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Abstract 

Bac kgr ound: Genotyping-by-sequencing (GBS) provides afforda b le methods for genotyping hundreds of individuals using millions 
of markers. However, this challenges bioinformatic pr ocedur es that must overcome possible artifacts such as the bias generated by 
polymer ase c hain reaction duplicates and sequencing errors. Genotyping errors lead to data that deviate from what is expected from 

regular meiosis. This, in turn, leads to difficulties in grouping and ordering markers, resulting in inflated and incorrect linkage maps. 
Ther efor e, genotyping err ors can be easil y detected by linka ge map quality ev aluations. 

Results: We developed and used the Reads2Map workflow to build linkage maps with simulated and empirical GBS data of diploid 

outcrossing populations. The workflows run GATK , Stacks , TASSEL , and Freebayes for single-nucleotide polymorphism calling and 

updog , polyRAD , and SuperMASSA for genotype calling, as well as OneMap and GUSMap to build linkage maps. Using simulated data, we 
observed which genotype call softw ar e fails in identifying common errors in GBS sequencing data and proposed specific filters to better 
handle them. We tested whether it is possible to overcome errors in a linkage map using genotype pr oba bilities fr om each softw ar e 
or global error rates to estimate genetic distances with an updated version of OneMap . We also evaluated the impact of se gre gation 

distortion, contaminant samples, and haplotype-based multiallelic markers in the final linka ge maps. Thr ough our ev aluations, we 
observed that some of the approaches produce different results depending on the dataset (dataset dependent) and others produce 
consistent adv anta geous r esults among them (dataset inde pendent). 

Conclusions: We set as default in the Reads2Map workflows the approaches that showed to be dataset independent for GBS datasets 
according to our r esults. This r educes the number of r equir ed tests to identify optimal pipelines and parameters for other empirical 
datasets. Using Reads2Map , users can select the pipeline and parameters that best fit their data context. The Reads2MapApp shiny app 

provides a graphical representation of the results to facilitate their interpretation. 

Ke yw ords: genotyping error, haplotype, genetic maker, multiallelic 
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Introduction 

Advances in sequencing technologies and the development of dif- 
fer ent genome-r educed r epr esentation libr ary pr otocols r esult in 

millions of genetic markers fr om hundr eds of samples in a single 
sequencing run [ 1–4 ]. Increasing the number of markers and in- 
dividuals genotyped can enhance the capacity of linkage maps to 
locate recombination events that occur, resulting in higher map 

resolution and better statistical po w er for the localization of QTL 
in further analysis . T his large amount of data and genotyping er- 
rors common with genotyping-by-sequencing (GBS) approaches 
[ 5 ] increases the need for computational resources and multiple 
bioinformatic tools. 

Genotyping err ors ar e fr equent when high-thr oughput se- 
quencing technology is applied to reduced representation li- 
braries . T here are a variety of protocols to create these types 
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f libraries [ 4 ], called restriction site–associated DNA sequencing
RADseq) or GBS [ 6 , 7 ]. Gener all y, 1 or mor e r estriction enzymes
re used to digest the sample DNA. The resulting DNA fragments
r e filter ed by size, connected to ada ptors and barcodes, ampli-
ed by pol ymer ase c hain r eaction (PCR), and sequenced. Conse-
uently, most sequences obtained are PCR duplicates of the re-
ions around the enzyme cut site. By r el ying on duplicates to in-
rease sequencing depth, such methods introduce errors and a 
equencing bias to w ar d one of the alleles due to variabilities in
he PCR amplification. These errors are hard to detect by bioinfor-

atic tools [ 8 , 9 ]. 
To overcome genotyping errors coming from GBS meth- 

ds, genotype calling software models sequencing error, allelic 
ias , o v erdispersion, outl ying observ ations, and the population
endelian expected segregation [ 10 ]. Building a genetic map with
 Open Access article distributed under the terms of the Cr eati v e Commons 
unrestricted reuse, distribution, and reproduction in any medium, provided 

http://orcid.org/0000-0002-2021-6883
http://orcid.org/0000-0002-2682-7343
http://orcid.org/0000-0001-5127-4448
http://orcid.org/0000-0003-1114-6892
http://orcid.org/0000-0002-4106-7346
http://orcid.org/0000-0002-4555-2584
http://orcid.org/0000-0003-4982-8274
http://orcid.org/0000-0002-7106-8630
http://orcid.org/0000-0001-5460-2419
http://orcid.org/0000-0002-7001-8498
http://orcid.org/0000-0002-7477-4063
http://orcid.org/0000-0003-0634-3277
mailto:chtaniguti@tamu.edu
mailto:o.riera-lizarazu@tamu.edu
https://creativecommons.org/licenses/by/4.0/


2 | GigaScience , 2023, Vol. 12, No. 1 

g  

t  

i  

r  

b  

fl  

b  

S  

p  

L  

fi  

g
 

w  

t  

d  

p  

g  

p  

i  

e  

V  

a  

i  

c  

p
 

t  

i  

g  

d  

f  

p
a  

i  

m  

s  

i  

o  

l  

t  

a  

l  

v  

i  

p  

t  

a
 

l  

s  

h  

r  

N  

t  

t  

t  

t
 

t  

m  

c  

i  

q  

h  

t  

[  

t  

m  

l  

u  

t  

s  

r  

e  

c

M
W  

b  

(  

i  

s  

a  

a  

fl
 

e  

w  

o  

u  

W  

C
 

g  

R  

b  

a  

s  

w  

s
 

p  

a  

f  

t  

m  

s

S
T  

G  

m  

r  

t  

b  

w  

p  

a  

d  

D  

h  

w  

t  
enotypes obtained using these methods can be a po w erful tool
o validate their efficiency. Wrong decisions or inefficient methods
n all steps before linkage map building can be identified in the
 esulting ma p as err ors that dissociate the ma p pr operties fr om
iological processes. For example, genotyping err ors gener ate in-
ated map sizes that show an excessive number of recombination
reakpoints during meiosis [ 11 ]. The first genetic map studies by
turte v ant [ 12 ] discov er ed that cr ossing-ov ers ar e unlikel y to ha p-
en too close to each other, a phenomenon named interference.
ater studies describing the meiotic molecular mechanisms con-
rmed the low expected number of recombination breaks in a sin-
le e v ent [ 13 ]. 

Recentl y de v eloped a ppr oac hes to build linka ge ma ps [ 14–16 ]
ere implemented in the OneMap [ 17 ] 3.0 package . T hey use quan-

itativ e genotype pr obability measur ements r ather than the tr a-
itional qualitative genotypic information from single-nucleotide
ol ymor phism (SNP) and genotype calling methods to account for
enotyping errors and provide higher-quality genetic maps . T hese
robabilities can be applied in different ways: using the probabil-

ty of each possible genotype (PL field in VCF format), using an
rr or pr obability associated with the called genotype (GQ field in
CF format), or using a global err or r ate that will be applied to
ll genotypes. Ne v ertheless, e v en using these a ppr oac hes, build-
ng a linkage map will succeed only if the upstream software
an identify the errors and pr ovide r eliable genotypes or their
robabilities. 

The biallelic codominant nature of SNPs is another c har acteris-
ic of high-throughput markers that can affect linkage map build-
ng of outcrossing species. Although biallelic markers can distin-
uish only 2 haplotypes, the mapping population of outcrossing
iploid species inherits 2 haplotypes with combinations of 4 dif-
er ent par ental ha plotypes . With biallelic markers , the observed
arental genotypes are limited to types ab × ab , ab × aa , and aa ×
b . When one of the parents is homozygous ( ab × aa and aa × ab ), it
s impossible to observe the cr ossing-ov er c hange for this uninfor-

ativ e par ent. So this is taken as missing information (nonmea-
ur able cr ossing-ov ers) for linka ge ma p building if onl y 2-point
nformation is consider ed. Ther efor e, building a linka ge ma p with
nly biallelic markers requires a multipoint approach that uses
oci information with both parents heterozygous ( ab × ab ) to es-
imate the recombination of loci where 1 parent is homozygous,
nd the recombination information is missing for closely linked
oci. The multipoint approach applies likelihood computations in-
olving se v er al loci and has been successfull y used since the sem-
nal publication of Lander and Green [ 18 ]. The approach makes it
ossible to identify the 4 different parental haplotypes by phasing
he biallelic information so that the SNPs can be used to identify
ll the allelic diversity. 

Other a ppr oac hes to ov er come the lo w informativeness of bial-
elic markers involve combining adjacent biallelic markers in the
ame disequilibrium block (high LD) into a single multiallelic
aplotype . T hese haplotype-based markers sho w ed higher accu-
acy in association analysis than individual biallelic SNPs [ 19–25 ].
’Diaye et al. [ 21 ] and Jiang et al. [ 25 ] pointed out se v er al adv an-

ages of haplotype-based markers, including the higher capacity
o identify epistatic interactions, the presence of more informa-
ion to estimate identical-by-descent alleles, and the reduction of
he number of statistical tests to perform. 

