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Abstract

Background: Genotyping-by-sequencing (GBS) provides affordable methods for genotyping hundreds of individuals using millions
of markers. However, this challenges bioinformatic procedures that must overcome possible artifacts such as the bias generated by
polymerase chain reaction duplicates and sequencing errors. Genotyping errors lead to data that deviate from what is expected from
regular meiosis. This, in turn, leads to difficulties in grouping and ordering markers, resulting in inflated and incorrect linkage maps.
Therefore, genotyping errors can be easily detected by linkage map quality evaluations.

Results: We developed and used the Reads2Map workflow to build linkage maps with simulated and empirical GBS data of diploid
outcrossing populations. The workflows run GATK, Stacks, TASSEL, and Freebayes for single-nucleotide polymorphism calling and
updog, polyRAD, and SuperMASSA for genotype calling, as well as OneMap and GUSMap to build linkage maps. Using simulated data, we
observed which genotype call software fails in identifying common errors in GBS sequencing data and proposed specific filters to better
handle them. We tested whether it is possible to overcome errors in a linkage map using genotype probabilities from each software
or global error rates to estimate genetic distances with an updated version of oneMap. We also evaluated the impact of segregation
distortion, contaminant samples, and haplotype-based multiallelic markers in the final linkage maps. Through our evaluations, we
observed that some of the approaches produce different results depending on the dataset (dataset dependent) and others produce
consistent advantageous results among them (dataset independent).

Conclusions: We set as default in the Reads2Map workflows the approaches that showed to be dataset independent for GBS datasets
according to our results. This reduces the number of required tests to identify optimal pipelines and parameters for other empirical
datasets. Using Reads2Map, users can select the pipeline and parameters that best fit their data context. The Reads2MapApp shiny app
provides a graphical representation of the results to facilitate their interpretation.

Keywords: genotyping error, haplotype, genetic maker, multiallelic

Introduction of libraries [4], called restriction site-associated DNA sequencing

Advances in sequencing technologies and the development of dif-
ferent genome-reduced representation library protocols result in
millions of genetic markers from hundreds of samples in a single
sequencing run [1-4]. Increasing the number of markers and in-
dividuals genotyped can enhance the capacity of linkage maps to
locate recombination events that occur, resulting in higher map
resolution and better statistical power for the localization of QTL
in further analysis. This large amount of data and genotyping er-
rors common with genotyping-by-sequencing (GBS) approaches
[5] increases the need for computational resources and multiple
bioinformatic tools.

Genotyping errors are frequent when high-throughput se-
quencing technology is applied to reduced representation li-
braries. There are a variety of protocols to create these types

(RADseq) or GBS [6, 7]. Generally, 1 or more restriction enzymes
are used to digest the sample DNA. The resulting DNA fragments
are filtered by size, connected to adaptors and barcodes, ampli-
fied by polymerase chain reaction (PCR), and sequenced. Conse-
quently, most sequences obtained are PCR duplicates of the re-
glons around the enzyme cut site. By relying on duplicates to in-
crease sequencing depth, such methods introduce errors and a
sequencing bias toward one of the alleles due to variabilities in
the PCR amplification. These errors are hard to detect by bioinfor-
matic tools [8, 9].

To overcome genotyping errors coming from GBS meth-
ods, genotype calling software models sequencing error, allelic
bias, overdispersion, outlying observations, and the population
Mendelian expected segregation [10]. Building a genetic map with
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genotypes obtained using these methods can be a powerful tool
to validate their efficiency. Wrong decisions or inefficient methods
in all steps before linkage map building can be identified in the
resulting map as errors that dissociate the map properties from
biological processes. For example, genotyping errors generate in-
flated map sizes that show an excessive number of recombination
breakpoints during meiosis [11]. The first genetic map studies by
Sturtevant [12] discovered that crossing-overs are unlikely to hap-
pen too close to each other, a phenomenon named interference.
Later studies describing the meiotic molecular mechanisms con-
firmed the low expected number of recombination breaks in a sin-
gle event [13].

Recently developed approaches to build linkage maps [14-16]
were implemented in the OneMap [17] 3.0 package. They use quan-
titative genotype probability measurements rather than the tra-
ditional qualitative genotypic information from single-nucleotide
polymorphism (SNP) and genotype calling methods to account for
genotyping errors and provide higher-quality genetic maps. These
probabilities can be applied in different ways: using the probabil-
ity of each possible genotype (PL field in VCF format), using an
error probability associated with the called genotype (GQ field in
VCF format), or using a global error rate that will be applied to
all genotypes. Nevertheless, even using these approaches, build-
ing a linkage map will succeed only if the upstream software
can identify the errors and provide reliable genotypes or their
probabilities.

The biallelic codominant nature of SNPs is another characteris-
tic of high-throughput markers that can affect linkage map build-
ing of outcrossing species. Although biallelic markers can distin-
guish only 2 haplotypes, the mapping population of outcrossing
diploid species inherits 2 haplotypes with combinations of 4 dif-
ferent parental haplotypes. With biallelic markers, the observed
parental genotypes are limited to types ab x ab, ab x aa, and aa x
ab. When one of the parents is homozygous (ab x aa and aa x ab), it
is impossible to observe the crossing-over change for this uninfor-
mative parent. So this is taken as missing information (nonmea-
surable crossing-overs) for linkage map building if only 2-point
information is considered. Therefore, building a linkage map with
only biallelic markers requires a multipoint approach that uses
loci information with both parents heterozygous (ab x ab) to es-
timate the recombination of loci where 1 parent is homozygous,
and the recombination information is missing for closely linked
loci. The multipoint approach applies likelihood computations in-
volving several loci and has been successfully used since the sem-
inal publication of Lander and Green [18]. The approach makes it
possible to identify the 4 different parental haplotypes by phasing
the biallelic information so that the SNPs can be used to identify
all the allelic diversity.

Other approaches to overcome the low informativeness of bial-
lelic markers involve combining adjacent biallelic markers in the
same disequilibrium block (high LD) into a single multiallelic
haplotype. These haplotype-based markers showed higher accu-
racy in association analysis than individual biallelic SNPs [19-25].
N'Diaye et al. [21] and Jiang et al. [25] pointed out several advan-
tages of haplotype-based markers, including the higher capacity
to identify epistatic interactions, the presence of more informa-
tion to estimate identical-by-descent alleles, and the reduction of
the number of statistical tests to perform.

