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Using multimodal, multiregional profiling, Tang et al. show that intratumoral metabolomic heterogeneity in clear cell renal cell 
carcinoma (ccRCC) is driven by the oxidative stress response and coevolves with specific patterns of immune infiltration.
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Summary

Tumor cell phenotypes and anti-tumor immune responses are shaped by local metabolite 

availability, but intratumoral metabolite heterogeneity (IMH) and its phenotypic consequences 

remain poorly understood. To study IMH, we profiled 187 tumor/normal regions from 31 

clear cell renal cell carcinoma (ccRCC) patients. A common pattern of IMH transcended all 

patients, characterized by correlated fluctuations in the abundance of metabolites and processes 

associated with ferroptosis. Analysis of intratumoral metabolite-RNA covariation revealed that 

the immune composition of the microenvironment, especially the abundance of myeloid cells, 

drove intratumoral metabolite variation. Motivated by the strength of RNA-metabolite covariation 

and the clinical significance of RNA biomarkers in ccRCC, we inferred metabolomic profiles 

from RNA sequencing data of ccRCC patients enrolled in 6 clinical trials, ultimately identifying 

metabolite biomarkers associated with response to anti-angiogenic agents. Local metabolic 

phenotypes therefore emerge in tandem with the immune microenvironment, influence ongoing 

tumor evolution, and associate with therapeutic sensitivity.

Graphical Abstract

Introduction

Changes to the metabolism of clear cell renal cell carcinoma (ccRCC) tumors are 

evolutionarily early events in tumorigenesis that occur in the background of widespread 

intratumoral genetic diversification and extensive immune infiltration1–4. Such metabolic 
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changes, including the upregulation of glucose uptake, increases in antioxidant biosynthesis, 

and accumulation of lipid droplets, underlie ccRCC malignancy, metastatic competency, 

and are potentially determinants of its response to metabolically-targeted therapies1,5,6. 

However, technical challenges associated with the collection of metabolomic data from 

primary tumors (especially the need for significant amounts of fresh-frozen tissue) have 

precluded both a large-scale analysis of the association of metabolite levels with genomic/

microenvironmental tumor features, and an assessment of the clinical utility of metabolomic 

measurements for prognostication and therapeutic stratification of patients.

The metabolism of ccRCC has overwhelmingly been studied using single region 

metabolomic profiling1,6–8. However, two emerging hallmarks of ccRCC biology, 

intratumoral heterogeneity and abundant infiltration by non-malignant immune cells2,3, 

fundamentally confound our understanding of the culprit tumor/non-tumor cell populations 

driving metabolic phenotypes of interest. Recent work suggests that metabolic heterogeneity 

(e.g. in PHGDH9 and MCT110) can mechanistically influence the competency of tumor cells 

to metastasize, supporting a rational therapeutic strategy that limits heterogeneity or targets 

heterogeneous pathways supporting aggressive behavior. However, the aforementioned 

studies do not address the full extent of tumor-cell-intrinsic metabolic heterogeneity in 

human cancers. Furthermore, these phenomena imply that the hallmark features of ccRCC 

metabolism discovered through measurements of cellularly heterogeneous bulk tumors, 

including aerobic glycolysis and upregulation of the antioxidant response, are themselves 

heterogeneous and vary significantly across the spatial extent of the tumor. This raises 

the possibility that some ccRCC metabolic phenotypes arise either directly from non-

tumor cells, or indirectly via metabolic reprogramming of tumor cells in specific immune 

microenvironments. However, existing studies of intratumoral metabolic heterogeneity 

in ccRCC have been limited to small numbers (typically, two) of tumor regions11,12 

and have largely lacked the orthogonal measurements of the genome, transcriptome, 

and microenvironment necessary to test this hypothesis. Thus, neither the intratumoral 

heterogeneity of metabolic phenotypes, nor their cellular source (i.e. from tumors or immune 

cells), are well understood.

Here, to characterize metabolic intratumor heterogeneity and its drivers, we assembled 

a cohort of 123 tumor and 64 adjacent normal regions from 31 clear cell renal cell 

carcinoma patients with associated metabolomic, genomic, and transcriptomic profiling. 

Through analysis of this spatial, multimodal dataset, we discovered that elevated 

intratumoral metabolomic heterogeneity (IMH) was associated with specific transcriptomic 

and immunologic features, including lower cytotoxic cell infiltration, but comparatively 

few distinguishing genomic features. Joint analysis of the entire dataset revealed that all 

patients evolved a similar pattern of IMH dominated by metabolic program resembling 

compensation to ferroptotic susceptibility, with tumor regions primarily stratified by their 

abundance of cysteine, glutathione, and polyunsaturated fatty acids. Studying in detail the 

molecular features associated with intratumoral metabolite variation across tumor regions, 

we found that gene expression profiles associated with immune infiltration, and direct 

measurements of immune cells, significantly correlated with the intratumoral variation 

of numerous metabolites, indicating that the immune microenvironment and metabolism 

coevolve in ccRCC to produce spatially-restricted niches with defined nutrient abundance 
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and immune profiles. Motivated by the strong covariation between the metabolome and 

transcriptome and the clinical significance of the immune microenvironment in ccRCC, 

we applied a machine learning algorithm (MIRTH) to impute metabolite levels from RNA 

sequencing data, ultimately identifying metabolites associated with response to systemic 

therapy in ccRCC.

Results

Multiregional metabolomic, transcriptomic, and genomic profiling of ccRCC

To interrogate metabolomic heterogeneity in RCC, we assembled a mixed cohort of fresh 

frozen high-quality tumor/adjacent normal specimens covering both (1) patients with only 

a single region profiled (“single-region”) and (2) patients with multiple tumor and normal 

regions profiled (“multiregion”). The total cohort included samples from 156 patients, with 

33 patients undergoing multiregion profiling. Our cohort included tumor regions which 

were untreated (n=144), treated with Nivolumab (anti-PD-1) only (n=106), Cabozantinib 

or Crizotinib (tyrosine kinases inhibitors) (n=8), and with combination therapy (n=10). 

In tumors from treated patients, therapies were administered prior to surgical resection. 

Metabolomic profiling by mass spectrometry was performed in two batches, with one 

batch (“M4”) containing 68 patients (18 multiregion) and the other (“M5”) containing 88 

patients (15 multiregion). A total of 268 tumor regions and 78 adjacent normal regions 

were collected. Nivolumab-exposed tumors were profiled 8 weeks after therapy, while 

combination-exposed tumors were profiled an average of 7.5 months after therapy.

Principal component analysis (PCA) of the metabolomics data showed clear separation 

between tumor and normal samples (Supplemental Figure 1a). Using a false detection 

rate-corrected Wilcoxon test we identified 404 and 507 metabolites that display differential 

abundance between tumor and normal tissue samples in M4 and M5 respectively (FDR-

adjusted p-value < 0.05) which largely overlapped with previously published data (M1)1 

(Supplemental Figure 1b). Interestingly, we observed little separation of tumors on principal 

components analysis based on their exposure to immunotherapy treatment (Supplemental 

Figure 1c), and while a small fraction of metabolites (33/602, 6%) demonstrated differential 

abundance in treated (across all treatment groups) versus untreated tumors (FDR-adjusted 

p-value < 0.05), these metabolites were not enriched in any one metabolic pathway. 

These data are consistent with prior knowledge on the relatively limited effect of single-

agent nivolumab on ccRCC gene expression13; indicating that exposure to immunotherapy 

produces (over relatively short clinical time scales) comparatively small metabolomic 

effects.

To examine the extent of metabolomic heterogeneity across regions and patients, we 

completed unsupervised hierarchical clustering of metabolomic data across tumor regions 

(Supplemental Figure 2a). Consistent with a prior report14, the majority of tumor regions 

clustered by patient-of- origin in both M4 and M5 cohorts. However, a small number of 

regions (derived from numerous patients) clustered separately and were distinct on PCA 

analysis (Supplemental Figure 2b) and upon inspection were found to have exceptionally 

low ion counts relative to other tumor samples in the cohort (Wilcoxon p-value 5×10−10) 

(Supplemental Figure 2c). Based on prior literature15, we hypothesized that these outlier 
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regions with low ion counts may correspond to bona fide depletion of metabolites 

resulting from tissue necrosis. Differential abundance analysis identified 323 metabolites 

that distinguish outlier and non-outlier tumor samples (FDR-adjusted p-value < 0.05 and 

absolute log2 fold-change > 0.5) (Supplemental Figure 2d). Interestingly, the metabolomics 

data found that one of the most upregulated metabolic pathways was sphingomyelins, a lipid 

species which can be degraded to release pro-apoptotic ceramide molecules16 (Supplemental 

Figure 2e, Supplemental Figure 2f). An expert pathologist reviewed 88 samples, five of 

which were identified as outlier computationally (Supplemental Figure 2g). Review by an 

expert pathologist (which we consider the gold-standard for necrosis detection) found 5/5 

computationally identified outliers were necrotic, while 76/83 non-outliers were found to 

have no evidence of necrosis (Fisher’s exact test p-value = 2×10−5). Necrosis, therefore, 

is a dominant mode of metabolic heterogeneity in ccRCC whose metabolic characteristics 

transcend individual patients. For all further analysis, we focused exclusively on multiregion 

clear cell tumor and normal regions, excluding necrotic regions (n = 19 regions), non-clear 

patients (n = 44 regions), and single-sample patients (n = 98 regions). This left a total 

of 31 ccRCC tumors with associated multiregion profiling (123 tumor regions, 64 normal 

regions; 17 patients in M4 and 14 patients in M5) (Figure 1a,b). Details on metabolomic, 

transcriptomic, and genomic data processing are provided in the Methods.