Despite the availability of many software for estimating geno-
ype probabilities [ 2 , 10 , 26–29 ] and haplotype-based multiallelic

arkers [ 26 , 30 ], ther e ar e no r ecommendations about whic h
ombination and choice of parameters are the best for build-
ng linkage maps . T herefore , this work evaluates the conse-
uences of building maps by applying genotype probabilities and
aplotype-based markers from different software and parame-
ers. To ac hie v e these, we implemented ne w featur es in OneMap

 17 ], a widely used software for building maps. We also developed
he Reads2Map w orkflo w, a tool to help users select a bioinfor-

atic pipeline that provides the best-quality markers to build a
inka ge ma p for their dataset. Here, we performed tests with sim-
lated and empirical data and were able to make recommenda-
ions to users to obtain better linkage maps in several situations,
uch as low- and high-depth sequencing, with and without seg-
egation distortion, contaminant samples, and multiallelic mark-
rs, and using different software to perform the SNP and genotype
alling. 

aterial and Methods 

e de v eloped Reads2Map (RRID SCR_023593), a collection of
ioinformatics w orkflo ws using Workflo w Description Language
WDL) [ 31 ]. It enables sequence alignment, SNP and genotype call-
ng analysis, and linkage map construction. With Reads2Map , re-
earc hers hav e the flexibility to explor e v arious softwar e options
nd parameter combinations, enhancing the construction of link-
 ge ma ps . T he w orkflo ws ar e av ailable in GitHub [ 32 ] and in work-
owhub.eu [ 33 , 34 ]. 

The EmpiricalReads2Map w orkflo w w as designed to e v aluate
mpirical (real) datasets, and the SimulatedReads2Map w orkflo w
as to simulate and evaluate datasets (Fig. 1 ). Both are composed
f subw orkflo ws that can be run independentl y, whic h incr eases
sa ge flexibility. Ther e ar e m ultiple options av ailable for running
DL w orkflo ws. Some of them are Terra.bio platform [ 35 ] and

romwell Execution Engine [ 31 ]. 
Each WDL task in Reads2Map is related to a Docker [ 36 ] or Sin-

ularity [ 37 ] container. Some of the container’s images used in
eads2Map ar e av ailable in open r epositories, and others wer e
uilt using Dockerfiles stored in the Reads2Map repository and
v ailable in Doc kerHub. Chec k a list of all software and image ver-
ions used in Supplementary Table S1 . We ran the analysis testing
 orkflo ws on 2 high-performance computers (Texas A&M Univer-

ity HPRC, University of São Paulo Águia Cluster). 
For building linka ge ma ps, we implemented updates in OneMap

ac ka ge v ersion 3.0 and used this version in the w orkflo ws. We
lso de v eloped the Reads2MapTools [ 38 ] R pac ka ge for support
unctions and Reads2MapApp shin y a pp [ 39 ], a visualization tool
hat r eceiv es as input the final w orkflo w output and provides sum-

ary statistics about the r esulting linka ge ma ps, intermediary
teps, and w orkflo w performance. 

NP calling 

he first step of the w orkflo ws is the SNP calling. To start with
ATK [ 27 ], Stacks [ 2 ], and Freebayes [ 26 ] a ppr oac hes, the de-
 ultiplexed FASTQ sequences ar e first aligned to their r espectiv e

 efer ence genomes using BWA-MEM [ 40 ]. The w orkflo w uses sam-
ools [ 41 ] to merge the alignment of re plicates, k ee ping the li-
raries’ identification on the BAM header and filtering out reads
ith MAPQ < 10. After the alignment, BAM files for each sam-
le are used as inputs for subw orkflo ws with GATK , Stacks ,
nd Freebayes tasks . T he gatk_genotyping subw orkflo w r epr o-
uces GATK joint genotyping via HaplotypeCaller , Genomics-
BImport , and GenotypeGVCFs tools and applies the suggested
ard-filtering pr ocedur es [ 8 ]. The freebayes_genotyping sub-
 orkflo w runs Freebayes parallelized by reference genome in-

ervals . T he stacks_genotyping subw orkflo w includes the op-

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad092#supplementary-data
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Figure 1: (A) Tasks of the 2 main Reads2Map workflows: EmpiricalReads2Map and SimulatedReads2Map . (B) Tools to run the workflows on the Cloud 
[ 35 ] or in high-performance computing (HPC) en vironments . (C) T he Reads2Map shin y a pp has as input the outputs of the w orkflo ws. It builds se v er al 
descriptiv e gr a phics to e v aluate the best upstr eam softwar e combination for linka ge ma p construction. 

d
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tion to input the population file. If not included, all individuals are 
consider ed fr om the same population. It runs the gstacks and the 
populations plugins. 

The TASSEL [ 1 ] SNP caller is implemented in the tas- 
sel_genotyping subw orkflo w. It first ad ds fak e barcodes to the 
emultiplexed FASTQ sequences. After, it runs the plugins GB- 
SeqToTagDBPlugin and TagExportToFastqPlugin . The gener- 
ted ta gs ar e aligned to the r efer ence genome using BWA-MEM and
he alignment files are input for the SAMToGBSdbPlugin plugin,
hic h pr oduces a database . T he database is processed by the Dis-
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overySNPCallerPluginV2 , SNPQualityProfilerPlugin , and
roductionSNPCallerPluginV2 plugins. 

After obtaining the VCF file using 1 or more of the SNP calling
ethods, indel marker positions are left-aligned and normalized
ith BCFtools [ 42 ]. 

enotype calling 

he VCF files with biallelic markers from Freebayes , TASSEL ,
tacks , and GATK are the input for the genotype caller software
olyRAD [ 28 ], SuperMASSA [ 29 ], and updog [ 10 ]. These 3 software
re implemented in the subw orkflo ws genotyping_empirical
nd genotyping_simulated . 

To use the polyRAD a ppr oac h, the VCF files ar e imported using
CF2RADdata without a ppl ying an y filters or considering phase

nformation. The polyRAD model is run with PipelineMap-

ing2Parents default ar guments, whic h assume an F 1 bipar ental
opulation. The function Export_MAPpoly is used to export the
enotype probabilities . T he vcfR pac ka ge [ 43 ] and custom R (func-
ion polyRAD_genotype_vcf in Reads2MapTools pac ka ge) code
re used to store outputted genotypes and their probabilities
n a new VCF file. We also adapted SuperMASSA scripts to out-
ut the genotype probabilities information. The modified ver-
ion is available in the Reads2MapTools package. A wrapper
unction called supermassa_genotype , available in the package,
an run the model in parallel and export the results to a new
CF file . T he F 1 SuperMASSA model is run with the parameter
aive_posterior_reporting_threshold set to zero to not fil-
er any genotype . T he updog F 1 model is used in parallel using the
unction multidog through the Reads2MapTools wr a pper func-
ion updog_genotype , which outputs the results in a new VCF
le. 

The software GUSMap performs the genotype calling and link-
 ge ma p building with a single model. We use VCFtoRA function
o convert the outputted VCF files from GATK , TASSEL , Stacks ,
nd Freebayes a ppr oac hes into GUSMap format. A pedigr ee of
he population and a list of filters (MAF = 0.05, MISS = 0.25, BIN = 0,
ETPH = 0, and PVALUE = 0.05) are provided to the readRA func-

ion. The function makeFS is used to create the full-sib popula-
ion information. Functions infer_OPGP_FS and rf_est_FS are
sed to estimate the phase and recombination fraction given the
enomic order of the markers. In some situations, the function
f_est_FS outputs infinite values of the recombination fraction.
n these situations, our pipeline r emov es the r espectiv e marker
nd runs the function again. This workaround code can increase
he time r equir ed to run GUSMap . 

pdates in OneMap 3.0 for building linkage maps 

neMap is an open-source R pac ka ge that has been serving the re-
earc h comm unity since its initial r elease in 2007. It offers a com-
r ehensiv e suite of functions designed to facilitate marker filter-

ng, grouping, ordering, and genetic distance estimation in both in-
red and outbred populations . T he genetic distance estimation is
ade using a hidden Markov model (HMM) multipoint approach.

he forw ar d–backw ar d algorithm [ 44 ] is implemented to compute
he HMM combined with the expectation–maximization (EM) al-
orithm. 