Despite the availability of many software for estimating geno-
type probabilities [2, 10, 26-29] and haplotype-based multiallelic
markers [26, 30], there are no recommendations about which
combination and choice of parameters are the best for build-
ing linkage maps. Therefore, this work evaluates the conse-

quences of building maps by applying genotype probabilities and
haplotype-based markers from different software and parame-
ters. To achieve these, we implemented new features in OneMap
[17], a widely used software for building maps. We also developed
the Reads2Map workflow, a tool to help users select a bioinfor-
matic pipeline that provides the best-quality markers to build a
linkage map for their dataset. Here, we performed tests with sim-
ulated and empirical data and were able to make recommenda-
tions to users to obtain better linkage maps in several situations,
such as low- and high-depth sequencing, with and without seg-
regation distortion, contaminant samples, and multiallelic mark-
ers, and using different software to perform the SNP and genotype
calling.

Material and Methods

We developed Reads2Map (RRID SCR_023593), a collection of
bioinformatics workflows using Workflow Description Language
(WDL) [31]. It enables sequence alignment, SNP and genotype call-
ing analysis, and linkage map construction. With Reads2Map, re-
searchers have the flexibility to explore various software options
and parameter combinations, enhancing the construction of link-
age maps. The workflows are available in GitHub [32] and in work-
flowhub.eu [33, 34].

The EmpiricalReads2Map workflow was designed to evaluate
empirical (real) datasets, and the SimulatedReads2Map workflow
was to simulate and evaluate datasets (Fig. 1). Both are composed
of subworkflows that can be run independently, which increases
usage flexibility. There are multiple options available for running
WDL workflows. Some of them are Terra.bio platform [35] and
Cromwell Execution Engine [31].

Each WDL task in Reads2Map is related to a Docker [36] or Sin-
gularity [37] container. Some of the container’s images used in
Reads2Map are available in open repositories, and others were
built using Dockerfiles stored in the Reads2Map repository and
available in DockerHub. Check a list of all software and image ver-
sions used in Supplementary Table S1. We ran the analysis testing
workflows on 2 high-performance computers (Texas A&M Univer-
sity HPRC, University of S&o Paulo Aguia Cluster).

For building linkage maps, we implemented updates in oneMap
package version 3.0 and used this version in the workflows. We
also developed the Reads2MapTools [38] R package for support
functions and Reads2MapApp shiny app [39], a visualization tool
that receives as input the final workflow output and provides sum-
mary statistics about the resulting linkage maps, intermediary
steps, and workflow performance.

SNP calling

The first step of the workflows is the SNP calling. To start with
GATK [27], Stacks [2], and Freebayes [26] approaches, the de-
multiplexed FASTQ sequences are first aligned to their respective
reference genomes using BWA-MEM [40]. The workflow uses sam-
tools [41] to merge the alignment of replicates, keeping the li-
braries’ identification on the BAM header and filtering out reads
with MAPQ <10. After the alignment, BAM files for each sam-
ple are used as inputs for subworkflows with GATK, Stacks,
and Freebayes tasks. The gatk genotyping subworkflow repro-
duces GATK joint genotyping via HaplotypeCaller, Genomics-
DBImport, and GenotypeGVCFs tools and applies the suggested
hard-filtering procedures [8]. The freebayes genotyping sub-
workflow runs Freebayes parallelized by reference genome in-
tervals. The stacks genotyping subworkflow includes the op-
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Figure 1: (A) Tasks of the 2 main Reads2Map workflows: EmpiricalReads2Map and SimulatedReads2Map. (B) Tools to run the workflows on the Cloud
[35] or in high-performance computing (HPC) environments. (C) The Reads2Map shiny app has as input the outputs of the workflows. It builds several
descriptive graphics to evaluate the best upstream software combination for linkage map construction.

tion to input the population file. If not included, all individuals are demultiplexed FASTQ sequences. After, it runs the plugins GB-
considered from the same population. It runs the gstacks and the SSegToTagDBPlugin and TagExportToFastgPlugin. The gener-
populations plugins. ated tags are aligned to the reference genome using BWA-MEM and

The TASSEL [1] SNP caller is implemented in the tas- the alignment files are input for the SAMToGBSdbPlugin plugin,

sel genotyping subworkflow. It first adds fake barcodes to the which produces a database. The database is processed by the Dis-
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coverySNPCallerPluginv2, SNPQualityProfilerPlugin, and
ProductionSNPCallerPluginV2 plugins.

After obtaining the VCF file using 1 or more of the SNP calling
methods, indel marker positions are left-aligned and normalized
with BCFtools [42].

Genotype calling

The VCF files with biallelic markers from Freebayes, TASSEL,
Stacks, and GATK are the input for the genotype caller software
polyRAD [28], SuperMASSA [29], and updog [10]. These 3 software
are implemented in the subworkflows genotyping empirical
and genotyping simulated.

To use the polyRAD approach, the VCF files are imported using
VCF2RADdata without applying any filters or considering phase
information. The polyRAD model is run with PipelineMap-
ping2Parents default arguments, which assume an F; biparental
population. The function Export MAPpoly is used to export the
genotype probabilities. The ve£R package [43] and custom R (func-
tion polyRAD genotype vcf in Reads2MapTools package) code
are used to store outputted genotypes and their probabilities
in a new VCF file. We also adapted SuperMASSA scripts to out-
put the genotype probabilities information. The modified ver-
sion is available in the Reads2MapTools package. A wrapper
function called supermassa_genotype, available in the package,
can run the model in parallel and export the results to a new
VCF file. The F; SuperMASSA model is run with the parameter
naive posterior reporting threshold set to zero to not fil-
ter any genotype. The updog F1 model is used in parallel using the
function multidog through the Reads2MapTools wrapper func-
tion updog genotype, which outputs the results in a new VCF
file.