The landscape of intratumoral metabolic heterogeneity (IMH) in ccRCC

To quantify metabolomic heterogeneity both within- and between-patients, we calculated an 

“h-score” for each metabolite corresponding to the the expected log2 fold-change for a given 

metabolite i (“h-score”) between two randomly chosen regions (Supplemental Figure 3a). 

Summarizing h-scores across all regions of a patient, we found that IMH varied widely by 

patient: in the most heterogeneous patient (NIVO10), a randomly chosen metabolite could 

be expected to vary 3-fold between regions, compared to 1.3-fold in the least heterogeneous 

patient (NIVO4). Interpatient metabolomic heterogeneity was greater than intratumoral 

metabolomic heterogeneity (Figure 2a). Both intrapatient and interpatient heterogeneity was 

comparable in tumors and adjacent normal kidney. A small number of metabolites (6%, 

54/602) demonstrated differences in their extent of intrapatient metabolomic heterogeneity 

in tumor compared to normal kidney, but these metabolites were not concentrated in any 

one pathway (Figure 2a). IMH was also not significantly associated with tumor stage 

(Kruskal-Wallis p-value = 0.45) or grade (Kruskal-Wallis p-value = 0.31).

We hypothesized that elevated IMH may define a class of ccRCC tumors with distinct 

genomic, transcriptomic, and microenvironmental features. To test this hypothesis, we 

performed linear regression on IMH scores of each patient and compared their clinical, 

metabolomic, transcriptomic, and genomic profiles. There were no significant differences 

in IMH based on clinical stage (p-value = 0.55) or grade (p-value = 0.31). Comparing 

the incidence of key driver mutations in ccRCC (VHL, PBRM1, SETD2, BAP1, KDM5C, 

MTOR, TP53, PIK3CA, TSC2, PTEN, HLA-LOH, and CDKN2A/B loss), patients with 

loss-of-heterozygosity of HLA had higher IMH (median = 0.77) than patients without 

HLA LOH (median = 0.64), but this result did not survive multiple hypothesis correction 

(uncorrected p-value = 0.05) (Figure 2c, 2d). Thus, elevated IMH is not strongly associated 

with specific genetic alterations in ccRCC tumors.
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In contrast, patients demonstrated stark metabolomic differences based on IMH: 137/602 

(23%) metabolites significantly correlated with IMH (FDR-adjusted p-value < 0.05), with 

exceptionally strong enrichment of sphingomyelins (Figure 2b). After controlling for age 

and sex, we found that significant metabolic correlation with ITH remained (Pearson 

correlation coefficient comparing FDR-adjusted p-values in the two models = 0.95, p-value 

< 2.2×10−16). In complement to this, the transcription of 619/19570 (3%) of genes were 

significantly associated with patient-level IMH scores (FDR-adjusted p-value < 0.05). 

Performing GSEA, immune pathways (specifically interferon response) were negatively 

enriched with IMH while pathways associated with cell growth and proliferation were 

positively enriched (Figure 2e). Comparing the expression of RNA-based immune signatures 

with IMH, we found statistically significant negative association in cytotoxic cells (FDR-

adjusted p-value = 0.04) and Th17 cells (FDR-adjusted p-value = 0.04) (Figure 2f). In total, 

these data argue that elevated IMH defines a molecularly distinct group of ccRCC tumors 

with distinct metabolic and microenvironmental features but limited differences in genotype.

Intratumoral metabolomic evolution mirrors transcriptomic evolution

We considered the possibility that IMH may reflect the overall intratumoral molecular 

diversity of the whole tumor. To test this, we calculated a measure of intratumoral 

heterogeneity for matched DNA and RNA sequencing data for 28 patients with sufficient 

data (number of profiled regions >= 2). Interestingly, the magnitude of patient-specific 

transcriptomic heterogeneity, but not patient-specific genomic heterogeneity, was correlated 

to patient-specific metabolomic heterogeneity (transcriptomic heterogeneity: Spearman 

correlation M4 p-value = 0.02, M5 p-value = 0.01, genomic heterogeneity: Spearman 

correlation M4 p-value = 0.83, M5 p-value = 0.21) (Figure 2g,h). Importantly, there was 

no significant correlation between transcriptomic and genomic heterogeneity (Spearman 

correlation M4 p-value = 0.55, M5 p-value = 0.18).

We next investigated the relationship between intratumoral patterns of metabolomic, 

transcriptomic, and genomic heterogeneity, we reconstructed data-modality-specific 

evolutionary phylogenies for each patient with at least 3 tumor regions profiled (n=23 

total). By examining the similarity of phylogenies reconstructed from different data 

modalities (using the Robinson-Foulds metric, see Methods), we observed that in 

cases where the 3 phylogenetic reconstructions diverged, DNA- and metabolite-based 

evolutionary phylogenies consistently showed less similarity than RNA- and metabolite-

based phylogenies, although this result did not reach statistical significance (paired t-test 

p-value = 0.1) (Figure 2j). Thus, we observe associations in both (1) the magnitude 

of intratumoral transcriptomic and metabolomic heterogeneity at the level of the whole 

patient (Figure 2g) and (2) the similarity of transcriptomic/metabolomic profiles between 

spatially circumscribed tumor regions (Figure 2i), but fail to observe analogous associations 

when comparing genomic and metabolomic profiles. The data above thus support a model 

whereby gene expression and metabolite availability can fluctuate and adapt in response 

to regional changes in a manner potentially independent of genomic diversification, and 

implies that tumor subclones are unlikely to exhibit broad, whole-metabolome differences in 

phenotypes.

Tang et al. Page 6

Cell Metab. Author manuscript; available in PMC 2024 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A heterogeneity program driven by cysteine accumulation, polyunsaturated fatty acids, 
and ROS tolerance dominates ccRCC tumors

We sought to understand the detailed metabolites and metabolic pathways which ultimately 

drove IMH across the tumor regions of each patient. To do so, we calculated IMH of 

each metabolite in tumor regions (see Methods), focusing special attention on metabolites 

in glycolysis, the TCA cycle, and other central metabolic pathways that have previously 

been implicated in the genesis and metastatic progression of ccRCC. Within individual 

pathways of interest, we observed considerable variation in IMH, with specific metabolites 

(e.g. glucose-6-phosphate) demonstrating exceptionally high heterogeneity relative to other 

metabolites in the pathway (Figure 3a). Cysteine was an especially remarkable outlier: 

IMH of cysteine was >1.5-fold higher than the IMH of any other proteinogenic amino acid 

(Figure 3a/g).

To understand the consequences of elevated heterogeneity in cysteine and other metabolites, 

we examined correlated intratumoral fluctuations in metabolite levels. Interestingly, after 

controlling for baseline metabolite abundance in a given patient, we observed highly 

similar patterns of intratumoral metabolite covariation across patients. For example, across 

all patients, citrate-high regions in tumors demonstrated consistently higher levels of 

cis-aconitate (p-value < 2×10−16) and lower levels of fumarate (p-value = 6×10−9) than 

citrate-low regions (Figure 3b). This raised the novel possibility that ccRCC patients 

evolve a common, universal pattern of IMH, manifesting in correlated fluctuations of 

metabolites around their baseline level in a patient. To test this hypothesis, we transformed 

our metabolomic data to capture the fluctuation of each metabolite relative to its mean 

abundance in a given patient and completed principal components analysis (PCA, see 

Methods). This analysis revealed that the first principal component (“PC1”, explaining 26% 

of the variance in the data) separated tumor and normal regions (Figure 3c) and KEGG 

pathway-based analysis showed an enrichment of fatty acids and a decrease in amino acid 

levels in PC1high regions, consistent with prior metabolomic features of ccRCC tumors 

(Supplemental Figure 3b).