The OneMap latest version (3.0) is implemented in Reads2Map

 orkflo ws. In this new version, we have introduced a new feature
o enhance the flexibility of the HMM in scenarios where genotyp-
ng errors are expected in the dataset. This update includes the
r eate_pr obs function and modifications to the HMM algorithm.
ith this option, users can provide OneMap with prior informa-
ion regarding the reliability of each input genotype, thereby in-
reasing the HMM’s adaptability. The create_probs function allows
sers to input 3 types of values: a global error value (global_error),
n error probability for each inferred genotype (genotypes_error),
r genotype probabilities for each possible genotype in individ-
als (genotypes_probs). This flexibility empo w ers users to tailor
he analysis to their specific dataset characteristics and improve
he accuracy of the results . T his update is described in detail in
upplementary File S1 . 

The OneMap software previous to version 3.0 considered the
MM err or pr obability as a single value of 10 −5 for e v ery geno-

ype. In version 3.0, this value is k e pt as default to k ee p the code
 epr oducible. Ho w e v er, it is noteworthy that this probability can
e unreliable in several situations when the genotypes are more
rone to errors, especially for new genotyping technology (e.g.,
BS data). 
OneMap 3.0 updates also include the possibility to parallelize

he HMM using the a ppr oac h described by [ 45 ]. It parallelizes the
r ocedur e into a maximum of 4 cores. We used this new OneMap

eature to estimate the genetic distances. We also implemented
ew functions for linkage maps quality diagnostics such as inter-
ctive plots for recombination fraction matrices, progeny haplo-
ype r epr esentation, and counts of the r ecombination br eakpoints
n pr ogen y. 

Despite using the parallelized HMM, the genetic distance es-
imations in OneMap can take time to run with a high number
f markers, c hr omosomes, and tested combinations of software.
her efor e, the EmpiricalReads2Map w orkflo w runs the HMM in

ust a subset of markers, which can be a single chromosome or a
r a gment of a c hr omosome . T he alignment, the SNP, and genotype
alling steps are performed with the entire dataset. After running
he w orkflo w and deciding the pipeline that provided the best re-
ults, the r espectiv e VCF output can be used to build the linkage
ap for all chromosomes in the R environment with OneMap func-

ions. 
The OneMap function onemap_read_vcfR is used to convert the

CFs to the OneMap R object format. The markers ar e filter ed a gain
y a maximum number of missing data of 25% because the VCF
les include unexpected genotypes according to the segregation
f a given locus (e.g., in a cross “aa × ab , ” genotype “bb” cannot
xist). OneMap makes this genotype call missing. Markers are also
ltered if the segregation distortion is under a global significance

e v el of 0.05 with Bonferroni correction and if they ar e r edundant.
arkers are ordered according to the reference genome position. 
The Reads2Map w orkflo ws give flexibility to the user to define

he probabilities to be used in the OneMap HMM for the estimation
f the genetic distances. Users can provide more than 1 value to
e tested as global errors (global_error input), can choose to use
he upstream genotype caller error probability (genoprob_error
nput), and can provide global error values to be considered to-
ether with the software probabilities (genoprob_global_error in-
ut) according to the following: 1 − (1 − global error ) × (1 − soft-
are error probability ). 
For GATK , TASSEL , Stacks , and Freebayes callers, the work-

ow uses in the HMM the Phr ed scor e genotype err or (GQ FOR-
AT v alue) conv erted to probabilities. For the software polyRAD ,
uperMASSA , and updog , it uses 1 − output genotype probability as
 genotype error. For the latter, the population’s structure ( F 1 ) is
sed as a priori information to increase the accuracy of the esti-
ated genotypes. 
The simulations do not consider interference in the recombina-

ion e v ents . T her efor e, the Haldane ma p function was used to es-
imate the genetic distances in SimulatedReads2Map . Kosambi’s

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad092#supplementary-data
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Ta ble 1: Marker types accor ding to parental genotype combina- 
tions and pr ogen y segr egation. The letters “a, ” “b , ” “c, ” and “d” rep- 
r esent differ ent alleles and the letter “o” r epr esents null alleles. 
Ada pted fr om [ 53 ]. 

Parents Progeny 

Marker type Cross 
Observed 
genotypes 

Expected 
segregation 

A 1 ab × cd ac ,ad,bc ,bd 1:1:1:1 
2 ab × ac a,ac,ba,bc 1:1:1:1 
3 ab × co ac ,a,bc ,b 1:1:1:1 
4 ao × bo ab ,a,b ,o 1:1:1:1 

B B 1 5 ab × ao ab,2a,b 1:2:1 
B 2 6 ao × ab ab,2a,b 1:2:1 
B 3 7 ab × ab a,2ab,b 1:2:1 

C 8 ao × ao 3a,o 3:1 
D D 1 9 ab × cc ac,bc 1:1 

10 ab × aa a,ab 1:1 
11 ab × oo a,b 1:1 
12 bo × aa ab,a 1:1 
13 ao × oo a,o 1:1 

D 2 14 cc × ab ac,bc 1:1 
15 aa × ab a,ab 1:1 
16 oo × ab a,b 1:1 
17 aa × bo ab,a 1:1 
18 oo × ao a,o 1:1 
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map function was applied to estimate the genetic distances in the 
EmpiricalReads2Map . 

Read2Map w orkflo ws app 

The shin y a pp Reads2MapApp was built to display r esults fr om 

the w orkflo w anal ysis. It includes gr a phics and statistics about 
SNP calling efficiency, the number of markers discarded by fil- 
tering ste ps, mark er types, computer resources and time spent 
by each step of the w orkflo w, allele depth b y genotype, genotype 
pr obabilities, ma p size, ma p phases, r ecombination fr action ma- 
trix, pr ogen y ha plotypes, br eakpoints count, and the corr elation 

between linka ge ma p and r efer ence genome markers positions.
Reads2MapApp is a modular R pac ka ge using the golem frame- 
work [ 46 ] that can be r ender ed and displayed locally or on a server.
It can be installed from its GitHub repository and run with a single 
command (run_app). Once the Reads2Map output file is uploaded 

into the app, all graphics will be automatically generated. 

Empirical datasets 

We used the structure of Reads2Map to test the effects in the link- 
a ge ma p built using differ ent combinations of softwar e and pa- 
rameters in datasets with different characteristics. For our tests 
with empirical data, we used 2 datasets from previous works.
They are GBS datasets from a biparental diploid F 1 full-sib map- 
ping populations of aspen ( Populus tremula L.) [ 47 ] (BioProject PR- 
JNA395596) and rose ( Rosa spp.) [ 48 ]. The aspen dataset comes 
fr om an intr aspecific cr oss of 2 P. tremula genotypes . T he GBS li- 
br aries wer e built using HindIII and NalIII enzymes and sequenced 

as 150-bp single-end reads on an Illumina HiSeq2500. Eight library 
r eplicates wer e built and sequenced for the par ents and onl y 1 for 
each of the 116 F1 offspring. The dataset includes 6 samples er- 
r oneousl y sequenced as part of the pr ogen y and later identified 

as contaminants . An a v er a ge r ead depth of a ppr oximatel y 6 × for 
pr ogen y and 58 × for parental samples was observed from the se- 
quencing process . T he Populus tric hocarpa genome v ersion 3.0 [ 49 ] 
was used as a r efer ence for the sequence’s alignment. It is about 
397 Mb in size. 

The diploid roses dataset comprises 138 individuals from the 
cross between a Texas A&M breeding line J06-20-14-3 (J14-3) 
and cultiv ar P a pa Hemer ay (PH). GBS libr aries wer e built with 

NgoMIV enzyme and sequenced as a 113-bp single-end read on 

a HiSeq2500. The parent J14-3 was repeated twice and the PH 

sample 3 times. An av er a ge r ead depth of a ppr oximatel y 94 × for 
pr ogen y and 528 × for parental samples was observ ed fr om the 
sequencing process . T he Rosa c hinensis v1.0 genome assembl y [ 50 ] 
was used as a r efer ence genome to align the sequences. It is about 
527 Mb in size. 

The sequencing reads of the 2 empirical datasets were filtered 

using the Stacks plugin pr ocess_r adta gs [ 2 ] to filter sequences by 
the presence of the restriction site and sequencing quality. The 
r eads wer e discarded if the av er a ge quality scor e of 50% of its 
length was below the Phred score of 10 (or 90% probability of being 
corr ect). The softwar e cutadapt [ 51 ] was used to r emov e ada pters 
and filter by a minimum read length of 64 bp. The sequences were 
then e v aluated in our EmpiricalReads2Map w orkflo w. 

Simulated GBS data 

The first step of the SimulatedReads2Map w orkflo w is to per- 
form simulations of a mapping population, GBS libraries, and se- 
quences . T he simulation is based on a given reference genome 
c hr omosome sequence. If a r efer ence linka ge ma p and a VCF 
file are provided, the w orkflo w simulates the marker genetic dis- 
ances and parental genotype frequencies based on them. A cu-
ic spline interpolation with the Hyman method [ 52 ] is applied to
im ulate the centimor gan position for eac h marker’s physical po-
ition based on this same relation on the r efer ence linka ge ma p
rovided. 