The software GUSMap performs the genotype calling and link-
age map building with a single model. We use VCFtoRa function
to convert the outputted VCF files from GATK, TASSEL, Stacks,
and Freebayes approaches into GUSMap format. A pedigree of
the population and a list of filters (MAF=0.05, MISS=0.25, BIN=0,
DETPH=0, and PVALUE=0.05) are provided to the readra func-
tion. The function makeFS is used to create the full-sib popula-
tion information. Functions infer OPGP FS and rf est FS are
used to estimate the phase and recombination fraction given the
genomic order of the markers. In some situations, the function
rf est FSoutputs infinite values of the recombination fraction.
In these situations, our pipeline removes the respective marker
and runs the function again. This workaround code can increase
the time required to run GUSMap.

Updates in oneMap 3.0 for building linkage maps
OneMap is an open-source R package that has been serving the re-
search community since its initial release in 2007. It offers a com-
prehensive suite of functions designed to facilitate marker filter-
ing, grouping, ordering, and genetic distance estimation in both in-
bred and outbred populations. The genetic distance estimation is
made using a hidden Markov model (HMM) multipoint approach.
The forward-backward algorithm [44] is implemented to compute
the HMM combined with the expectation-maximization (EM) al-
gorithm.

The OneMap latest version (3.0) is implemented in Reads2Map
workflows. In this new version, we have introduced a new feature
to enhance the flexibility of the HMM in scenarios where genotyp-
ing errors are expected in the dataset. This update includes the
create_probs function and modifications to the HMM algorithm.
With this option, users can provide oneMap with prior informa-

tion regarding the reliability of each input genotype, thereby in-
creasing the HMM'’s adaptability. The create_probs function allows
users to input 3 types of values: a global error value (global_error),
an error probability for each inferred genotype (genotypes_error),
or genotype probabilities for each possible genotype in individ-
uals (genotypes_probs). This flexibility empowers users to tailor
the analysis to their specific dataset characteristics and improve
the accuracy of the results. This update is described in detail in
Supplementary File S1.

The oneMap software previous to version 3.0 considered the
HMM error probability as a single value of 10~ for every geno-
type. In version 3.0, this value is kept as default to keep the code
reproducible. However, it is noteworthy that this probability can
be unreliable in several situations when the genotypes are more
prone to errors, especially for new genotyping technology (e.g.,
GBS data).

OoneMap 3.0 updates also include the possibility to parallelize
the HMM using the approach described by [45]. It parallelizes the
procedure into a maximum of 4 cores. We used this new OneMap
feature to estimate the genetic distances. We also implemented
new functions for linkage maps quality diagnostics such as inter-
active plots for recombination fraction matrices, progeny haplo-
type representation, and counts of the recombination breakpoints
in progeny.

Despite using the parallelized HMM, the genetic distance es-
timations in OneMap can take time to run with a high number
of markers, chromosomes, and tested combinations of software.
Therefore, the EmpiricalReads2Map workflow runs the HMM in
just a subset of markers, which can be a single chromosome or a
fragment of a chromosome. The alignment, the SNP, and genotype
calling steps are performed with the entire dataset. After running
the workflow and deciding the pipeline that provided the best re-
sults, the respective VCF output can be used to build the linkage
map for all chromosomes in the R environment with oneMap func-
tions.

The oneMap function onemap_read vcfRisused to convert the
VCFs to the OneMap R object format. The markers are filtered again
by a maximum number of missing data of 25% because the VCF
files include unexpected genotypes according to the segregation
of a given locus (e.g., in a cross “aa x ab,” genotype “bb” cannot
exist). oneMap makes this genotype call missing. Markers are also
filtered if the segregation distortion is under a global significance
level of 0.05 with Bonferroni correction and if they are redundant.
Markers are ordered according to the reference genome position.

The Reads2Map workflows give flexibility to the user to define
the probabilities to be used in the oneMap HMM for the estimation
of the genetic distances. Users can provide more than 1 value to
be tested as global errors (global_error input), can choose to use
the upstream genotype caller error probability (genoprob_error
input), and can provide global error values to be considered to-
gether with the software probabilities (genoprob_global_error in-
put) according to the following: 1 — (1 — globalerror) x (1 — soft-
ware error probability).

For GATK, TASSEL, Stacks, and Freebayes callers, the work-
flow uses in the HMM the Phred score genotype error (GQ FOR-
MAT value) converted to probabilities. For the software polyRAD,
SuperMASSA, and updog, it uses 1 — output genotype probability as
a genotype error. For the latter, the population’s structure (F;) is
used as a priori information to increase the accuracy of the esti-
mated genotypes.

The simulations do not consider interference in the recombina-
tion events. Therefore, the Haldane map function was used to es-
timate the genetic distances in SimulatedReads2Map. Kosambi’s


https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad092#supplementary-data

map function was applied to estimate the genetic distances in the
EmpiricalReads2Map.

Read2Map workflows app

The shiny app Reads2MapApp was built to display results from
the workflow analysis. It includes graphics and statistics about
SNP calling efficiency, the number of markers discarded by fil-
tering steps, marker types, computer resources and time spent
by each step of the workflow, allele depth by genotype, genotype
probabilities, map size, map phases, recombination fraction ma-
trix, progeny haplotypes, breakpoints count, and the correlation
between linkage map and reference genome markers positions.
Reads2MapApp is a modular R package using the golem frame-
work [46] that can be rendered and displayed locally or on a server.
It can be installed from its GitHub repository and run with a single
command (run_app). Once the Reads2Map output file is uploaded
into the app, all graphics will be automatically generated.

Empirical datasets

We used the structure of Reads2Map to test the effects in the link-
age map built using different combinations of software and pa-
rameters in datasets with different characteristics. For our tests
with empirical data, we used 2 datasets from previous works.
They are GBS datasets from a biparental diploid F; full-sib map-
ping populations of aspen (Populus tremula L.) [47] (BioProject PR-
JNA395596) and rose (Rosa spp.) [48]. The aspen dataset comes
from an intraspecific cross of 2 P. tremula genotypes. The GBS li-
braries were built using HindIIl and Nallll enzymes and sequenced
as 150-bp single-end reads on an Illumina HiSeq2500. Eight library
replicates were built and sequenced for the parents and only 1 for
each of the 116 F1 offspring. The dataset includes 6 samples er-
roneously sequenced as part of the progeny and later identified
as contaminants. An average read depth of approximately 6x for
progeny and 58x for parental samples was observed from the se-
quencing process. The Populus trichocarpa genome version 3.0 [49]
was used as a reference for the sequence’s alignment. It is about
397 Mb in size.