In contrast to PC1, the second principal component (“PC2”, explaining 12% of the 

variance) separated tumor regions, but not normal regions, from the majority of patients 

into two distinct classes (Figure 3c). PC2low tumor regions demonstrated characteristics 

associated with elevated uptake and phosphorylation of free glucose (high levels of 

glucose-6-phosphate (FDR-adjusted p-value = 1×10−5) and lactate (FDR-adjusted p-value 

= .003) and high levels of the TCA cycle intermediates fumarate (FDR-adjusted p-value 

= 0.001) and malate (FDR-adjusted p-value = 5×10−4). Additionally, PC2low regions also 

demonstrated higher anti-oxidant levels, including high reduced glutathione (FDR-adjusted 

p-value = 0.03), alpha-tocopherol (FDR-adjusted p-value = 0.006), and ascorbate (FDR-

adjusted p-value = 3×10−4). In contrast, PC2high regions had comparatively higher levels of 

free glucose (FDR-adjusted p-value = 5×10−6), citrate (FDR-adjusted p-value = 2×10−7), 

and cis-aconitate (FDR-adjusted p-value = 1×10−6), suggesting that these regions are more 

glucose-replete and possibly undergo less aerobic glycolysis (Figure 3d). At a pathway level, 

PC2low tumor regions showed elevation in multiple fatty acid species including long-chain 

polyunsaturated fatty acids (PUFAs, DA score = −0.8) and hydroxy acylcarnitines (DA score 

Tang et al. Page 7

Cell Metab. Author manuscript; available in PMC 2024 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



= −1) (Figure 3e), and PC2low regions demonstrated a generic tendency to accumulate lipids 

(Supplemental Figure 4b). Differential expression of multiregion RNA-sequencing data 

(controlling for patient-of-origin) identified reactive oxygen species (FDR-adjusted p-value 

= 6×10−4) and oxidative phosphorylation (FDR-adjusted p-value = 6×10−10) as elevated in 

PC2low tumor regions (Figure 3f) but no difference in either EIF2AK2 expression or an 

RNA signature capturing the magnitude of the integrated stress response (ISR p-value = 

0.59, EIF2AK2 p-value = 0.28). Investigating defined MitoPathways from MitoCarta 3.0, 

we found 57/61 (93%) of pathways were significantly depleted in PC2low tumor regions, 

providing further evidence of increased cellular oxidation in these regions. Importantly, we 

found no significant differences between tumor purity (p-value = 0.8) (Supplemental Figure 

4a), and no significant differences in cellular proliferation as quantified by either RNA 

signature of proliferation (p-value = 0.31, Supplemental Figure 4c) or Ki67 staining (p-value 

= 0.19, Supplemental FIgure 4d). We similarly observed no differences in angiogenesis 

between regions as evaluated using either an angiogenic RNA signature (p-value = 0.29) 

or CD31 immunofluorescence staining (p-value = 0.11) (Supplemental Figure 4e,f). These 

data demonstrate that PC2low regions are characterized by elevated rates of glycolysis, high 

abundance of PUFAs and antioxidants, increased OXPHOS expression, and signatures of 

elevated ROS production, and that the features of PC2low regions cannot be explained by 

changes in tumor cellularity, proliferation, or vascularization.

Among the metabolites with the highest contribution to PC2 were reduced glutathione 

and its rate-limiting precursor cysteine (Supplemental Figure 3c), as well as numerous 

polyunsaturated fatty acids (PUFAs). These metabolites are each associated with the 

molecular process of ferroptosis, an iron-mediated form of cell death triggered by 

peroxidation of PUFAs and counteracted by glutathione17–20. Based on the data in Figures 

3b–3f, we hypothesized that cysteine levels may be elevated in a compensatory manner to 

produce glutathione and prevent ferroptosis in tumor regions with high PUFA levels and 

OXPHOS expression. Consistent with this, high tumor cysteine levels were correlated with 

increased levels of reduced glutathione (rho = 0.42, p-value = 1×10−6), as well as increased 

levels of the glutathione precursors glutamate (rho = 0.65, p-value = 4×10−16) and glycine 

(rho = 0.66, p-value < 2×10−16) (Figure 3h), but no similar effects were observed for the 

related disulfide cystine (Supplemental Figure 4g–i).

To directly evaluate the functional consequences of cysteine accumulation in tumor regions, 

we undertook two complementary analyses. First, to understand the functional effects of 

cysteine on metabolic flux, we leveraged recent spatial metabolomic isotope tracing data 

from mouse kidneys21. We recapitulated that, in analogy to Figure 3a, cysteine displays 

exceptional spatial heterogeneity across the mouse kidney relative to all other proteinogenic 

amino acids (Figure 3k). Then, by correlating cysteine abundance with labeling patterns 

from experiments using uniformly-labeled glucose and glutamine, we investigated how 

flux patterns change in cysteine-rich versus cysteine-depleted regions (Figure 3l, m). 

Interestingly, we found that regions with elevated cysteine demonstrated decreased glucose- 

and glutamine-derived labeling of cysteine (suggesting reduced cysteine biosynthesis and 

increased de novo uptake of cysteine via cystine), and increased glucose-derived and 

glutamine-derived labeling of glutathione. Together, these data suggest that cysteine-high 

regions are associated with increased de novo uptake of cysteine (e.g. via SLC7A11/
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cystine), as well as increased flux from extracellular glucose/glutamine to intracellular 

glutathione biosynthesis. Second, we performed immunohistochemical staining of GPX4, 

a critical regulator of ferroptotic resistance17. For 5 patients, we identified tumor regions 

demonstrating the highest and lowest abundance of cysteine within a given patient, and 

immunohistochemically stained these regions for GPX4. Consistent with our model above, 

cysteine-high tumor regions demonstrated elevated GPX4 intensity (paired Wilcoxon p-

value 0.05) (Figure 3i, j). Together, these data establish that regions with elevated cysteine 

levels have distinct metabolic flux patterns and are associated with the upregulation of 

GPX4. Moreover, these data suggest that PC2low regions are defined by an increased 

susceptibility to ferroptotic cell death (characterized by higher PUFA levels and OXPHOS 

activity) and concomitant compensation against ferroptosis in the form of upregulated 

antioxidant biosynthesis.

Immune cell populations in the ccRCC TME remodel bulk tumor metabolism

When comparing expression of various immune signatures in PC2high regions to PC2low 

regions, we found significant enrichment of T cell and macrophage cell populations in 

PC2high regions (Supplemental Figure 4j). Based on this evidence and observations by 

others that immune and tumor cells compete for nutrients and signaling factors in the 

ccRCC microenvironment22–27, we therefore hypothesized that the metabolome and immune 

microenvironment might coevolve to produce niches with defined patterns of metabolite 

abundance and immune cell composition. To systematically test this hypothesis, we studied 

the interaction between the immune microenvironment and metabolic phenotypes using a 

previously validated RNA signature of generic immune infiltration (Immune Score) in each 

sample28. To control for our repeat measurements of different regions from the same patient, 

we used a mixed effects model with patient as a random effect. Significance was determined 

by parametric bootstrapping (100,000 iterations) (Figure 4a and Methods).

In total, 33/602 (5%) metabolites were significantly associated with Immune Score across 

patients (FDR-adjusted p-value < 0.05) (Figure 4b). These immune-associated metabolites 

included both glutathione and cysteine, which were differentially expressed when comparing 

PC2high vs PC2low regions (Figure 3c), as well as several metabolites associated with NAD+ 

metabolism (nicotinamide, quinolinate, and 1-methyl-2-pyridone-5-carboxamide). Pathway 

analysis revealed that plasmalogens and NAD+ metabolism pathways were enriched 

for Immune Score coregulation (Figure 4c). Confirming that mixed effects modeling 

capture intrapatient relationships between metabolites and Immune Score, the correlative 

relationship between metabolites and Immune Score was preserved intratumorally: taking 

nicotinamide and quinolinate as examples, regions with the highest levels of Immune Score 

expression also demonstrated higher levels of quinolinate (Wilcoxon paired p-value = 0.02) 

and nicotinamide (Wilcoxon paired p-value = 0.03). (Figure 4d). Importantly, the association 

between metabolite levels and immune infiltration (via Immune Score) was corroborated in 

an a recently published multimodal, single-region study by of ccRCC29(p = 1×10−5, rho = 

0.53, Supplemental Figure 4k). Together, these analyses suggest that the metabolome can be 

altered by increased immune infiltration and specific metabolites, including but not limited 

to NAD+ metabolism, are strongly correlated to the extent of immune cell abundance.
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Metabolic features of prognostic immune signatures in ccRCC

The Immune Score analysis above represents a crude estimation of the total immune 

infiltration of a tumor, summing together diverse myeloid and lymphoid cell populations 

with both pro- and anti-tumorigenic properties. Importantly, emerging data now indicates 

that RNA signatures capturing certain aspects of the ccRCC microenvironment, including 

angiogenic gene expression and myeloid/T-effector abundance, are associated with response 

to therapy in ccRCC30–32. Given the association between the TME and the metabolome 

(Figure 4b) and generically between transcript levels and metabolite levels (Figure 2), 

we hypothesized that these signatures may themselves also reflect distinct metabolic 

phenotypes. Three different signatures, qualitatively reflecting the abundance of cytotoxic 

(“JAVELIN”)32 cells, myeloid (“Myeloid”)30 cells, and the activity of angiogenesis 

(‘Angiogenesis”)31 in the tumor, have been identified through retrospective analysis of 

response data in several clinical trials of immunotherapy and/or anti-VEGF therapy in 

ccRCC. We confirmed that the expression levels of these signatures were significantly 

correlated to immunofluorescence staining (Angiogenesis Signature/CD31, rho = 0.63, p-

value = 3×10−4, Figure 5a; Myeloid Signature/CD68, rho = 0.58, p-value = 0.001, Figure 

5b). Representative images of immunofluorescence staining are in Figure 5c.