We based our simulation analysis on the first 37% of the chro-
osome 10 sequence of P. trichocarpa version 3.0, which includes
 sequence with 8.426 Mb from a total chromosome size of about
3 Mb. This sequence comprises 38 cM (21%) of the linkage group
0 built using the aspen empirical data [ 47 ]. Due to the computa-
ional resources needed to build such a high number of maps, we
sed only a subset of the data to finish the analysis in a reasonable
ime. Chromosome 10 was randomly chosen. 

We simulated markers with different expected segregation pat- 
erns according to parental genotypes in each locus. Table 1 shows
he notation used by OneMap for each possible marker type in an
utcrossing diploid population. The SimulatedReads2Map work- 
ow sim ulates par ental ha plotypes using the same proportion of
arker types identified in the empirical VCF file . T his a ppr oac h

vercomes the missing data present in the empirical dataset. The
nal VCF file used as a r efer ence to the simulations contains 810
arkers (126 B3.7, 263 D1.10, 278 D2.15, and 143 noninformative
arkers with both parents homozygous), which results from the 

spen empirical data GATK SNP calling, filtered by a maximum of
5% of missing data and minor allele frequency (MAF) of 5%. 
PedigreeSim v2.1 software [ 54 ] is implemented in the work-

ow to simulate the meiosis events and generate an F 1 progeny
ased on the provided genetic map and sim ulated par ental ha p-
otypes. We did not consider interference in meiotic events (Hal-
ane [ 55 ] mapping function). PedigreeSim output files were con-
erted to VCF files using Reads2MapTools R pac ka ge function
edsim2vcf . 

While converting the files, the pedsim2vcf function can also 
im ulate segr egation distortion by a ppl ying a selection str ength.
or that, a high number of individuals in the pr ogen y hav e to be
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imulated with the PedigreeSim software and 1 or more loci to
e under a given selection intensity. In our study, we targeted a
nal population size of 200 individuals. For that, we simulated 50
200 individuals and applied a selection intensity of 50% in the

0th marker, eliminating 50% of the genotypes containing one of
he alleles . T hen, 200 individuals of the r esulting population ar e
 andoml y selected to compose the mapping population. We used
his feature to compare software performance with segregation
istortion. 

The VCF file output by pedsim2vcf and the r efer ence genome
le are inputs for the RADinitio [ 9 ] software. RADinitio adds the
CF pol ymor phisms in the r efer ence genome sequence and sim-
lates the GBS sequences. It uses the inherited efficiency model
 56 ] to simulate a PCR-amplified pool of molecules . T he model in-
ludes the heterogeneity of the PCR amplification and the poly-
erase substitution errors. Next, RADinitio applies the user-

efined ratio between DNA original molecules to be sequenced
nd PCR duplicates to create a distribution that will define the
umber of times the pool of loci is sampled, the number of du-
licate molecules that ar e gener ated fr om a RAD locus template,
nd the distribution of PCR errors in the resulting reads. We de-
ned the default parameter with a proportion of 4:1. Besides the
CR errors inserted during the pool sampling, the software also
ncludes a commonl y observ ed err or pattern, wher e the 3 ′ end of
he read accumulates more errors than the 5 ′ [ 57 ]. We tested dif-
er ent v alues of PCR cycles (5, 9, and 14) and mean depth (5, 10, and
0) to simulate the F ASTA files. W e set the other RADinitio sim-
lation parameters to obtain 150 bases of read length, sequence
ize of 350 (par ameter “–insert-mean”), and r estriction enzymes
indIII and NalIII . The mean read depth parameter for the parental
amples was 8 times higher than the pr ogen y. The combination of
ADinitio parameters that produced results closer to those ob-
erved in empirical data was selected to perform simulations with
nd without segregation distortion, 5 repetitions (5 families), and
 av er a ge sequencing depths (10 and 20) and 5 PCR cycles. 
RADinitio does not output the sequence quality scores, so

e converted the FASTA file format to FASTQ format, includ-
ng a Phred score of 40 for every base simulated using seqtk
 58 ] software. After obtaining the FASTQ files, the Simulate-
Reads2Map w orkflo w follo w ed the same tasks as the Empiri-
alReads2Map , with alignment, SNP and genotype calling, and

inka ge ma p build. The SimulatedReads2Map w orkflo w makes
omparisons between real and estimated results within each step.
he comparisons made during the w orkflo w can be visualized in
he shiny app Reads2MapApp . 

ested scenarios 

e ran all implemented software for SNP calling and genotype
alling ( GATK , Freebayes , TASSEL , Stacks , updog , SuperMASSA ,
nd polyRAD ) on the empirical and simulated datasets. In addi-
ion, we explored the substitution of VCF allele counts with counts
rom the alignment (BAM) files to mitigate potential biases intro-
uced by SNP caller software when analyzing low-coverage se-
uence data. GATK inserts the bias when reads are filtered in the

ocal r eassembl y step to avoid sequencing err ors [ 59 ]. BCFtools
s used to find the read depths information for each allele in BAM
les and update the allele depths information in the AD (allele
epth) field of the VCF file. For the aspen dataset, we also executed
he w orkflo ws for e v ery scenario in the pr esence of the contami-
ant samples. 

The markers identified by the SNP callers ( GATK , TASSEL ,
tacks , Freebayes ) were filtered by MAF of 5% and maximum
issing data allo w ed of 25% before proceeding to the genotype
allers ( updog , polyRAD , and SuperMASSA ). At this step, we also
ested 2 other filters. One of them was removing noninformative

arkers from the VCF file. We considered noninformative mark-
rs homozygous in both parents or if at least one of the parental
enotypes was missing. The second filter was to replace the AD
eld in the VCF file format by missing data when the genotype
as missing. T his a voids that updog , polyRAD , and SuperMASSA

se the allele depth when GATK filtered out the genotype due to
ad quality. 

After the genotype call, we reduced the analysis to a subset of
arkers (the first 8.426 Mb or 37%) of P. trichocarpa chromosome

0 and the first 25 Mb ( 37%) of R. c hinensis c hr omosome 1 refer-
nce genomes . T his made it possible to build maps for all tests in
 feasible time . T he markers were filtered by the maximum miss-
ng data allo w ed of 25%, redundanc y, and segregation distortion.
n addition, we tested filtering the genotypes by a minimum geno-
ype probability of 0.8. 

We tested the consequences of building maps applying differ-
nt genotype probabilities in the OneMap 3.0 HMM coming from
 different genotype caller software: GATK , Freebayes , TASSEL ,
tacks , polyRAD [ 28 ], SuperMASSA [ 29 ], and updog [ 10 ], with a
lobal error rate of 0.01, 0.05, 0.1, and the OneMap 2.0 default
alue of 10 −5 . We also tested the combination of the 2 distribu-
ions. We compared OneMap 3.0 capacity of estimating accurate
enetic distances with the GUSMap pac ka ge [ 14 ] estimations since
t also uses an HMM to account for errors present in sequencing
ata. 

We also tested the consequences of the presence and absence
f the Stacks haplotype-based multiallelic markers in the link-
 ge ma p. To test the influence of the presence of the multiallelic
arkers in the ordering pr ocedur e, we built a map for the entire

 hr omosomes 1 and 10 from the roses and aspen datasets, respec-
iv el y, using the selected pipeline. We ordered the markers using
DSMap [ 60 ] (wrapper function implemented in OneMap 3.0) or-

ering algorithm with and without multiallelic markers. 
In the testing of scenarios in which we considered multiallelic

arkers, the VCFs containing them wer e mer ged into the VCF files
rom polyRAD , SuperMASSA , and updog . The merged VCF is the
nput for linkage map building in OneMap version 3.0. 

Table 2 shows an ov ervie w of the notations used to refer to each
 v aluated scenario. 

erformance comparison 

e conducted performance comparisons of each tested dataset
nd scenario based on the built linkage map quality. To consider
ood quality, we e v aluated the following linka ge ma p c har acteris-
ics: 

� Marker type: 
In outcrossing populations, it is important to have markers
that hav e r ecombination information for both par ents. We
avoid a ppr oac hes that pr ovide onl y ab × aa (D1.10) or aa × ab
(D2.15) in a single c hr omosome . T he Reads2MapApp “Marker
type” section describes the amount of each marker type in the
linka ge ma ps built b y Reads2Map w orkflo ws. 