The diploid roses dataset comprises 138 individuals from the
cross between a Texas A&M breeding line J06-20-14-3 (j14-3)
and cultivar Papa Hemeray (PH). GBS libraries were built with
NgoMIV enzyme and sequenced as a 113-bp single-end read on
a HiSeq2500. The parent J14-3 was repeated twice and the PH
sample 3 times. An average read depth of approximately 94 x for
progeny and 528x for parental samples was observed from the
sequencing process. The Rosa chinensis v1.0 genome assembly [50]
was used as a reference genome to align the sequences. It is about
527 Mb in size.

The sequencing reads of the 2 empirical datasets were filtered
using the Stacks plugin process_radtags [2] to filter sequences by
the presence of the restriction site and sequencing quality. The
reads were discarded if the average quality score of 50% of its
length was below the Phred score of 10 (or 90% probability of being
correct). The software cutadapt [51] was used to remove adapters
and filter by a minimum read length of 64 bp. The sequences were
then evaluated in our EmpiricalReads2Map workflow.

Simulated GBS data

The first step of the SimulatedReads2Map workflow is to per-
form simulations of a mapping population, GBS libraries, and se-
quences. The simulation is based on a given reference genome
chromosome sequence. If a reference linkage map and a VCF
file are provided, the workflow simulates the marker genetic dis-
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Table 1: Marker types according to parental genotype combina-
tions and progeny segregation. The letters “a,” “b,” “c,” and “d” rep-
resent different alleles and the letter “0” represents null alleles.
Adapted from [53].

Parents Progeny
Observed Expected
Marker type Cross genotypes segregation
A 1 ab x cd ac,ad,bc,bd 1:1:1:1
2 ab x ac a,ac,ba,bc 1:1:1:1
3 ab x co ac,a,bc,b 1:1:1:1
4 a0 x bo ab,a,b,0 1:1:1:1
B B, 5 ab x ao ab,2a,b 1:2:1
B, 6 2o x ab ab,2a,b 1:2:1
B3 7 ab x ab a,2ab,b 1:2:1
C 8 a0 x ao 3a,0 3:1
D D4 9 ab x cc ac,bc 1:1
10 ab x aa a,ab 1:1
11 ab x oo a,b 1:1
12 bo x aa ab,a 1:1
13 a0 x 00 a,0 1:1
D, 14 cc x ab ac,bc 1:1
15 aa x ab a,ab 1:1
16 00 x ab a,b 1:1
17 aa x bo ab,a 1:1
18 00 X ao a,0 1:1

tances and parental genotype frequencies based on them. A cu-
bic spline interpolation with the Hyman method [52] is applied to
simulate the centimorgan position for each marker’s physical po-
sition based on this same relation on the reference linkage map
provided.

We based our simulation analysis on the first 37% of the chro-
mosome 10 sequence of P. trichocarpa version 3.0, which includes
a sequence with 8.426 Mb from a total chromosome size of about
23 Mb. This sequence comprises 38 cM (21%) of the linkage group
10 built using the aspen empirical data [47]. Due to the computa-
tional resources needed to build such a high number of maps, we
used only a subset of the data to finish the analysis in a reasonable
time. Chromosome 10 was randomly chosen.

We simulated markers with different expected segregation pat-
terns according to parental genotypes in each locus. Table 1 shows
the notation used by OneMap for each possible marker type in an
outcrossing diploid population. The simulatedReads2Map Work-
flow simulates parental haplotypes using the same proportion of
marker types identified in the empirical VCF file. This approach
overcomes the missing data present in the empirical dataset. The
final VCF file used as a reference to the simulations contains 810
markers (126 B3.7, 263 D1.10, 278 D2.15, and 143 noninformative
markers with both parents homozygous), which results from the
aspen empirical data GATK SNP calling, filtered by a maximum of
25% of missing data and minor allele frequency (MAF) of 5%.

PedigreeSim v2.1 software [54] is implemented in the work-
flow to simulate the meiosis events and generate an F; progeny
based on the provided genetic map and simulated parental hap-
lotypes. We did not consider interference in meiotic events (Hal-
dane [55] mapping function). PedigreeSim output files were con-
verted to VCF files using Reads2MapTools R package function
pedsim2vct.

While converting the files, the pedsim2vcf function can also
simulate segregation distortion by applying a selection strength.
For that, a high number of individuals in the progeny have to be
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simulated with the Pedigreesim software and 1 or more loci to
be under a given selection intensity. In our study, we targeted a
final population size of 200 individuals. For that, we simulated 50
x 200 individuals and applied a selection intensity of 50% in the
30th marker, eliminating 50% of the genotypes containing one of
the alleles. Then, 200 individuals of the resulting population are
randomly selected to compose the mapping population. We used
this feature to compare software performance with segregation
distortion.

The VCF file output by pedsim2vcf and the reference genome
file are inputs for the RaDinitio [9] software. RADinitio adds the
VCF polymorphisms in the reference genome sequence and sim-
ulates the GBS sequences. It uses the inherited efficiency model
[56] to simulate a PCR-amplified pool of molecules. The model in-
cludes the heterogeneity of the PCR amplification and the poly-
merase substitution errors. Next, RADinitio applies the user-
defined ratio between DNA original molecules to be sequenced
and PCR duplicates to create a distribution that will define the
number of times the pool of loci is sampled, the number of du-
plicate molecules that are generated from a RAD locus template,
and the distribution of PCR errors in the resulting reads. We de-
fined the default parameter with a proportion of 4:1. Besides the
PCR errors inserted during the pool sampling, the software also
includes a commonly observed error pattern, where the 3’ end of
the read accumulates more errors than the 5’ [57]. We tested dif-
ferent values of PCR cycles (5,9, and 14) and mean depth (5, 10, and
20) to simulate the FASTA files. We set the other RADinitio sim-
ulation parameters to obtain 150 bases of read length, sequence
size of 350 (parameter “-insert-mean”), and restriction enzymes
HindIII and Nallll. The mean read depth parameter for the parental
samples was 8 times higher than the progeny. The combination of
RADinitio parameters that produced results closer to those ob-
served in empirical data was selected to perform simulations with
and without segregation distortion, 5 repetitions (5 families), and
2 average sequencing depths (10 and 20) and 5 PCR cycles.