We again used mixed effects models to identify metabolites associated with the 

angiogenesis, myeloid, and JAVELIN scores. There was significant variability in the 

association between metabolite levels and prognostic RNA signatures. In total, we identified 

no metabolites associated with the JAVELIN signature (Figure 5d) and 4 metabolites 

significantly associated with the angiogenesis signature (Figure 5e). In contrast, 47/602 

(8% of the measured metabolome) metabolites associated with the myeloid signature 

(Figure 5f). The myeloid signature has been associated with inferior outcomes in patients 

treated with systemic therapy and with recurrence in high-risk localized disease33,34. 

Metabolites associated with myeloid infiltration concentrated into certain pathways, 

including most prominently n-acetylated amino acids (NAAs, including n-acetylarginine, 

n-acetylasparagine, n-acetylglutamine, n-acetylleucine, n-acetylalanine, n-acetylaspartate, 

and n-acetylmethionine). Most notably, the immunomodulatory metabolite kynurenine35,36, 

which was the target of recent negative clinical trials of inhibitors of its upstream enzyme 

IDO1 (which is significantly positively associated with kynurenine, p-value < 2.2×10−16), 

was significantly negatively associated with the myeloid signature (FDR-adjusted p-value 

= 5×10−3). These findings indicate that the presence of myeloid cells in the immune 

microenvironment is strongly associated with a unique pattern of metabolite abundance.

Next, we more granularly investigated the specific myeloid cell populations exhibiting 

strong correlation with NAA abundance using RNA-based signatures for mast cells, 

dendritic cells, neutrophils, and macrophages. This analysis revealed that dendritic cells 

and macrophages were significantly associated with 71/602 (12%) and 80/602 (13%) of 

metabolites, including several NAAs, respectively (Figure 5g,h). To identify the putative 

cellular source of NAAs, we first investigated the association between NAAs and the 

expression of N-acetyltransferase genes acting on them, which identified two genes NAT8 
and NAT8B, exhibiting strong and broad correlation to numerous NAAs (Figure 5i). To 

understand the microenvironmental cellular source driving NAA levels, we used single cell 
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data to evaluate the cell-type-specific expression of NAT8/NAT8B across cell types. While 

NAT8B was not abundantly expressed, we found that NAT8 expression was highest in tumor 

and kidney epithelial cells, potentially implying that epithelial, rather than myeloid, cells 

drove NAA abundance (Figure 5j). We further reasoned that, if myeloid cells did indeed 

drive the variation in NAA abundance, then the correlation between myeloid cell infiltration 

and NAA abundance would be preserved in adjacent-normal kidney tissue. However, when 

tested, no significant association between myeloid infiltration and NAA abundance was 

found in normal kidney. From these analyses, we concluded that the association between 

myeloid and NAAs most likely arose from tumor-cell-intrinsic modulation of expression of 

N-acetyltransferase genes in the presence of myeloid cells in the TME.

Machine learning predicts metabolic profiles of response to anti-VEGF drug sunitinib

Based on the association between metabolite levels and the prognostically significant 

myeloid signature, we hypothesized that certain metabolomic profiles may directly associate 

with patients’ response to anti-angiogenic or immune checkpoint blockade therapy. 

However, the identification of metabolic biomarkers of response to therapy has historically 

been limited due to the scarcity of metabolomics data itself, which relies on significant 

quantities of fresh-frozen tumor tissue. Premised on the strong association between 

transcript and metabolite levels in Figure 4a, we hypothesized that the abundance of a subset 

of metabolites could be imputed from transcriptomics data (in a manner similar to RNA 

signatures and immune deconvolution). To evaluate this possibility, we applied a previously 

published machine learning algorithm (Metabolite Imputation via Rank-Transformation and 

Harmonization, “MIRTH”) developed by our group37. In this context, MIRTH imputes 

unmeasured metabolites in a target dataset by learning the relationship between RNA and 

metabolite levels in a reference dataset where both RNA and metabolites are measured 

(Supplemental Figure 8a and Methods).

We first sought to benchmark if MIRTH could impute biologically reasonable metabolic 

phenotypes. To do so, we treated three batches of in-house ccRCC samples with matched 

RNA and metabolomics data (including both M4 and M5 datasets, and an additional M1 

dataset related to a prior publication) as reference datasets, and the TCGA ccRCC cohort 

(for which only RNA data was available) as the target dataset. We then applied MIRTH 

to impute 606 tumor and adjacent normal samples from TCGA. Imputed metabolite levels 

in the TCGA preserved ground-truth metabolic differences between both tumor/normal 

samples (Spearman’s rho = 0.85, p-value= 1.6×10−31) and high-stage/low-stage samples 

(Spearman’s rho = 0.39, p-value = 3.0×10−5) (Figure 6a). To further ascertain the accuracy 

of MIRTH in imputing metabolite levels from RNA data, we benchmarked it on a large 

dataset of over 900 cancer cell lines jointly profiled by RNA sequencing and metabolomic 

sequencing in the CCLE. By artificially partitioning the CCLE data into a reference 

dataset (50% of all cell lines, matched RNA/metabolite data) and a target dataset (50% 

of all cell lines, RNA data only), we found that MIRTH accurately imputed 96% of 

metabolites (FDR-corrected Spearman p-value < 0.05 and Spearman’s rho > 0.3) (Figure 

6b). Immunomodulatory metabolites, such as 1-methylnicotinamide, were imputed with 

exceptionally high accuracy (Figure 6c).Together, these data establish the value of MIRTH 

as a tool to impute otherwise unmeasured metabolite levels in a diverse set of diseases 
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beyond ccRCC data (Figure 6b). Altogether, these data establish that MIRTH successfully 

imputes metabolite levels from RNA sequencing data across diverse cancer types in solid 

tumors and cell lines, preserves metabolic relationships between subsets of tumor/normal 

samples, and learns signatures of progression to aggressive disease.

We then applied MIRTH to impute metabolite levels from RNA sequencing data in 

7 publicly available advanced ccRCC clinical trials where patients were treated with 

either immunotherapy (in combination or alone) or sunitinib (a tyrosine kinase inhibitor, 

typically used in the control arm of these trials). For 262 metabolites with accurate 

imputation on cross-validation, we verified that MIRTH imputation preserved the correlative 

relationship between metabolites and Immune Score signature relative to data from 

M4/M5 (Supplemental Figure 5d). Next, we evaluated the association between each of 

the 262 well-predicted metabolites and progression free survival (PFS) by multivariate Cox 

proportional-hazards models (evaluating different treatment arms separately.) The number 

of metabolites associated with response varied across each trial and arm, motivating us to 

identify metabolites with consistent patterns across the trials. Meta-analysis results across 

7 clinical trials identified 7 metabolites significantly associated with improved PFS in the 

sunitinib arms (FDR-adjusted p-value < 0.05) (Figure 6d) and no metabolites significantly 

associated with PFS in immunotherapy treatment arms (Supplemental Figure 5e). Among 

the metabolites associated with sunitinib were saccharopine and N-palmitoyl-sphingadienine 

(d18:2/16:0)*4, which were also significantly associated with the myeloid signature (Figure 

5f). The strongest association with sunitinib response was observed in patients with 

high 1-methylimidazoleacetate (Figure 6e). 1-methylimidazoleacetate is a catabolite of the 

inflammation-mediating metabolite histamine, suggesting that local inflammation in the 

tumor may in part mediate response to sunitinib38. Thus, by training a model to impute 

metabolite levels from transcriptomic data, MIRTH enables the identification of otherwise 

cryptic metabolite biomarkers in publicly available trial data.

Discussion

Intratumoral genotypic and phenotypic diversification of ccRCC tumors2,39 influences 

future tumor evolution and likely shapes the development of metastasis and response to 

therapy40–47. Motivated by the numerous studies implicating remodeled metabolism as 

a hallmark of ccRCC tumorigenesis and progression, we investigated how intratumoral 

metabolic heterogeneity (IMH) manifests and studied the underlying genetic, transcriptomic, 

and microenvironmental factors driving metabolic diversification. Using multiregional 

sampling of the metabolome, genome, and transcriptome, we found highly heterogeneous 

tumors have elevated HLA loss of heterozygosity and identified a metabolic program which 

compensates for ferroptotic susceptibility which drives a substantial fraction of total IMH. 