� Marker cov er a ge: 
It refers to how equally distributed markers are in the
genome . We a void a ppr oac hes that do not detect markers in
a large portion of the genomic selected ar ea. The gr a phics in
the Reads2MapApp section “cM × Mb” section correlate the
linka ge ma p position with the genomic positions . T his is an
excellent tool to e v aluate marker cov er a ge. 
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Table 2: Notation used to refer to each evaluation scenario in empirical and simulated datasets 

Workflow step Notation Description 

Reads simulations Depth 10 Mean read depth used 
Depth 20 to simulate the dataset 

Segregation distortion Dataset simulated with 
segregation distortion 

SNP calling Freebayes Software used to 
GATK identify the variants 

TASSEL 

Stacks 

Counts source BAM Source files of allele depth information 
VCF 

Filters Onl y informativ e markers Filter noninformative markers 
(both parents homozygous 

or at least 1 missing) 
Missing replaced Replace AD field for missing 

data when GT is missing 
Genotype calling polyRAD Software used to perform the 

SuperMASSA estimation of genotype for a 
updog given allele depth information 

SNPCaller Software used for genotype calling is 
the same as that which performed the SNP calling 

Filters Genotype prob > 0.8 Filter by minimum genotype 
probabilities of 0.8 

Marker type Biallelics K eep onl y biallelic markers 
Biallelics + multiallelics Keep biallelic and multiallelic markers 

Map building < Genotype caller name > Maps built with genotype 
pr obabilities fr om 

< Genotype caller name > 

< Genotype caller name > Map built with genotypes from 

( < global error rate > %) < Genotype caller name > and 
global error of < global error probability > 

< Genotype caller name > × Map build with genotype probabilities 
( < global error rate > %) from < Genotype caller name > and global 

error of < global error probability > 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

� Marker density: 
It refers to how equally distributed markers are on the linkage 
map. We avoid big gaps (higher than about 10 cM) in the link- 
a ge ma ps. Some of the ga ps observ ed in the ma ps wer e due 
to outlier markers (a single marker with gaps in both edges).
Outlier markers can be r emov ed manuall y in further steps.
We search for approaches that provide fewer outlier mark- 
ers, whic h would r equir e less manipulation later. The linkage 
ma p dr aw and gr a phics about the genetic distances among 
markers present in the section “Map size” of Reads2MapApp 
are good tools to evaluate marker density. 

� Marker order: 
The efficiency of ordering algorithms can be significantly in- 
fluenced by the presence of marker types that provide re- 
combination information for both parents. In the Reads2Map 
w orkflo ws, to ensure accurate comparisons and to distinguish 

if linka ge ma p inflation is due to different orders or genotyp- 
ing errors , we ha ve standardized the marker order across the 
w orkflo w comparisons . T her efor e, the order of the markers is 
always based on the r efer ence genome . T his means that it is 
crucial to car efull y select, for the w orkflo ws, tests c hr omo- 
some regions in the datasets that do not exhibit inversions or 
translocations when compared to the reference genome. 
Ho w e v er, in order to assess the impact of highly informative 
ha plotype-based m ultiallelic markers, we conduct separate 
experiments outside of the w orkflo ws. In these experiments,
we exclude outlier markers and e v aluate the efficiency of 
the MDS ordering algorithms with and without the inclusion
of multiallelic markers . T his allows us to investigate these
markers’ influence on the algorithm’s performance. We e v al-
uate the orders provided by the different ordering algorithms 
by computing the absolute value of Spearman’s rank correla- 
tion between orders. 

� Marker quality: 
In cases where all markers are correctly ordered (following 
the standardization in Reads2Map comparisons), and there is 
sufficient cov er a ge and density, an inflated size of the linkage
map can be attributed to a high error rate in the genotypes.
Our objective is to find an approach that minimizes this in-
flation and brings the linkage map size closer to the expected
value (e.g., 38 cM in our tested subsets). 
To identify the causes of inflated maps, the linkage map draw
and recombination fraction matrix heatmap generated by 
Reads2MapApp pr ov e v aluable. It enables us to distinguish
whether the inflation is a result of outlier markers creating
gaps or due to genotyping errors. 

� Estimated haplotypes: 
Together with the linkage map, the OneMap HMM multipoint 
a ppr oac h also estimates the parents and pr ogen y ha plotypes.
In a scenario without contaminant samples, we expect a low
(around 1 or 2) and equally distributed number of recombina-
tion br eaks acr oss all samples. In scenarios wher e ther e ar e
contaminant samples, we expect that their haplotypes con- 
tain a high number of estimated breaks because wrong as-
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Table 3: Reads2Map workflows default option set based on tests with empirical and simulated data 

Process Workflow options Default 

SNP calling Run GATK TRUE 
Run Freebayes FALSE 

Run Stacks TRUE 
Run TASSEL FALSE 

Remove duplicates FALSE 
Replace AD by BAM counts FALSE 

GATK hard filters TRUE 
genotype calling Replace AD by missing when GT is missing TRUE 

Pr obability thr eshold 0.8 
Run updog TRUE 

Run polyRAD TRUE 
Run SuperMASSA FALSE 

Run GUSMap FALSE 
linka ge ma p Filter noninformative TRUE 

Add multiallelics TRUE (if available) 
Global errors 0.05 

Genotype caller probabilities FALSE 
Genotype caller probabilities + global errors 0.05 
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sumptions were made, leading to the wrong estimated num-
ber for these samples. Reads2MapApp contains a section for
visualizing the pr ogen y ha plotypes and also for counting the
estimated number of recombination breaks. 

esults and Discussion 

e use the structure of the Reads2Map w orkflo ws and the simu-
ated and empirical datasets to test each software and some dif-
er ent par ameters and markers filters. Our goal was to identify the
 ppr oac h that provides the best-quality linkage map. 

We have categorized the approaches used in our analysis
nto 2 groups: dataset independent and dataset dependent. The
ataset-independent a ppr oac hes consistentl y pr oduce r eliable r e-
ults across all datasets, while the dataset-dependent approaches
xhibit varying efficiency depending on the dataset c har acter-
stics. To streamline the user experience, we have selected the
ataset-independent a ppr oac hes that impr ov e linka ge ma p qual-

ty as the default options in the Reads2Map w orkflo ws (Table 3 ).
his simplifies the process for users by reducing the number of
ests r equir ed, as these default a ppr oac hes consistentl y yield fa-
or able r esults acr oss differ ent datasets. 

We focused our tests and set the default options based on
 1 diploid populations and GBS markers. Ho w e v er, because the
eads2Map w orkflo w is modularized, the EmpiricalSNPCalling
ubw orkflo w can be used separ atel y and a pplied to other pop-
lation structures, ploidy, and sequencing libraries. In the case
f working with sequencing libraries other than RADseq, such as
hole-genome sequencing (WGS) or exome sequencing, it is im-
ortant to set the option “r emov e duplicates” to TRUE. The PCR
uplicates in RADseq data constitute the majority of the data, and
hey are included in the allele count while calling the genotypes,
ut in other types of libraries, they are considered artifacts and
r e r emov ed to avoid err ors [ 61 ]. 

The genotype call and linkage map building in the Empiri-
alMap subw orkflo w hav e the F 1 population structur e as an as-
umption. In this current version, they can be applied to another
ype of sequencing library but not to another type of population
tructure . For these steps , it is just important that the VCF file
ormat is standardized and can be processed by BCFtools . T hey
o not need to be necessarily from the SNP call software imple-
ented. They can be also a combination of VCFs from different
oftwar e suc h as the common markers between the implemented
NP call software results (“intersect” in Fig. 2 ). 

We had to perform extra manipulations in TASSEL VCF output
o be able to run the downstream analysis because they presented

issing header information. Also, processing Freebayes sho w ed
he consumption of an unexpectedly high amount of RAM mem-
ry in some situations, which made it impossible to automatize
he amount of memory r equir ed fr om the HPC and Cloud by the
 orkflo w task. 
The number of markers identified by eac h softwar e is related

o the species, library preparation, and sequencing aspects such
s genome size, restriction enzyme used, and sequencing depth.
n Fig. 2 , we can observe that more markers were identified in the
spen dataset compared to the roses dataset due to the higher
requency of enzyme cut sites . T here is no consistency between
he 2 datasets about which software identifies the higher number
f markers. 

After all the filtering steps and linkage map building, it is
onsistent that Freebayes k ee ps more markers. Ho w ever, the
 esulting ma ps built with Freebayes markers , genotypes , and
enotypes pr obabilities pr esented higher genetic distances infla-
ion compared to the other approaches. Using TASSEL software

arkers also resulted in higher inflation in aspen dataset maps,
hic h hav e a lo w er sequencing depth ( ∼6 ×) compared to the

oses dataset ( ∼94 ×). The other a ppr oac hes also pr esented out-
ier markers that inflate the total map size, but because they are
ndi vidual mark ers, the y can be easil y r emov ed in further steps.
he maps built with only common markers among all 4 software

intersection in Fig. 2 ) contained fewer markers and had markers
istances similar to GATK and Stacks results. 

