for downstream processing
of the index which provide data visualizations and biological
insights, such as identifying a hybridization event between
T.latifolia and T.domingensis.

The primary advantage of PanKmer over other pangenome
analysis tools is its ability to capture all forms of presence–
absence variation, including SNPs, INDELs, SVs, and any
variant that adds or removes a k-mer from the genome. Our
reference-free and alignment-free algorithm is also more com-
putationally tractable than graph-based methods. On the
other hand, PanKmer is limited by inability to detect copy
number variants in repetitive sequences (Supplementary
Fig. S6), and by the loss of spatial relationships between
k-mers in the index. However, their spatial context can be res-
cued by projecting the index onto an anchor genome.
Currently, PanKmer does not have genotyping functions, but
these are planned for future releases.
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