Transcriptomic factors, reflecting in part the cellular composition of the TME, influenced 

metabolomic variation within tumors more than genetic factors. In turn, a large fraction 

of the metabolome was correlated to the extent of both generic immune infiltration in the 

tumor, and more specifically to the abundance of myeloid cells in the TME. Seizing on 

the association between the transcriptome and metabolome, we applied a machine learning 

algorithm (MIRTH) to impute metabolite levels from RNA-sequencing data and identified 

a set of metabolites that are reproducibly associated with response to anti-VEGF therapy in 
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ccRCC patients. Importantly, MIRTH naturally generalizes to other cancer types (Figure 6b) 

and diseases with paired metabolomics and transcriptomics data, and can therefore be used 

to democratize metabolomic data analysis in contexts where the availability of fresh-frozen 

primary tissue for metabolomics is limited. MIRTH is thus a means for the discovery of new 

metabolomic biomarkers and/or targets for therapeutic intervention.

Recent functional data suggests that stochastic heterogeneity in the metabolic phenotypes of 

tumor cells can endow a subset of cells with the capacity to metastasize9,10. Complementing 

these data, our group and others have shown that the abundance of glutathione and its related 

metabolites is associated with metastatic disease and the risk of recurrence in ccRCC1. 

Here, we discovered that all ccRCC tumors evolve along a common axis of IMH that 

produces spatially-delimited tumor regions defined by elevation of metabolites associated 

with glutathione and its related precursors (e.g. cysteine). These data motivate a new 

model whereby metabolic diversification of ccRCC ultimately produces tumor subclones 

with elevated glutathione levels that can ultimately seed distant metastases. Importantly, 

identifying the selective pressures placed on metabolism in metastases will likely require 

multimodal data and integrative analysis to reconcile apparently conflicting data: while 

a comparison of transcriptional phenotypes of metastatic and primary tissues from the 

ImMotion151 Phase III clinical trial reveals no difference in the expression of OXPHOS 

genes between primary and metastatic tissues (mean difference = 69.9, p-value = 0.055), 

more direct measurements of metabolic flux suggests ccRCC metastases increase their 

respiratory capacity relative to primary tumors.

Among the most significant, but also comparatively provocative, limitations of this and other 

metabolomic studies of primary tumors is that measurements of the tumor metabolome are 

nearly always taken in bulk and therefore represent a complex mixture of metabolite signals 

from the constituent tumor and non-tumor (immune, stromal) cells in the microenvironment. 

Our data here suggests that the cellular composition of the immune microenvironment is 

associated with specific metabolomic features, and complements newly emerging data on 

the partitioning of nutrient consumption across cellular compartments23. The coevolution 

of the tumor metabolome and immune microenvironment likely arises from a combination 

of several phenomena: (1) cell-type-specific accumulation/depletion of specific metabolites 

(such as those previously described for 1-methylnicotinamide in ovarian cancer24), (2) 

competition among different cell populations for nutrients in the circulation48, and (3) 

systemic features of the metabolism of the patient, including but not limited to factors such 

as obesity and metabolic syndrome49,50. There is ample evidence of metabolite-level effects 

on immune response, including the downregulation of glycolysis by CTLA-4 in T-cells25, 

the inhibition of T-cell proliferation by expression of 2,3-dioxygenase in tumor cells48, 

and the suppression of T-cell function by tumor-derived lactate secretion48. In support of 

these findings, large-scale analysis of public clinical trial data here (Figure 6) suggests 

that a subset of metabolites may be associated with response to approved therapies in 

ccRCC. These discoveries may provide a means for stratifying patients according to their 

likelihood to respond to metabolically targeted therapies (e.g. IDO1/epacadostat51). Our 

findings, in combination with these prior discoveries, suggest that therapeutic strategies 

which rationally target the metabolome and immune microenvironment in combination may 

improve response to therapy in ccRCC.
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Limitations

Several limitations must be considered when interpreting the conclusions of our study. 

Due to the multiregional nature of our study, the sample size in terms of patients is 

relatively small, and statistical power is further diluted by the separation of metabolomic 

profiling into two batches. Such sample size limitations may soon be overcome as spatial 

metabolomic technologies capable of sampling intratumoral heterogeneity at significantly 

higher resolution become more widely adopted. Although we validated several RNA 

signatures of immune cell infiltration with matched immunofluorescence data, caution must 

nevertheless be taken in interpreting the covariation of RNA-based signatures of immune 

infiltration and metabolite levels. More robust signatures, learned from newly abundant 

single cell sequencing data, may potentially overcome this challenge. Finally, the causal 

source of covariation between the metabolome and the immune microenvironment remains 

unclear. Further mechanistic experiments are required to evaluate whether certain metabolic 

milieu are caused by, or may engender the development of, immune microenvironments with 

defined cellular composition.

STAR Methods

Resource Availability

Lead Contact—For further information and requests for resources, please contact the lead 

contact, Ed Reznik (reznike@mskcc.org).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—Metabolomics data generated and used in this study 

are published at 10.5281/zenodo.7986891. RNA and DNA sequencing data and clinical 

information was retrieved from Golkaram et al95. All data used to generate display items 

in this manuscript are available in Data S1. All original code has been deposited at https://

github.com/reznik-lab/rcc_coevolution and is publicly available as of the date of publication. 

Any additional information required to reanalyze the data reported in this paper is available 

from the lead contact upon request.

Experimental Model and Subject Details

Tumor Sampling—Informed consent was acquired and with Memorial Sloan Kettering 

Cancer Center institutional review board approval, partial or radical nephrectomies were 

performed at Memorial Sloan Kettering Cancer Center (New York) and stored at the MSK 

Translational Kidney Research Program (TKCRP). Samples were flash frozen and stored 

at −80 degrees Celsius until molecular characterization. Clinical metadata was recorded for 

all tumor samples. Samples were thawed and extracted as described in detail below, which 

removed proteins, dislodged small molecules bound to the protein or physically trapped in 

the protein matrix, and recovered a wide range of chemically diverse metabolites. Samples 

were then frozen, dried under vacuum and prepared for mass spectrometry. Sex, gender, age, 

and other clinical data about patients in this study can be found in Golkaram et al95.
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Method Details

Sample Preparation and Metabolomic Profiling—The sample extract was split in 

two and reconstituted in acidic and basic LC-compatible solvents where the acidic extracts 

were gradient eluted with water and methanol containing 0.1% formic acid, while the basic 

extracts, which also used water and methanol, contained 6.5 mM ammonium bicarbonate. 

One aliquot was analyzed using acidic positive ion optimized conditions while the second 

aliquot used basic negative ion optimized conditions. Two independent injections into 

separate dedicated columns were performed. MS and data-dependent MS/MS scans using 

dynamic exclusion were used alternatively to perform MS analysis. The LC/MS portion of 

the platform was based on a Waters ACQUITY UPLC and a Thermo-Finnigan LTQ-FT 

mass spectrometer, which had a linear ion-trap (LIT) front end and a Fourier transform ion 

cyclotron resonance (FT-ICR) mass spectrometer backend. Ions with counts greater than 2 

million provided accurate mass measurements and average mass error was less than 5 ppm. 

Ions with fewer than 2 million counts required more effort to characterize. Fragmentation 

spectra (MS/MS) were typically generated in a data-dependent manner but targeted MS/MS 

was employed as necessary, as in the case with lower level signals.

Raw mass spectrometry files were loaded into a relational database, which was then 

examined and appropriate QC limits were imposed. Peaks were identified using Metabolon’s 

proprietary peak integration software and component parts were stored in a separate 

data structure. An in-house library of standards from Metabolon was used to compare 

metabolites. Data on each of these standards were based on retention index, mass-to-charge 

ratio, and MS/MS spectra. For each compound in the metabolomic data, parameters were 

compared to analogous parameters in the standard library. As described in Evans et al.52, 

compounds were identified based on three criteria: retention index within 75 RI units of the 

proposed identification, mass within 0.4 m/s, and MS/MS forward and reverse match scores.

Data Normalization—Block normalization was performed when metabolomics data 

was measured across several days. Each compound was corrected in run-day blocks by 

registering the medians to equal one and normalizing each data point accordingly. Minimal 

measured level of a metabolite across all samples was imputed when metabolite levels 

were below the detection limit. Probabilistic quotient normalization was then performed, 

accounting for an overall estimation on the most probable dilution factor53. Data was then 

log2-transformed.