Evaluating the results of our simulations for GATK , we identi-
ed a format c har acteristic of VCFs from this software that leads
o genotyping errors in estimations by updog , polyRAD , and Su-

erMASSA . In such cases, the genotype is considered missing in
he GATK output VCF GT format field, while the total read depth is
l ways r eported in the r efer ence allele field of the AD format field
e.g., Estimated = GT:AD ./.;22,0 | True = GT:AD 1/1;0,22). 

We present examples of the consequences of this format in
enotypes called by updog , polyRAD , and SuperMASSA in Figs. 3
nd 4 . In Fig. 3 A, allele dropouts are observed in the genotype of



Benchmarking GBS pipelines with linkage maps | 9 

Figur e 2: T he top 2 figures show the n umber of mark ers identified b y each SNP call softw ar e (number abov e eac h softwar e name) and Venn dia gr ams 
showing the number of markers with common positions among all software results for the aspen and roses complete datasets . T he markers were 
pr e viousl y filter ed by maxim um missing data of 25% and MAF of 5%. The compatibility of positions among markers fr om differ ent softwar e was onl y 
possible after using “BCFtools norm” to left-align the indels positions . T he bottom 2 figures show the number of markers (bar plot) and distances 
between markers (boxplot) after building the linkage maps for a subset of 37% of chromosome 10 in the aspen dataset and 1 in the roses dataset with 
the markers from Freebayes , GATK , TASSEL , and Stacks . It was consider ed in the OneMap HMM the genotypes and a global err or of 5% 

(global_err or0.05), genotypes pr obabilities (genopr ob_err or), and the combination of genotype pr obabilities and a global err or of 5% 

(genopr ob_global_err or0.0.5). These figur es can be gener ated for user-defined empirical datasets in the Reads2MapApp sections “SNP calling efficiency”
and “Map size” after running the EmpiricalMaps w orkflo w. 

 

 

 

t
t  

w  

s
(  

t
 

M  

m  

d
c
e  

e
f  

H  
parent P2 and some of the progeny individuals. In empirical data,
allele dropout can occur due to various reasons, such as polymor- 
phisms in the cut site or the nonamplification of 1 allele during 
the PCR step [ 9 ]. Our simulations also consider allele dropout, but 
in the observed scenario, the source of allele dropout is due to the 
format c har acteristic of the GATK VCF file. 

The occurrence of genotyping errors while using GATK VCF al- 
lele counts was pr e viousl y observ ed by [ 59 ], who suggested us- 
ing counts from BAM alignment files to address the issue (Fig. 3 B).
Ho w e v er, when testing the usage of BAM allele counts, we lose the 
adv anta ge of the robust filtering applied by the GATK pipeline to 
r etain onl y high-quality r ead counts in its VCF allele depth field.
To maintain the accuracy of the GATK allele depth while overcom- 
ing the common err or observ ed when the genotype is missing, we 
replaced the VCF allele count (AD and DP fields) with zero when 
he genotype information is missing before utilizing it for geno- 
yping with polyRAD , SuperMASSA , and updog . This more precise
ay of solving the issue was only possible due to our simulation

tudies once they provide a clear comparison between simulated 

true) and estimated data that highlighted the sources of the geno-
yping errors. 

We also observed situations in updog , polyRAD , and Super-

ASSA r esults wher e the par ental genotypes ar e wr ongl y esti-
ated because of the low quality of the pr ogen y genotypes that

istort the expected segregation. These genotype call software 
onsider the expected segregation in their models, and therefore 
rrors in the progeny lead to errors in the par ents. Figur e 4 shows
xamples where the marker would be considered noninformative 
or an outcrossing population, as both par ents ar e homozygous.
o w e v er, due to genotyping errors in the population, SuperMASSA
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Figure 3: Example of error (Est: homozygous | True: heterozygous and Est: heterozygous | True: homozygous) in parental genotypes leading to a wrong 
marker type (Est: D1.10 | True: D2.15). Estimated r efer ence (x-axis) and alternative (y-axis) allele count. Graphics on the left have colors according to 
estimated genotypes and on the right to the true genotypes. (A) Counts from the GATK VCF file and (B) from the BAM file. In the VCF file outputted by 
GATK, the P1 genotype is missing (GT./.) because the reads did not pass the quality filters, but it reports the counts in the reference AD field (149,0). 
The updog software use progeny segregation (1:1) to estimate the parents, but it makes a mistake identifying which one is heterozygous. Using counts 
from the BAM file (B) fixes this issue despite losing the GATK quality filters that can be important in other situations. 
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Figure 4: Example of error (Est: homozygous | True: heterozygous) in progeny genotypes leading to wrong marker types in (A) Est: B3.7 | True: 
noninformative and in (B) Est: D1.10 | True: noninformativ e. Gr a phics on the left have colors according to estimated genotypes and on the right to the 
true genotypes. 
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nd polyRAD incorr ectl y estimate the par ents as heter ozygous.
o tackle this problem, we implement a filtering step to exclude
oninformati ve mark ers befor e a ppl ying the genotype callers. 

Solving these issues was particularly important because erro-
eous parent genotypes have a higher impact on linkage map
uality than pr ogen y genotype err ors. OneMap 3.0 does not con-
ider the parental genotype probabilities in its HMM multipoint
 ppr oac h. T hus , it is important to plan the sequencing experi-
ent with high-quality parental genotypes because, if there are

rrors, they will not be corrected in downstream processing, and
t will cause distortions in the resulting distances and haplotypes.
o avoid map size inflation, erroneous parental genotypes must
e r emov ed befor e the linka ge ma p anal ysis. 

In gener al, the e v aluation of the RADinitio sim ulations pr ofile
ho ws that w e can expect few er markers and genotyping errors
n the simulated compared to the empirical data ( Supplementary
ig. S7 ). A smaller number of markers should not reduce the built
inka ge ma p quality because the anal ysis was made in F 1 pop-
lations , which ha ve large disequilibrium blocks. Ho w ever, the
maller number of genotyping err ors ov er estimates the SNP and
enotype calling software efficiency. This ov er estimation is com-
onl y observ ed in sim ulation r esults once the data cannot ca p-

ure all biases and errors in the empirical data. T hus , we used the
imulations to understand specific software limitations and error
ources but not ultimately define the best performance [ 62 ]. 

We observed the same or improved quality of linkage maps in
he empirical dataset e v aluations ( Supplementary Fig. S8 ) when
e applied these 2 described filtering steps: removing noninfor-
ative data before genotype calling and replacing allele counts
ith missing data when the genotype is missing in the GATK calls.
fter the genotype calling, we applied a threshold of 0.8 to filter

ow-quality genotypes, which also was beneficial in all scenarios.
t is important to notice that these filters are applied before the
egr egation test filter, whic h r educes the number of tests and in-
reases the permissibility of the threshold corrected by multiple
ests (Bonferr oni corr ection). T hus , the built map can hav e mor e

arkers in some scenarios e v en if more filters are applied. 
The simulations were also useful to validate all code devel-

ped for the analysis and to measure the effects of segrega-
ion distortion. The results sho w ed that the segregation distor-
ion does not affect the frequency of correct estimated genotypes
n most scenarios, despite affecting the reliability of the geno-
ype pr obabilities pr ovided by updog , SuperMASSA , and polyRAD

 Supplementary Figs. S9 and S10 ). This can be one of the reasons
hy using genotype probabilities in the HMM did not present con-

istent results across tested datasets. 
Despite considering the HMM error rate dataset-dependent val-

es, we identified that some of the possible values can be dis-
arded. Using the OneMap default value of 10 −5 , global error rate
roduced bad-quality maps in all situations . T he same happened
hile using all the genotype call softwar e r elativ e err or. Using
igher values of global error rate and genotypes from GATK , Free-
ayes , TASSEL , Stacks , updog , and polyRAD , or the combination
f the genotype probability and a global error rate from software
ATK , updog , Stacks , and polyRAD , produced the most reliable

inka ge ma ps, with linka ge ma p sizes closer to the expected. 
As observed in Fig. 5 , many of the approaches produced linkage

aps with distances between all adjacent markers smaller than
0 cM. We chose the method that results in less inflated linkage
aps and outlier markers even when applying the small values

f the global error rate (0.01). Once the method was selected, we
ried an intermediary global error rate (0.075) for the roses dataset
alues to adjust to the expected total size. We also c hec ked the re-
ombination fr action heatma p, the markers cov er a ge, density, and
he number of estimated recombination breakpoints in progeny
hr ough Reads2MapApp figur es (see the a pp interface demonstr a-
ion in Supplementary File S2 ). 