RADinitio does not output the sequence quality scores, so
we converted the FASTA file format to FASTQ format, includ-
ing a Phred score of 40 for every base simulated using segtk
[58] software. After obtaining the FASTQ files, the Simulate-
dReads2Map workflow followed the same tasks as the Empiri-
calReads2Map, with alignment, SNP and genotype calling, and
linkage map build. The SimulatedReads2Map workflow makes
comparisons between real and estimated results within each step.
The comparisons made during the workflow can be visualized in
the shiny app Reads2MapApp.

Tested scenarios

We ran all implemented software for SNP calling and genotype
calling (GATK, Freebayes, TASSEL, Stacks, updog, SuperMASSA,
and polyRAD) on the empirical and simulated datasets. In addi-
tion, we explored the substitution of VCF allele counts with counts
from the alignment (BAM) files to mitigate potential biases intro-
duced by SNP caller software when analyzing low-coverage se-
quence data. GATK inserts the bias when reads are filtered in the
local reassembly step to avoid sequencing errors [59]. BCFtools
is used to find the read depths information for each allele in BAM
files and update the allele depths information in the AD (allele
depth) field of the VCF file. For the aspen dataset, we also executed
the workflows for every scenario in the presence of the contami-
nant samples.

The markers identified by the SNP callers (GATK, TASSEL,
Stacks, Freebayes) were filtered by MAF of 5% and maximum

missing data allowed of 25% before proceeding to the genotype
callers (updog, polyRAD, and SuperMASSA). At this step, we also
tested 2 other filters. One of them was removing noninformative
markers from the VCF file. We considered noninformative mark-
ers homozygous in both parents or if at least one of the parental
genotypes was missing. The second filter was to replace the AD
field in the VCF file format by missing data when the genotype
was missing. This avoids that updog, polyRAD, and SuperMASSA
use the allele depth when GATK filtered out the genotype due to
bad quality.

After the genotype call, we reduced the analysis to a subset of
markers (the first 8.426 Mb or 37%) of P. trichocarpa chromosome
10 and the first 25 Mb ( 37%) of R. chinensis chromosome 1 refer-
ence genomes. This made it possible to build maps for all tests in
a feasible time. The markers were filtered by the maximum miss-
ing data allowed of 25%, redundancy, and segregation distortion.
In addition, we tested filtering the genotypes by a minimum geno-
type probability of 0.8.

We tested the consequences of building maps applying differ-
ent genotype probabilities in the oneMap 3.0 HMM coming from
7 different genotype caller software: GATK, Freebayes, TASSEL,
Stacks, polyRAD [28], SuperMASSA [29], and updog [10], with a
global error rate of 0.01, 0.05, 0.1, and the OneMap 2.0 default
value of 10~>. We also tested the combination of the 2 distribu-
tions. We compared oneMap 3.0 capacity of estimating accurate
genetic distances with the GusMap package [14] estimations since
it also uses an HMM to account for errors present in sequencing
data.

We also tested the consequences of the presence and absence
of the stacks haplotype-based multiallelic markers in the link-
age map. To test the influence of the presence of the multiallelic
markers in the ordering procedure, we built a map for the entire
chromosomes 1 and 10 from the roses and aspen datasets, respec-
tively, using the selected pipeline. We ordered the markers using
MDSMap [60] (wrapper function implemented in oneMap 3.0) or-
dering algorithm with and without multiallelic markers.

In the testing of scenarios in which we considered multiallelic
markers, the VCFs containing them were merged into the VCF files
from polyRAD, SuperMASSA, and updog. The merged VCF is the
input for linkage map building in oneMap version 3.0.

Table 2 shows an overview of the notations used to refer to each
evaluated scenario.

Performance comparison

We conducted performance comparisons of each tested dataset
and scenario based on the built linkage map quality. To consider
good quality, we evaluated the following linkage map characteris-
tics:

® Marker type:
In outcrossing populations, it is important to have markers
that have recombination information for both parents. We
avoid approaches that provide only ab x aa (D1.10) or aa x ab
(D2.15) in a single chromosome. The Reads2MapApp “Marker
type” section describes the amount of each marker type in the
linkage maps built by Reads2Map workflows.

® Marker coverage:
It refers to how equally distributed markers are in the
genome. We avoid approaches that do not detect markers in
a large portion of the genomic selected area. The graphics in
the Reads2MapaApp section “cM x Mb” section correlate the
linkage map position with the genomic positions. This is an
excellent tool to evaluate marker coverage.
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Table 2: Notation used to refer to each evaluation scenario in empirical and simulated datasets

Map building

Workflow step Notation Description
Reads simulations Depth 10 Mean read depth used
Depth 20 to simulate the dataset

Segregation distortion

SNP calling Freebayes

GATK
TASSEL
Stacks

Counts source BAM

VCF

Filters Only informative markers

Missing replaced

Genotype calling polyRAD
SuperMASSA
updog
SNPCaller
Filters Genotype prob >0.8
Marker type Biallelics

Biallelics + multiallelics
<Genotype caller name>

<Genotype caller name>
(<global error rate>%)

<Genotype caller name> x
(<global error rate>%)

Dataset simulated with
segregation distortion
Software used to
identify the variants

Source files of allele depth information

Filter noninformative markers
(both parents homozygous
or at least 1 missing)
Replace AD field for missing
data when GT is missing
Software used to perform the
estimation of genotype for a
given allele depth information
Software used for genotype calling is
the same as that which performed the SNP calling
Filter by minimum genotype
probabilities of 0.8
Keep only biallelic markers
Keep biallelic and multiallelic markers
Maps built with genotype
probabilities from
<Genotype caller name>
Map built with genotypes from
<Genotype caller name> and
global error of <global error probability>
Map build with genotype probabilities
from <Genotype caller name> and global
error of <global error probability>

® Marker density:

It refers to how equally distributed markers are on the linkage
map. We avoid big gaps (higher than about 10 cM) in the link-
age maps. Some of the gaps observed in the maps were due
to outlier markers (a single marker with gaps in both edges).
Outlier markers can be removed manually in further steps.
We search for approaches that provide fewer outlier mark-
ers, which would require less manipulation later. The linkage
map draw and graphics about the genetic distances among
markers present in the section “Map size” of Reads2MapApp
are good tools to evaluate marker density.