Necrosis Pathology Review—Hematoxylin and eosin (H&E) stained slides were 

reviewed for morphologic features including coagulative-type necrosis (Supplemental Figure 

2g). Extent of tumor necrosis was subjectively quantified by a pathologist (SG) for all cases 

that were reviewed.

Whole Transcriptome Sequencing—Thank you for your comment. Extracted RNA 

samples were quantified with Qubit RNA HS assay Kit, and 100 ng of RNA was used for 

each library preparation input with Illumina TruSeq Stranded Total RNA with Ribo-zero. 

Each resulting library was quantified individually with Qubit dsDNA HS Kit and normalized 

to 4 nM prior to sequencing. RNA sequencing libraries were prepared in batches of 24, with 
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each individual RNA sample uniquely indexed using Illumina TruSeq RNA UD Indexes. 

Final libraries were pooled for sequencing in up to 36-plex on NovaSeq 6000 S2 flow 

cell, or up to 72-plex on NovaSeq 6000 S4 flow cell. All RNA samples in the cohort 

were selected for library preparation and sequencing. Each sample was assigned a unique 

identifier during sample accessioning to prevent sample selection bias. A paired-end 76 base 

pair sequencing recipe was used to produce ~200 million total paired reads per sample. 

Batch effects were not observed (Supplemental Figure 6a).

RNA-seq Data Processing Pipeline—STAR 2-pass alignment54 was used to align 

RNA-sequencing reads against human genome assembly hg19. Numerous QC metrics, such 

as general sequencing statistics, gene feature, and body coverage, were calculated through 

RSeQC55 based on the alignment result. The R package GenomicAlignments56 over aligned 

reads with UCSC KnownGene57 in hg19 as the base gene model was used to compute 

raw RNA-seq gene level count values. Union counting mode was used and mapped paired 

reads after alignment quality filtering were used. Finally, the R package DESeq258 was 

utilized to estimate the sample size factor (using the estimateSizeFactors function), and 

to generate the sample size normalized read count matrix (using the counts function). 

DESeq2’s fpkm function was then used to generate the FPKM normalized values which 

were derived based on the sample size normalized counts along with the gene model used in 

raw count quantification.

Whole Exome Sequencing—40ng input of DNA per sample was used to generate 

libraries for whole exome sequencing with TruSight Oncology DNA Library Prep Kit, and 

TruSight Oncology index PCR products were used for enrichment. Target exome enrichment 

was performed using the IDT xGen Universal Blockers and IDT xGen Exome Research 

High Sensitivity assay (Biotium) was used for library quantification of the post-enriched 

libraries. Libraries were normalized post-enrichment using bead-based normalization and 

pooled. Illumina NovaSeq™ 6000 S4 flow cell using the XP workflow for individual lane 

loading (12-plex per lane) was used to sequence samples using 101 bp paired-end reaches. 

Each sample yielded an average of 500 million reads and a median target coverage depth of 

360X. No differences in TMB were observed between batches (Supplemental Figure 6b).

WES Data Processing Pipeline—Alignment of raw sequencing data to the hg19 

genome build was performed using Burrows-Wheeler Aligner (BWA) version 0.7.1759. 

Genome Analysis Toolkit (GATK) version 3.860 was used following raw reads alignment 

guidelines from DePristo et al.61 to realign indels, recalibrate base-quality scores and 

remove duplicate reads. Small variant calling was performed using VarScan 262, Strelka 

v2.9.1063, Platypus 0.8.164, Mutect2 - part of GATK 4.1.4.161 and SomaticSniper version 

1.0.5.0 (SNVs only)65. Variants called by a combination of 2 out of 5 callers are reported, 

following recommendations from the Cancer Genome Atlas Research Network66. The 

following criteria were used to filter variants:

1. Tcov > 10 and Taf >= 0.4, Ncov > 7 and Naf <= 0.01, Tac > 4.

2. Common SNPs were identified by snp142.vcf and eliminated.

3. Rare variants identified in dbSNP are kept if Naf = 0.
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4. Low confidence variants had Tcov < 20 or Tac < 4.

5. Variants must be called by more than a combination of 2 or more callers.

6. Common variants were identified by gnomAD v2.1.1 and excluded.

Variants were annotated using Variant Effect Predictor (VEP)67. As per Amemiya et al.68, 

INDELS in blacklisted and/or low mappability regions (such as repeat regions) were 

excluded. FACETS v.6.169 was used to perform allele-specific copy number analysis while 

allele-specific HLA loss of heterozygosity was determined using LOHHLA as described by 

McGranahan et al.70.

Bulk RNA-seq deconvolution analysis—Immune features and signature gene lists of 

immune cell types were obtained according to Bindea et al.71 and Senbabaoglu et al.3. 

ssGSEA72 and CiberSort73 methods were used for bulk RNA-seq deconvolution analysis. 

ssGSEA takes FPKM values as its input and calculates enrichment scores for given gene 

lists compared to all other genes in the sample’s transcriptome. Cibersort also uses FPKM 

expression values as its input but has its own published LM22 gene expression matrix of 

immune cell types of interest, which it uses as a reference to compute the infiltration level of 

each immune cell type. Based the work of Rooney et al.74, immune cytolytic score (‘CYT’) 

was calculated using the geometric mean of TPM (transcripts per million) of granzyme 

A (GZMA) and perforin (PRF1), two cytolytic effector genes. Immune Score, Stromal 

Score, and ESTIMATE Score were calculated through the estimate R package28. Along 

with the Angiogenesis score published by Masiero et al.31, the role of stromal and immune 

compartments in the tumor microenvironment were dissected.

Bulk Gene Set Enrichment Analysis—DESeq2 was used to test for differential 

expression using negative binomial generalized linear models. T-statistics derived from 

differential expression analysis using DESeq2 were fed into the fgsea package (which 

expects ranked statistics) in order to run gene set enrichment analysis.

Ranked gene set enrichment analysis (GSEA) was run on all genes using the t-statistic 

calculated from the DESeq2 package. 50 gene sets based on Hallmark75 were used. GSEA 

analysis was performed using the fgsea function from the fgsea R package (v1.18)76.

Metabolomics and RNA ITH scores—Gene- and patient-wise intra-patient 

heterogeneity scores were calculated using multiregion data. Data was first median-centered 

to remove any metabolite/gene-level bias. For each metabolite/gene, the difference between 

each pair of samples from the same tumor were calculated. The median difference 

between the paired-differences was taken, yielding a metabolite/gene-specific, patient-

specific measure of heterogeneity. This was repeated for all metabolites/genes, across 

all tumors, generating a matrix of metabolite/gene by patient values. Metabolite/gene 

intratumor heterogeneity values are summarized as the median value per metabolite/gene 

across all tumors in the cohort. Patient intratumor heterogeneity values are summarized as 

the median value per tumor across all metabolites/genes. Patient intratumor heterogeneity 

values represent the expected value of the absolute log2-fold change for a randomly 

chosen metabolite/gene within a given tumor. This measure of heterogeneity is not biased 
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by the number of multiregion samples per tumor (Spearman correlation p-value = 0.23 

in metabolomics, Spearman correlation p-value = 0.15 in transcriptomics) (Supplemental 

Figure 6c). Inter-patient heterogeneity scores were calculated by taking the difference 

between each pair of samples from all other patients.

DNA ITH scores—For each pair of regions, the percentage of unique mutations between 

regions from a patient and across patients was calculated. Genetic ITH scores for each 

patient were defined as the median proportion of private somatic mutations (SNVs and 

INDELs) not shared between regions from a single patient, equivalent to 1-Jaccard 

Similarity Index. Here, a score of 0/1 corresponded to complete overlap/complete lack of 

overlap in mutational profiles. Similar to RNA/metabolomics ITH scores, this measure of 

heterogeneity is not biased by the number of multiregion samples per tumor (Spearman 

correlation p-value = 0.72) (Supplemental Figure 10d).

Differential abundance score—The differential abundance (DA) score evaluates 

whether a metabolic pathway is differentially regulated between two groups. The score 

is calculated by applying a Wilcoxon rank sum test to all metabolites in a pathway. P-values 

were then corrected using the Benjamini-Hochberg method (FDR-adjusted p-value < 0.05). 

The DA score for each pathway is calculated as: (#significantly enriched metabolites - 

#significantly depleted metabolites)/ #total metabolites. Only pathways with 3 or more 

significantly altered metabolites were scored.

Robinson-Foulds Distance—Robinson-Foulds distances in Figure 2i, j were calculated 

using the phangorn R package (v2.8.1)77. To calculate the Robinson-Foulds distance 

between two trees (T_1 and T_2) with n tips:

d T_1, T_2 = i T_1 + i T_2 − 2v_s T_1, T_2

where i(T_1, T_2) represents the number of internal edges and v_s(T_1, T_2) represents 

the number of shared internal splits. The reported Robinson-Foulds distance is calculated by 

dividing d(T_1, T_2) by the maximal possible distance i(T_1) + i(T_2) to get a normalized 

distance.