Before using the map size as a metric for map quality, we
 hec ked if a map with the expected size always means good
uality. A ma p can hav e the expected size but a poor quality

f the number of ov er estimated and under estimated r ecombina-
ion breakpoints in the pr ogen y ha plotypes is the same—in other
 or ds, if they cancel out. To test if this happens in our simu-

ated dataset, we compared the Euclidean relation of estimated
nd true genetic distances with the total number of wrong (over-
stimated + underestimated) recombination breakpoints in the
r ogen y ha plotypes (Fig. 6 ). For identifying a br eak as ov er esti-
ated or underestimated, we do not consider the expected break

osition but the total breaks expected for the e v aluated ha plotype.
or example, if 1 haplotype for a specific progeny was simulated
ith 1 break and estimated with zero, then we count it as 1 un-
er estimated br eak. 

The comparison shows that ov er estimated br eakpoints ar e
ener all y mor e fr equent than under estimated ones. We observ e
hat when a map is inflated, it also has many wrong recombina-
ion breakpoints. Ho w ever, in some cases, the map has the ex-
ected map size but a high number of wrong haplotypes due to
oth ov er estimated and under estimated br eaks. A high number
f under estimated br eaks can be observ ed in situations wher e the
uclidean distance is close to or less than 1 ( log 10 0) and the num-
er of wrong recombination events is between 10 and 100 ( log 10 1
nd log 10 2). These situations are more frequent when a global er-
 or r ate of 5% is used. 

In the empirical data results, we observed maps with expected
ize and excess recombination breakpoints in just a few individ-
als in the pr ogen y. This v ariation can be r elated to contaminant
amples . T he study by Zhigunov et al. [ 47 ] identified 6 contami-
ants in the aspen dataset. When we ran the workflows, includ-

ng the contaminant samples, the maps built with Freebayes

arkers and updog , SuperMASSA , and polyRAD were smaller in
ize than without the contaminant ( Supplementary Fig. S11 ). This
ould (wr ongl y) suggest better quality if ma p size is the onl y
etric used. Ne v ertheless, the ma ps pr esented higher differ ences

n the number of recombination breakpoints among individuals
hen using the genotype probabilities relative to each genotype

all software. Some contaminant samples presented more esti-
ated recombination events than the rest of the progeny. Using

igher values of global error reduces this difference and can mask
he presence of contamination. 

These results show that it is important to exclude contami-
ant samples before the linkage map building once the multipoint
MM a ppr oac h tends to fix the genotypes according to the biolog-

cal assumption that they are all F 1 individuals . T her e ar e se v er al
ethods available for identifying contaminant samples in pr e vi-

us steps . T he ADMIXTURE [ 63 ] softwar e anal ysis as made by Zhi-
unov et al. [ 47 ] is one possibility. Another is to calculate a marker-
ased relationship matrix using the R package AGHmatrix [ 64 ]. 

So far, all the e v aluations we have discussed have focused ex-
lusiv el y on biallelic markers. We also e v aluate the impact on
he genetic distances when haplotype-based multiallelic mark-
rs are included. In most of the tested scenarios, incorporat-
ng these markers leads to map inflation. This is primarily due
o the fact that inaccur atel y estimated multiallelic markers or
enotyping errors associated with them can significantly affect
he quality of the linkage map. The impact is particularly pro-
ounced because multiallelic markers provide richer information,

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad092#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad092#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad092#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad092#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad092#supplementary-data


Benchmarking GBS pipelines with linkage maps | 13 

Figure 5: Process of selecting the best pipeline. (A) Comparing the effect of different error probabilities in the OneMap 3.0 HMM in the distances 
between adjacent markers. (B) Comparing the effect of different error probabilities in the linkage maps total size built with a single SNP call software. 
(C) Checking the recombination fraction (rf) heatmap and markers coverage in the genome using the selected pipeline . T hese figures were extracted 
from Reads2MapApp . 
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including recombination and phase information for both parents, 
compared to biallelic markers. Ho w ever, the advantages of in- 
cluding the multiallelic markers appear in the marker ordering 
step. 

Algorithms that use 2-point recombination fractions estima- 
tions have issues ordering only biallelic markers because of the 
missing linkage information between markers D1 and D2 (ho- 
mozygous × heterozygous or vice versa). These markers can only 
be related to each other in the presence of more informative mark- 
ers, such as B3.7 (heterozygous × heterozygous) or multiallelic 
states . Yet, ha ving few B3.7 markers compared to D1 and D2 can 

still be an issue for linkage map building. In fact, this character- 
istic was the reason behind the initial de v elopment of separ ate 
ma ps for eac h par ent in the first methods used for building ge- 
netic maps in such populations [ 65 ]. These nonintegrated genetic 
ma ps subsequentl y limited further analysis of m ultiallelic tr aits 
in terms of QTL mapping [ 66 ]. 

The markers ordering efficiency is not considered by 
Reads2Map w orkflo ws once it uses the genomic order to po- 
sition the markers in the linkage maps . T he reference genome 
is a r equir ed input by the w orkflo ws to standar dize the posi- 
tions of the markers across all tested methods . T his a voids the 
onfounding inter pr etation of bad-quality linka ge ma ps due to
rong ordering and not genotyping errors. 
To test the effect of multiallelic markers in the or dering, w e

uilt a linkage map for the entire chromosomes 1 and 10 of the
oses and aspen datasets, respectively, using the selected meth- 
ds and adding the haplotype-based multiallelic markers pro- 
ided by the Stacks population plugin. We used the OneMap
r a pper function mds_onema p to order the markers with MDS

 60 ]. The genetic distances were estimated by the HMM multipoint
 ppr oac h. Figur e 7 shows the effects of including the multiallelic
arkers in the 2-point-based MDS algorithm. 
The impact of multiallelic markers differed between the as- 

en and roses datasets. In the aspen dataset, characterized by a
o w er depth and a higher rate of genotyping errors in the markers,

ost of the B3.7 biallelic markers were filtered out during previous
teps, resulting in an unsatisfactory performance of the MDS al-
orithm in ordering the markers. Howe v er, incor por ating the mul-
iallelic markers, although slightly inflating the genetic distances,
ignificantl y impr ov ed the ordering accur acy using MDS. It should
e noted that MDS itself can contribute to genetic distance infla-
ion as it may err oneousl y inv ert markers in close proximity. In
cenarios where a reference genome is una vailable , the inclusion
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Figure 6: Relation between Euclidean distance (y-axis) and the number of recombination breakpoints (x-axis) in maps built with global error rates 
(0.001% and 5%) and with probabilities outputted by the genotype call software (relative error). Each dot represents a map built with simulated data 
based on the first 37% of aspen c hr omosome 10. The red squares highlight maps that do not present inflated size (1 or less Euclidean distance) but 
hav e fr om 10 to 100 wr ong r ecombination br eakpoints. 
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f multiallelic markers can prove valuable for effective marker or-
ering in these types of datasets. 

The roses dataset is c har acterized by higher-quality markers,
nd the genomic ordering can be almost entir el y r epr oduced us-
ng only biallelic markers. In this scenario, the inclusion of multi-
llelic markers also leads to a slight inflation of the map size while
mproving the ordering accuracy through MDS. Unlike the aspen
ataset, the MDS algorithm in the roses dataset tends to reduce
he genetic distances, resulting in an underestimation of recombi-
ation breakpoints. Ho w ever, considering that there are no signif-

cant inversions or translocations (see dot plots in Fig. 7 ), we can
av e mor e confidence in the genomic order, e v en if the ma p is

ar ger. An y discr epancies betw een the MDS-based or der and the
enomic order are likely attributed to local c hanges, whic h ar e
ikely to be errors introduced by MDS. 

 inal Consider a tions 

he Reads2Map w orkflo ws have a robust structure to generate
r oduction-le v el r esults with simple inputs and optimized usage
f computational resources . T he structure allo w ed us to test the
uality of genetic maps built with the following scenarios: (i) us-

ng different SNP calling software ( GATK , TASSEL , Stacks , and
reebayes ), (ii) using different genotype calling software ( GATK ,
reebayes , TASSEL , Stacks , updog , polyRAD , SuperMASSA ), (iii)
sing differ ent linka ge ma p-building softwar e ( OneMap 3.0 and
USMap ), (iv) establishing different error probabilities (relative to
enotype call software; 10%, 1%, 5%, and 0.001% global error; and
he combination of the global error rate with the genotype call
r obabilities), (v) a ppl ying differ ent marker filtering (vi) with or
ithout multiallelic markers, (vi) in empirical and simulated data,

vii) with and without segregation distortion, (viii) with and with-
ut contaminant samples, (ix) with differ ent GBS libr ary pr epa-
ation aspects, and (x) with different sequencing depths . T hese
cenarios are commonly found by researchers trying to produce
igh-quality linka ge ma ps using sequencing tec hnologies . T he
eads2Map and Reads2MapApp are the first tools to guide best
ractices for building linkage maps with sequencing data point-

ng softwar e, par ameters, and marker filters to be used in diverse
cenarios. 