Marker order:

The efficiency of ordering algorithms can be significantly in-
fluenced by the presence of marker types that provide re-
combination information for both parents. In the Reads2Map
workflows, to ensure accurate comparisons and to distinguish
if linkage map inflation is due to different orders or genotyp-
ing errors, we have standardized the marker order across the
workflow comparisons. Therefore, the order of the markers is
always based on the reference genome. This means that it is
crucial to carefully select, for the workflows, tests chromo-
some regions in the datasets that do not exhibit inversions or
translocations when compared to the reference genome.
However, in order to assess the impact of highly informative
haplotype-based multiallelic markers, we conduct separate
experiments outside of the workflows. In these experiments,
we exclude outlier markers and evaluate the efficiency of

the MDS ordering algorithms with and without the inclusion
of multiallelic markers. This allows us to investigate these
markers’ influence on the algorithm'’s performance. We eval-
uate the orders provided by the different ordering algorithms
by computing the absolute value of Spearman’s rank correla-
tion between orders.

Marker quality:

In cases where all markers are correctly ordered (following
the standardization in Reads2Map comparisons), and there is
sufficient coverage and density, an inflated size of the linkage
map can be attributed to a high error rate in the genotypes.
Our objective is to find an approach that minimizes this in-
flation and brings the linkage map size closer to the expected
value (e.g., 38 cM in our tested subsets).

To identify the causes of inflated maps, the linkage map draw
and recombination fraction matrix heatmap generated by
Reads2MapApp prove valuable. It enables us to distinguish
whether the inflation is a result of outlier markers creating
gaps or due to genotyping errors.

Estimated haplotypes:

Together with the linkage map, the oneMap HMM multipoint
approach also estimates the parents and progeny haplotypes.
In a scenario without contaminant samples, we expect a low
(around 1 or 2) and equally distributed number of recombina-
tion breaks across all samples. In scenarios where there are
contaminant samples, we expect that their haplotypes con-
tain a high number of estimated breaks because wrong as-
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Table 3: Reads2Map workflows default option set based on tests with empirical and simulated data

Process Workflow options Default
SNP calling Run GATK TRUE
Run Freebayes FALSE
Run stacks TRUE
Run TASSEL FALSE
Remove duplicates FALSE
Replace AD by BAM counts FALSE
GATK hard filters TRUE
genotype calling Replace AD by missing when GT is missing TRUE
Probability threshold 0.8
Run updog TRUE
Run polyRAD TRUE
Run SuperMASSA FALSE
Run GUSMap FALSE
linkage map Filter noninformative TRUE

Add multiallelics

TRUE (if available)

Global errors 0.05
Genotype caller probabilities FALSE
Genotype caller probabilities + global errors 0.05

sumptions were made, leading to the wrong estimated num-
ber for these samples. Reads2MapApp contains a section for
visualizing the progeny haplotypes and also for counting the
estimated number of recombination breaks.

Results and Discussion

We use the structure of the Reads2Map workflows and the simu-
lated and empirical datasets to test each software and some dif-
ferent parameters and markers filters. Our goal was to identify the
approach that provides the best-quality linkage map.

We have categorized the approaches used in our analysis
into 2 groups: dataset independent and dataset dependent. The
dataset-independent approaches consistently produce reliable re-
sults across all datasets, while the dataset-dependent approaches
exhibit varying efficiency depending on the dataset character-
istics. To streamline the user experience, we have selected the
dataset-independent approaches that improve linkage map qual-
ity as the default options in the Reads2Map workflows (Table 3).
This simplifies the process for users by reducing the number of
tests required, as these default approaches consistently yield fa-
vorable results across different datasets.

We focused our tests and set the default options based on
F, diploid populations and GBS markers. However, because the
Reads2Map workflow is modularized, the EmpiricalSNPCalling
subworkflow can be used separately and applied to other pop-
ulation structures, ploidy, and sequencing libraries. In the case
of working with sequencing libraries other than RADseq, such as
whole-genome sequencing (WGS) or exome sequencing, it is im-
portant to set the option “remove duplicates” to TRUE. The PCR
duplicates in RADseq data constitute the majority of the data, and
they are included in the allele count while calling the genotypes,
but in other types of libraries, they are considered artifacts and
are removed to avoid errors [61].

The genotype call and linkage map building in the Empiri-
calMap subworkflow have the F; population structure as an as-
sumption. In this current version, they can be applied to another
type of sequencing library but not to another type of population
structure. For these steps, it is just important that the VCF file
format is standardized and can be processed by BCFtools. They
do not need to be necessarily from the SNP call software imple-

mented. They can be also a combination of VCFs from different
software such as the common markers between the implemented
SNP call software results (“intersect” in Fig. 2).

We had to perform extra manipulations in TASSEL VCF output
to be able to run the downstream analysis because they presented
missing header information. Also, processing Freebayes showed
the consumption of an unexpectedly high amount of RAM mem-
ory in some situations, which made it impossible to automatize
the amount of memory required from the HPC and Cloud by the
workflow task.

The number of markers identified by each software is related
to the species, library preparation, and sequencing aspects such
as genome size, restriction enzyme used, and sequencing depth.
In Fig. 2, we can observe that more markers were identified in the
aspen dataset compared to the roses dataset due to the higher
frequency of enzyme cut sites. There is no consistency between
the 2 datasets about which software identifies the higher number
of markers.

After all the filtering steps and linkage map building, it is
consistent that Freebayes keeps more markers. However, the
resulting maps built with Freebayes markers, genotypes, and
genotypes probabilities presented higher genetic distances infla-
tion compared to the other approaches. Using TASSEL software
markers also resulted in higher inflation in aspen dataset maps,
which have a lower sequencing depth (~6x) compared to the
roses dataset (~94x). The other approaches also presented out-
lier markers that inflate the total map size, but because they are
individual markers, they can be easily removed in further steps.
The maps built with only common markers among all 4 software
(intersection in Fig. 2) contained fewer markers and had markers
distances similar to GATK and Stacks results.