GPX4 Immunohistochemistry—Immunohistochemistry for glutathione peroxidase 4 

(GPX4) was performed in 5 µm FFPE tissue sections using an automated staining system 

(Leica Bond RX) with 3,3′ diaminobenzidine detection (Figure 3h, i). Antigen retrieval was 

conducted for 30 minutes using Leica Bond epitope retrieval solution 1 (ER1; citrate, pH 

6; cat. #AR9961), followed by an incubation with a rabbit monoclonal GPX4 antibody 

(EPNCIR144, Abcam, #ab125066, dilution 1:1200) for 30 minutes, and a subsequent 

incubation of the secondary antibody (Leica Bond Polymer Refine Detection cat. #DS9800). 

GPX4 staining was quantified as H-Scores [H= intensity (0–3) x percentage of positive cells 

(1–100)] by a pathologist (YBC) who was blinded to the metabolite levels of the samples.

Linear Mixed Modelling of Immune Phenotypes—A linear regression was performed 

where metabolite levels were used to predict immune signature expression. To account for 

repeated measures, a linear mixed model was used, with a random effect for each patient. 
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Marginal r2 was calculated to consider only the variance of the fixed effects78. Functions 

from performance79 and lme480 packages were used to conduct the modelling. To assess 

significance, parametric bootstrapping was performed with 100,000 iterations using the 

pbkrtest package81.

The following equations were used to fit the linear mixed models. Actual model: Metabolite 

~ ImmuneSignature + (1 | Patient)

Null model: Metabolite ~ (1 | Patient)

Immunofluorescence for CD31 and CD68—Immunofluorescence detections of CD31 

and CD68 (Figure 5a–c) was performed by the Molecular Cytology Core Facility at 

Memorial Sloan Kettering Cancer Center using Discovery Ultra processor (Ventana 

Medical Systems.Roche-AZ). Heat and CC1 (Cell Conditioning 1, Ventana cat #950–500) 

retrieval were performed for 32 minutes. The tissue sections were then blocked for 30 

minutes in Background Blocking reagent (Innovex, catalog#: NB306). Next, a mouse 

monoclonal anti-CD31 primary antibody (Ventana-Roche, cat#760–4378) was incubated for 

5 hours, followed by a 16-minute secondary antibody incubation of biotinylated anti-mouse 

secondary (Vector Labs, MOM Kit BMK-2202) in 5.75 ug/mL Blocker D, Streptavidin-

HRP, and TSA Alexa488 (Life Tech, cat#B40932) prepared according to manufacturer 

instructions in 1:150. 0.02 ug/mL of a mouse monoclonal IgG1 anti-CD68 antibody (DAKO, 

cat#M0814) was used and incubated for five hours, followed by a 16-minute secondary 

incubation using a biotinylated goat anti-mouse secondary antibody (Vector Labs, MOM Kit 

BMK-2202) in 5.75 ug/mL. Blocker D, Streptavidin-HRP, and CF 543 (Biotium, cat#92172) 

were prepared according to manufacturer instructions in 1:500. To counterstain, 5ug/mL of 

DAPI [dihydrochloride(2-(4-Amidinophenyl)-6-indolecarbamidine dihydrochloride] (Sigma 

D9542) was used for 5 minutes at room temperature. The tissue was then mounted with 

anti-fade mounting medium Mowiol [Mowial 4–88 (CALBIOCHEM code: 475904)] and 

coverslipped.

To scan slides, a Pannoramic P250 Flash scanner (3DHistech, Hungary) with 20x/0.8NA 

objective lens was used. CaseViewer software (3DHistech, Hungary) was used to visualize 

digitized images. One representative region of interest (ROIs) was selected for CD31 and 

CD68 and then exported as .tif files. Regions were analyzed using ImageJ/Fiji software 

(v2.1.0; NIH USA)82.

Imputation of metabolites by RNA with MIRTH—MIRTH (Transcriptomics-

Metabolite Imputation via Rank-Transformation and Harmonization) is a method to impute 

missing metabolites by jointly modeling metabolite covariation across heterogeneously 

covered metabolomics datasets37. Intuitively, MIRTH operates by learning the covariation 

between metabolite and transcript levels in a reference dataset where both are measured and 

then transferring that knowledge to other datasets where metabolites are unmeasured.

Before applying MIRTH, the metabolomics data in each dataset are preprocessed by total 

ion count (TIC) normalization and transcripts levels are transformed into units of TPM 

(Transcripts Per Million). Metabolomics and transcriptomics are then rank-transformed, 

Tang et al. Page 19

Cell Metab. Author manuscript; available in PMC 2024 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



resulting in values between 0 and 1 for each feature across all samples in a batch. 

Preprocessed metabolomics and transcriptomics data are then aggregated into a single 

aggregate multiple-dataset matrix X, which then undergoes nonnegative matrix factorization 

(NMF). As described in detail in 37, MIRTH implements a modified NMF which omits 

missing data from the element-wise object function. Optimization produces two embedding 

matrices W and H which are full rank and whose product yields a new matrix X with 

no missing data. Ten-fold cross validation is used to determine the optimal number of 

embedding dimensions.

Three ccRCC datasets with paired metabolomics and transcriptomics data: M1 (N=32), 

M4 (N=144), and M5 (N=76) were used to assess MIRTH’s performance (Supplemental 

Figure 5a). For each dataset, we repeated the following procedure. We masked metabolites 

in the “target” dataset treating them as effectively missing. We then trained a MIRTH 

model (where the input data contained both metabolites and RNA from non-target datasets 

and RNA data only from the target dataset), and then calculated imputed metabolite levels 

from the target dataset. We repeated such experiments 10 times with different seeds to 

remove random bias. Finally, we compared for each (sample,metabolite) pair the average 

of imputed metabolite values by MIRTH with the true metabolite values in the testing set 

by calculating Spearman’s rank correlation coefficient. Metabolites that satisfied criteria for 

statistical significance (FDR-adjusted p-value < 0.05, average rho > 0.3) were defined as 

well-predicted in that dataset (Supplemental Figure 5b). For instance, 1-methylimidazole 

acetate and 2-aminoadipate were reproducibly well-predicted with an average rho of 0.67 

and 0.51 across 3 datasets respectively (Supplemental Figure 5c). Metabolites that were 

well-predicted in at least 2 datasets are defined as reproducibly well-predicted. This yielded 

262 reproducibly well-predicted metabolites.

Survival analysis—We collected RNA sequencing data and patient-level clinical data 

from 7 published trials of immunotherapeutic vs systemic agents in advanced ccRCC 

(IMmotion151 (N=823), NCT0242082183; JAVELIN Renal 101 (N=726), NCT0268400684; 

CheckMate 214 (N=167), NCT0223174985; COMPARZ (N=412), NCT0072094186; 

CheckMate 9ER (N=16), NCT0314117787; CheckMate 010 (N=45), NCT0135443188; 

CheckMate 025 (N=248), NCT0166878489).

Considering the different drug effect of treatments in clinical trials, we performed 

statistical analysis on immuno-therapy arms and sunitinib arms separately (Immuno-therapy 

drugs: Avelumab + Axitinib, Atezolizumab + Bevacizumab, Nivolumab, Ipilimumab + 

Nivolumab). For the 262 reproducibly well-predicted metabolites, we tested the association 

between levels of individual metabolites and progression free survival (PFS) in a 

multivariate Cox proportional-hazards model (adjusted by age and sex; PFS ~ metabolite 

level + age + gender). The Python package lifelines90 was used for survival regression. 

Regression results across multiple clinical trials were then aggregated by a meta-analysis 

method, restricted maximum likelihood (REML) random effects model in R package 

metafor91. All p-values were Benjamini-Hochberg corrected92.
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Quantification and Statistical Analysis

Statistical analysis—All statistical tests were performed in R. Tests comparing 

distributions were performed using wilcox.test or t.test. All statistical analyses were two-

sided, unless otherwise specified, and p-values were Benjamini-Hochberg corrected92. The 

survcomp package93 was used to perform the meta-analysis to combine results from the two 

metabolomic batches using Fisher’s method94.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Multimodal measurements of the ccRCC in 187 tumor and adjacent-normal 

regions

• ccRCC demonstrates a pattern of ferroptosis-associated intratumoral 

heterogeneity

• Local metabolomic phenotypes associate with specific patterns of immune 

infiltration

• Discovery of metabolite biomarkers of therapy response via RNA-metabolite 

covariation
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Figure 1. Clinical and Metabolic Features of the Multi-Omics Cohort.
a) Overview of 123 tumor regions collected from 31 patients. b) Sample size of 31 

multiregion patients. Normal samples are less opaque. c) Schematic of study workflow 

showing the collection of multiregion ccRCC samples, followed by multi-omic profiling for 

metabolic heterogeneity and immune phenotype analyses.
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Figure 2. Tumors With Elevated IMH Are Molecularly Distinct.
a) Barplots comparing levels of interpatient and intrapatient heterogeneity in tumor and 

normal tissue (* = p-value < 0.01, *** = p-value < 0.0001, NS = not significant). 