We elaborated and limited the scenarios explored according
o our experiences as de v elopers of OneMap . OneMap first version
as released in 2007, and since then, it has been used to build

inka ge ma ps in a div ersity of species. Its str ategies and structur e
lso served as a base for more complex software such as MAPpoly
 15 ] for building linka ge ma ps in pol yploid species. With time,
ew methods for genetic marker identification using sequenc-

ng data emer ged, c hanging the context where OneMap was used.
e included updates in this version 3.0 to r esolv e issues with

nflated genetic maps and marker or dering. Tw o major changes
llow users to read and build genetic maps with the genotype
robabilities and haplotype-based multiallelic markers informa-
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Figure 7: Comparison between MDS ordering algorithm performance in the aspen and roses dataset entire linkage group 10 and 1, respectively, with 
only biallelic markers and with biallelic and haplotype-based multiallelic markers estimated by Stacks . The heatmaps represent the recombination 
fraction (rf) matrix between markers positioned at both axes. In well-ordered linkage groups, we expect a gradient from hot colors in the diagonal 
(adjacent markers) to cold colors in the upper left and lo w er right corners . T he figure also presents the Spearman rank correlation ( ρ) and the 
Euclidean distances (D) between the estimated map using MDS and the map built with markers ordered by the genomic positions (used as reference). 
The dot plots relate the positions of markers estimated by MDS with the genomic position. 
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tion from the input files ( OneMap format or VCF file). Ho w ever,
the success of genetic map building will be proportional to the 
quality of the information provided by upstream procedures such 

as libr ary pr epar ation, SNP and genotype calling, genotype prob- 
abilities estimation, and the combination of SNPs into haplotype- 
based markers. With Reads2Map and Reads2MapApp , we provide 
users tools to select the best a ppr oac hes befor e using OneMap 3.0 
o guarantee that it will result in the best-quality genetic map pos-
ible with the data a vailable . 

It is important to highlight that we did not design the w orkflo ws
o be a tool to build a final linka ge ma p but to select the bioin-
ormatic pipeline that provides the best-quality genetic markers.
nce the pipeline is selected, the r espectiv e VCF file and OneMap

unctions can be used in the R environment to build the final
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ap. Building the complete linkage map will require evaluations
nd edits that are highly specific and cannot be fully automated
ithin the w orkflo ws . T hese tasks include addressing the pres-

nce of translocations and in versions , identifying outlier markers ,
nd linkage between markers located in different chromosomes. 

The diversity in the results of the pipeline suggested for both
mpirical datasets highlights that pipelines perform differ entl y
ith datasets with differ ent pr operties . T his means that the
ipelines pr esented her e as the best cannot be consider ed the best
or e v ery dataset. We could r educe the number of r equir ed tests
y users identifying the dataset-independent a ppr oac hes and set-
ing them as default in Reads2Map . Ho w e v er, we suggest users re-
roduce the tests presented here for the dataset-dependent ap-
r oac hes using the Reads2Map w orkflo ws with their empirical
ataset and select the best pipelines for their specific conditions. 

The w orkflo ws w ere built using WDL and containers to ensure
igh r epr oducibility. This guar antees that differ ent r esults run-
ing different datasets are due to the dataset’s properties and
ot to bioinformatic pipeline changes. Also, updates can be easily
ade in the w orkflo ws as the software implemented are improved

nce the versions are controlled by Docker images . T his makes
eads2Map also a useful tool for software developers to validate
pdates because it facilitates c hec king the consequences of the
hanges in the quality of the markers by easil y contr olling v er-
ions , rerunning datasets , and c hec king the ma p quality. 

Every Reads2Map w orkflo w run returns a large amount of in-
ormation. Every step of the w orkflo w, from the reads’ alignment
o the completed linkage map, provides quality measurements for
sers to e v aluate eac h scenario. The Reads2MapApp shiny app re-
eives all this information compressed in a single w orkflo w out-
ut file and converts it into comprehensive interactive graphics.
hrough the app interface, users can e v aluate the performance
f each combination of software and parameters in each step. If
esults show issues in any of them, users can rerun the w orkflo w
ith adapted parameters or include new filters that make sense

n their context. Once the upstream steps are established based
n the app graphics for the built linkage map subset, users can re-
roduce it for the complete dataset, inputting the VCF files from
eads2Map into OneMap . 

vailability of Source Code and 

equirements 

� Project name: Reads2Map 

� Pr oject homepa ge: [ 32 ] 
� Main w orkflo ws: EmpiricalReads2Ma p [ 33 ] and Sim ulate-

dReads2Map [ 34 ] 
� Operating system(s): Platform independent 
� Pr ogr amming langua ge: WDL 
� Other r equir ements: Doc ker or singularity 
� License: MIT 

� RRID: SCR_023593 
� biotoolsID: r eads2ma p 

dditional Files 

upplementary File S1. Emission function for outcrossing. 
upplementary File S2. Reads2MapApp interface demonstration. 
upplementary Fig. S1. Reads2MapApp about page . T he r ed arr ow

ndicates the menu icon to access the app’s other pages. 
upplementary Fig. S2. Reads2MapApp upload page . T he red ar-
ow indicates the button to upload the EmpiricalMaps w orkflo w
esults. 
upplementary Fig. S3. Example of the “SNP calling efficiency”
ection. Venn dia gr ams ar e built to show the n umber of mark ers
dentified in the pipelines defined in the options and the common

arkers between them. 
upplementary Fig. S4. Example of the “Map size” section of
eads2MapApp . The gr a phic shows the n umber of mark ers (left)
nd the distances between adjacent markers (right) for each
ethod. 

upplementary Fig. S5. Example of the “Breakpoint count” sec-
ion of Reads2MapApp . The gr a phic shows the number of esti-

ated breakpoints in each progeny haplotype according to the
ethod selected in the options. 

upplementary Fig. S6. Example of the “Pr ogen y ha plotypes” sec-
ion of Reads2MapApp . The gr a phic shows the estimated haplo-
ype for the individuals selected in the “Individuals from progeny”
ptions according to the method selected in the options. 
upplementary Fig. S7. Venn dia gr ams show the number of mark-
rs identified by freebayes , GATK , and simulated (true). The inter-
ection between the datasets r epr esents markers with the same
osition in the r efer ence genome Populus trichocarpa version 3.0.
he empirical datasets include markers spread across the entire
 efer ence genome . T he sim ulations onl y include markers in the
rst 8.426 Mb of c hr omosome 10 (2.1% of the genome). The mean
nd standard deviation of n umber mark ers are shown for the sim-
lated dataset once the simulation and SNP calling are repeated
0 times. Markers were filtered by 25% maximum missing data
nd MAF 5% in empirical and simulated data. ∗Number of mark-
rs common to all 60 repetitions. 
upplementary Fig. S8. The relation between filters applied (x-
xis), the map size (A, y-axis), and the number of markers (B, y-
xis) for genotype calling software used in the empirical datasets.
he datasets shown in the figure contain only biallelic markers.
he horizontal red line indicates the expected map size (38 cM)
or the subset of the genomes used. 
upplementary Fig. S9. ROC curves with the true and estimated
enotypes from the 5 families simulated with mean depth 10 and
0 and with the first 8.426 Mb of c hr omosome 10 (37% or 38 cM).
er e, onl y biallelic markers are considered. The specificity and

ensitivity profiles consider different thresholds in the genotype
r obabilities for eac h scenario. The higher the ar ea under the
urve, the higher the genotype’s probability reliability. Genotype
r obability thr esholds closer to the left superior corner have a
igher capacity to differentiate right and wrong genotypes. 
upplementary Fig. S10. See Supplementary Fig. S9 description. 
upplementary Fig. S11. Effect of contaminant samples in the
ap size (A) and in the number of estimated recombination

r eakpoints r ange (B) among pr ogen y individuals . T he empirical
spen datasets presented in this figure contain multiallelic mark-
rs and the allele counts from the VCF file, and they are filtered
y genotype probability higher than 0.8 to k ee p only informati ve
arkers. 

upplementary Table S1. Emission function values according to
arker types . T he err or r ate is r epr esented by e , unphased geno-

ypes as “a, ” “b , ” “c, ” “d, ” and their combination. The estimated
hased genotypes are represented by “AA, ” “AB, ” “BA, ” and “BB. ”
he “o” r epr esents n ull alleles. Mark er types follow the segrega-
ion pattern as described in Wu et al. [ 53 ]. 
upplementary Table S2. Continued from Supplementary Table
1. 
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Supplementary Table S3. Continued from Supplementary Table 
S1. 
Supplementary Table S4. Continued from Supplementary Table 
S1. 
Supplementary Table S5. Continued from Supplementary Table 
S1. 
Supplementary Table S6. Continued from Supplementary Table 
S1. 
Supplementary Table S7. Continued from Supplementary Table 
S1. 
Supplementary Table S8. List of third-party software and images 
versions used. 
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