Evaluating the results of our simulations for GATK, we identi-
fied a format characteristic of VCFs from this software that leads
to genotyping errors in estimations by updog, polyRAD, and Su-
perMASSA. In such cases, the genotype is considered missing in
the GATK output VCF GT format field, while the total read depth is
always reported in the reference allele field of the AD format field
(e.g., Estimated = GT:AD ./,;22,0 | True = GT:AD 1/1;0,22).

We present examples of the consequences of this format in
genotypes called by updog, polyRAD, and SuperMASSA in Figs. 3
and 4. In Fig. 3A, allele dropouts are observed in the genotype of
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Figure 2: The top 2 figures show the number of markers identified by each SNP call software (number above each software name) and Venn diagrams
showing the number of markers with common positions among all software results for the aspen and roses complete datasets. The markers were
previously filtered by maximum missing data of 25% and MAF of 5%. The compatibility of positions among markers from different software was only
possible after using “BCFtools norm” to left-align the indels positions. The bottom 2 figures show the number of markers (bar plot) and distances
between markers (boxplot) after building the linkage maps for a subset of 37% of chromosome 10 in the aspen dataset and 1 in the roses dataset with
the markers from Freebayes, GATK, TASSEL, and Stacks. It was considered in the oneMap HMM the genotypes and a global error of 5%
(global_error0.05), genotypes probabilities (genoprob_error), and the combination of genotype probabilities and a global error of 5%
(genoprob_global_error0.0.5). These figures can be generated for user-defined empirical datasets in the Reads2MapApp sections “SNP calling efficiency”

and “Map size” after running the EmpiricalMaps workflow.

parent P2 and some of the progeny individuals. In empirical data,
allele dropout can occur due to various reasons, such as polymor-
phisms in the cut site or the nonamplification of 1 allele during
the PCR step [9]. Our simulations also consider allele dropout, but
in the observed scenario, the source of allele dropout is due to the
format characteristic of the GATK VCF file.

The occurrence of genotyping errors while using GATK VCF al-
lele counts was previously observed by [59], who suggested us-
ing counts from BAM alignment files to address the issue (Fig. 3B).
However, when testing the usage of BAM allele counts, we lose the
advantage of the robust filtering applied by the GATK pipeline to
retain only high-quality read counts in its VCF allele depth field.
To maintain the accuracy of the GATK allele depth while overcom-
ing the common error observed when the genotype is missing, we
replaced the VCF allele count (AD and DP fields) with zero when

the genotype information is missing before utilizing it for geno-
typing with polyRAD, SuperMASSA, and updog. This more precise
way of solving the issue was only possible due to our simulation
studies once they provide a clear comparison between simulated
(true) and estimated data that highlighted the sources of the geno-
typing errors.

We also observed situations in updog, polyRAD, and Super-
MASSA results where the parental genotypes are wrongly esti-
mated because of the low quality of the progeny genotypes that
distort the expected segregation. These genotype call software
consider the expected segregation in their models, and therefore
errors in the progeny lead to errors in the parents. Figure 4 shows
examples where the marker would be considered noninformative
for an outcrossing population, as both parents are homozygous.
However, due to genotyping errors in the population, SuperMASSA
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Figure 3: Example of error (Est: homozygous | True: heterozygous and Est: heterozygous | True: homozygous) in parental genotypes leading to a wrong
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estimated genotypes and on the right to the true genotypes. (A) Counts from the GATK VCF file and (B) from the BAM file. In the VCF file outputted by
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The updog software use progeny segregation (1:1) to estimate the parents, but it makes a mistake identifying which one is heterozygous. Using counts

from the BAM file (B) fixes this issue despite losing the GATK quality filters that can be important in other situations.
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and polyRAD incorrectly estimate the parents as heterozygous.
To tackle this problem, we implement a filtering step to exclude
noninformative markers before applying the genotype callers.

Solving these issues was particularly important because erro-
neous parent genotypes have a higher impact on linkage map
quality than progeny genotype errors. OneMap 3.0 does not con-
sider the parental genotype probabilities in its HMM multipoint
approach. Thus, it is important to plan the sequencing experi-
ment with high-quality parental genotypes because, if there are
errors, they will not be corrected in downstream processing, and
it will cause distortions in the resulting distances and haplotypes.
To avoid map size inflation, erroneous parental genotypes must
be removed before the linkage map analysis.

In general, the evaluation of the RADinitio simulations profile
shows that we can expect fewer markers and genotyping errors
in the simulated compared to the empirical data (Supplementary
Fig. S7). A smaller number of markers should not reduce the built
linkage map quality because the analysis was made in F; pop-
ulations, which have large disequilibrium blocks. However, the
smaller number of genotyping errors overestimates the SNP and
genotype calling software efficiency. This overestimation is com-
monly observed in simulation results once the data cannot cap-
ture all biases and errors in the empirical data. Thus, we used the
simulations to understand specific software limitations and error
sources but not ultimately define the best performance [62].

We observed the same or improved quality of linkage maps in
the empirical dataset evaluations (Supplementary Fig. S8) when
we applied these 2 described filtering steps: removing noninfor-
mative data before genotype calling and replacing allele counts
with missing data when the genotype is missing in the GATK calls.
After the genotype calling, we applied a threshold of 0.8 to filter
low-quality genotypes, which also was beneficial in all scenarios.
It is important to notice that these filters are applied before the
segregation test filter, which reduces the number of tests and in-
creases the permissibility of the threshold corrected by multiple
tests (Bonferroni correction). Thus, the built map can have more
markers in some scenarios even if more filters are applied.

The simulations were also useful to validate all code devel-
oped for the analysis and to measure the effects of segrega-
tion distortion. The results showed that the segregation distor-
tion does not affect the frequency of correct estimated genotypes
in most scenarios, despite affecting the reliability of the geno-
type probabilities provided by updog, SuperMASSA, and polyRAD
(Supplementary Figs. S9 and S10). This can be one of the reasons
why using genotype probabilities in the HMM did not present con-
sistent results across tested datasets.