Heterogeneity values represent log2-fold abundance difference between two randomly 

chosen regions. b) Pathway-based analysis of metabolic changes in metabolically 

heterogeneous tumors. Only pathways with 3 or more metabolites are shown. Equation 

to calculate DA score can be found in Methods. c) IMH is weakly elevated in tumors with 

HLA LOH. d) Driver mutations in multiregional cohort are not significantly associated 

with IMH. e) GSEA results of normalized enrichment scores of HALLMARK pathways 

of genes that are significantly associated with IMH calculated using linear regression. 

All pathways shown are significant (FDR-adjusted p-value < 0.05). f) Barplot of -log10 

FDR-adjusted p-values comparing immune signature expression based on IMH levels. 

Numerous immune signatures are depleted in IMH-elevated tumors. Blue color indicates 
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that the fold-change between IMH-high and IMH-low tumors is negative. (g-h)IMH is 

not significantly correlated to intratumoral genetic diversity (g) but significantly correlated 

to intratumoral transcriptomic diversity (h) across both batches of metabolomic data (M4 

and M5). i) Heatmap of Robinson-Foulds distances between DNA, RNA, and metabolite 

subclonal phylogenies by patient. j) Subclonal phylogenies reconstructed from metabolomic 

and transcriptomic data show a higher degree of similarity than those reconstructed from 

metabolomic and genomic data.
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Figure 3. A Ferroptotic-Compensation Program Underlies IMH in ccRCC.
a) Top: Scatterplot of intratumor heterogeneity of individual metabolites in M4 vs M5. 

Bottom: Rug plot highlighting metabolites in important metabolic pathways. b) Top: 

Schematic demonstrating citrate high and citrate low regions within a single tumor. Bottom: 

Boxplots comparing cis-aconitate and fumarate levels in citrate high vs citrate low regions. 

c) Top: PCA analysis of all multiregion samples colored by tumor and normal. Bottom: 

PCA analysis of samples from single patients, NIVO09 and NIVO24 colored by tumor 

and normal. PC1 separates tumor and normal samples while PC2 separates tumor regions 

within individual patients. d) Volcano plot of metabolites differentially expressed in PC2low 

vs. PC2high tumor regions colored by significance. Metabolites in red are significant (FDR-

adjusted p-value < 0.05 and absolute log2 fold-change > 0.5). e) Pathway-based analysis 

of metabolic changes in PC2high vs PC2low regions. f) GSEA results comparing PC2low to 

PC2high regions. All pathways shown are statistically significant (FDR-adjusted p-value < 
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0.05). g) Cysteine is exceptional in the magnitude of IMH relative to other proteinogenic 

amino acids. h) Scatterplots of scaled cysteine expression vs oxidized glutathione, reduced 

glutathione, glutamate, and glycine. Yellow represents samples from the M4 batch, blue 

represents samples from M5 batch. i) Boxplot comparing GPX4 H-scores in maximum 

cysteine expression regions vs minimum cysteine expression regions. Maximum and 

minimum samples selected are paired from the same patient. GPX4 protein expression 

is elevated in cysteine-high regions. j) GPX4 staining of a cysteine maximum (top) and 

cysteine minimum (bottom) region from a single patient (MR06). Bar represents 300 µm 

(top) and 150 µm (bottom). k) Intrakidney heterogeneity of amino acids from spatial mouse 

kidneys. l) Volcano plots from correlating cysteine abundance with labeling patterns from 

experiments using uniformly-labeled glutamine. Black dots indicate labelled glutathione 

isotopologues (i.e. excluding glutathione m+0). k) Intrakidney heterogeneity of amino acids 

from spatial mouse kidneys. m) Volcano plots from correlating cysteine abundance with 

labeling patterns from experiments using uniformly-labeled glucose. Black dots indicate 

labelled glutathione isotopologues (i.e. excluding glutathione m+0).
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Figure 4. Immune Infiltration in the ccRCC Tumor.
a) Left: Scatterplot illustrating Simpson’s paradox, where non-independence in data due to 

a patient-level random effect, confounds the co-expression pattern between two variables. 

Right: In parametric bootstrapping the true model is compared to the null model where the 

p-value is the fraction of times the null model a test statistic from the null model exceeds 

the true test statistic. 100,000 bootstraps were performed. b) Marginal explained variance 

in a mixed-effects linear model of metabolite levels predicting Immune Score with patient 

added as a random effect. Each dot represents a single metabolite. Significant metabolites 

in the NAD+ metabolism pathway are labeled in green while significant metabolites in the 

glutathione pathway are labeled in blue. c) Fisher’s exact test was performed on pathways 

with 3+ metabolites to determine pathways with a significantly higher proportion of their 

metabolites associated with Immune Score based on the mixed effects model. The barplot 

shows FDR-adjusted p-values from Fisher’s exact test. d) Nicotinamide and quinolinate 

levels are elevated in tumor regions with high immune infiltration relative to paired tumor 

regions with low immune infiltration.
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Figure 5. Metabolic Features of Prognostic Immune Signatures in ccRCC.
a) Left: Scatterplot comparing CD31 levels from IF staining to expression levels of the 

McDermott Angiogenesis signature. b) Left: Scatterplot comparing CD68 levels from IF 

staining to expression levels of the McDermott Myeloid signature. c) Top: Representative 

IF image of a tumor region (MR01 RB) with high CD31 expression (green) and low 

CD68 expression (orange). Bottom: Representative IF image of a tumor region (MR01 

RE) with low CD31 expression and high CD68 expression. Bar represents 200 µm. 

Marginal explained variance in a mixed-effects linear model of metabolite levels predicting 

JAVELIN (d), McDermott Angiogenesis (e), McDermott Myeloid (f), dendritic cell (g), 
and macrophage (h) signature expression with patient added as a random effect. Each 

dot represents a single metabolite. Red dots indicate statistically significant associations. 

i) Heatmap Spearman correlation coefficients between NAT genes and n-acetylated amino 
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acids. j) Boxplots of NAT8 expression levels across cell types in a single-cell ccRCC 

dataset.
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Figure 6. Metabolic profiles of response to sunitinib predicted by MIRTH.
a) Scatterplot comparing the differential abundance of imputed metabolites in TCGA KIRC 

to true metabolites in M1 between high and low stage tumors (left) or between tumor and 

normal samples (right). Metabolites in blue are consistently and significantly differentially 

enriched (FDR-adjusted p-value < 0.05 and rank difference > 0 or < 0 in both datasets, 

Wilcoxon rank sum test). b) Barplot of median Spearman’s correlation values for each 

simulated-missing metabolite in CCLE data across 10 MIRTH iterations. Metabolites whose 

predicted ranks are significantly correlated with ground-truth ranks in >90% of iterations are 

labeled red. Metabolites with significant negative correlations are discarded. c) Scatterplot 

of actual vs predicted ranks for 1-methylnicotinamide in CCLE data. Dots are coloured by 

iteration. d) Volcano plot of 262 reproducibly well-predicted metabolites associated with 

PFS in sunitinib arms of ccRCC clinical trials, colored by significance (Cox’s proportional-

hazards test, adjusted by age and sex). Metabolites in red are significant (FDR-adjusted 

p-value < 0.05). X-axis is in natural log space. e) Kaplan–Meier plot showing sunitinib-

treated ccRCC patients with a high level of 1-methylimidazole acetate (based on median 

level of 1-methylimidazole acetate) had improved PFS than patients with low level of 

1-methylimidazole acetate in JAVELIN RENAL 101 (top) and COMPARZ (bottom) trial.
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal GPX4 Abcam #ab125066

Mouse monoclonal CD31 Vetana-Roche #760–4378

Mouse monoclonal IgG1 CD68 DAKO #M0814

Deposited data

RNA-sequencing data Golkaram et. al. PMID: 36536472

DNA-sequencing data Golkaram et. al. PMID: 36536472

Metabolomics data This paper

Software and algorithms

DESeq2 Love et al. PMID: 25516281

ssGSEA Barbie et al. PMID: 19847166

CiberSort Newman et al. PMID: 25822800

ESTIMATE Yoshihara et al. PMID: 24113773

fgsea Korotkevich et al. 10.18129/B9.bioc.fgsea

phangorn Schliep et al. PMID: 21169378

performance Lüdecke et al. DOI: 10.21105/joss.03139

lme4 Bates et al. DOI: 10.18637//jss.v067.i01

pbkrtest Halekoh et al. DOI: 10.18627//jss.v059.i09

lifelines Davidson-Pilon DOI: 10.21105/joss.01317

survcomp Schröder et al. PMID: 21903630
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