Despite considering the HMM error rate dataset-dependent val-
ues, we identified that some of the possible values can be dis-
carded. Using the oneMap default value of 10>, global error rate
produced bad-quality maps in all situations. The same happened
while using all the genotype call software relative error. Using
higher values of global error rate and genotypes from GATK, Free-
bayes, TASSEL, Stacks, updog, and polyRAD, or the combination
of the genotype probability and a global error rate from software
GATK, updog, Stacks, and polyRAD, produced the most reliable
linkage maps, with linkage map sizes closer to the expected.

As observed in Fig. 5, many of the approaches produced linkage
maps with distances between all adjacent markers smaller than
10 cM. We chose the method that results in less inflated linkage
maps and outlier markers even when applying the small values
of the global error rate (0.01). Once the method was selected, we
tried an intermediary global error rate (0.075) for the roses dataset
values to adjust to the expected total size. We also checked the re-

combination fraction heatmap, the markers coverage, density, and
the number of estimated recombination breakpoints in progeny
through Reads2Mapapp figures (see the app interface demonstra-
tion in Supplementary File S2).

Before using the map size as a metric for map quality, we
checked if a map with the expected size always means good
quality. A map can have the expected size but a poor quality
if the number of overestimated and underestimated recombina-
tion breakpoints in the progeny haplotypes is the same—in other
words, if they cancel out. To test if this happens in our simu-
lated dataset, we compared the Euclidean relation of estimated
and true genetic distances with the total number of wrong (over-
estimated + underestimated) recombination breakpoints in the
progeny haplotypes (Fig. 6). For identifying a break as overesti-
mated or underestimated, we do not consider the expected break
position but the total breaks expected for the evaluated haplotype.
For example, if 1 haplotype for a specific progeny was simulated
with 1 break and estimated with zero, then we count it as 1 un-
derestimated break.

The comparison shows that overestimated breakpoints are
generally more frequent than underestimated ones. We observe
that when a map is inflated, it also has many wrong recombina-
tion breakpoints. However, in some cases, the map has the ex-
pected map size but a high number of wrong haplotypes due to
both overestimated and underestimated breaks. A high number
of underestimated breaks can be observed in situations where the
Euclidean distance is close to or less than 1 (log100) and the num-
ber of wrong recombination events is between 10 and 100 (logio1
and log12). These situations are more frequent when a global er-
ror rate of 5% is used.

In the empirical data results, we observed maps with expected
size and excess recombination breakpoints in just a few individ-
uals in the progeny. This variation can be related to contaminant
samples. The study by Zhigunov et al. [47] identified 6 contami-
nants in the aspen dataset. When we ran the workflows, includ-
ing the contaminant samples, the maps built with Freebayes
markers and updog, SuperMASSA, and polyRAD were smaller in
size than without the contaminant (Supplementary Fig. S11). This
would (wrongly) suggest better quality if map size is the only
metric used. Nevertheless, the maps presented higher differences
in the number of recombination breakpoints among individuals
when using the genotype probabilities relative to each genotype
call software. Some contaminant samples presented more esti-
mated recombination events than the rest of the progeny. Using
higher values of global error reduces this difference and can mask
the presence of contamination.

These results show that it is important to exclude contami-
nant samples before the linkage map building once the multipoint
HMM approach tends to fix the genotypes according to the biolog-
ical assumption that they are all F; individuals. There are several
methods available for identifying contaminant samples in previ-
ous steps. The ADMIXTURE [63] software analysis as made by Zhi-
gunov et al. [47] is one possibility. Another is to calculate a marker-
based relationship matrix using the R package AGHmatrix [64].

So far, all the evaluations we have discussed have focused ex-
clusively on biallelic markers. We also evaluate the impact on
the genetic distances when haplotype-based multiallelic mark-
ers are included. In most of the tested scenarios, incorporat-
ing these markers leads to map inflation. This is primarily due
to the fact that inaccurately estimated multiallelic markers or
genotyping errors associated with them can significantly affect
the quality of the linkage map. The impact is particularly pro-
nounced because multiallelic markers provide richer information,
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including recombination and phase information for both parents,
compared to biallelic markers. However, the advantages of in-
cluding the multiallelic markers appear in the marker ordering
step.

Algorithms that use 2-point recombination fractions estima-
tions have issues ordering only biallelic markers because of the
missing linkage information between markers D1 and D2 (ho-
mozygous x heterozygous or vice versa). These markers can only
berelated to each otherin the presence of more informative mark-
ers, such as B3.7 (heterozygous x heterozygous) or multiallelic
states. Yet, having few B3.7 markers compared to D1 and D2 can
still be an issue for linkage map building. In fact, this character-
istic was the reason behind the initial development of separate
maps for each parent in the first methods used for building ge-
netic maps in such populations [65]. These nonintegrated genetic
maps subsequently limited further analysis of multiallelic traits
in terms of QTL mapping [66].

The markers ordering efficiency is not considered by
Reads2Map workflows once it uses the genomic order to po-
sition the markers in the linkage maps. The reference genome
is a required input by the workflows to standardize the posi-
tions of the markers across all tested methods. This avoids the

confounding interpretation of bad-quality linkage maps due to
wrong ordering and not genotyping errors.

To test the effect of multiallelic markers in the ordering, we
built a linkage map for the entire chromosomes 1 and 10 of the
roses and aspen datasets, respectively, using the selected meth-
ods and adding the haplotype-based multiallelic markers pro-
vided by the stacks population plugin. We used the oneMap
wrapper function mds_onemap to order the markers with MDS
[60]. The genetic distances were estimated by the HMM multipoint
approach. Figure 7 shows the effects of including the multiallelic
markers in the 2-point-based MDS algorithm.

The impact of multiallelic markers differed between the as-
pen and roses datasets. In the aspen dataset, characterized by a
lower depth and a higher rate of genotyping errors in the markers,
most of the B3.7 biallelic markers were filtered out during previous
steps, resulting in an unsatisfactory performance of the MDS al-
gorithm in ordering the markers. However, incorporating the mul-
tiallelic markers, although slightly inflating the genetic distances,
significantly improved the ordering accuracy using MDS. It should
be noted that MDS itself can contribute to genetic distance infla-
tion as it may erroneously invert markers in close proximity. In
scenarios where a reference genome is unavailable, the inclusion
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of multiallelic markers can prove valuable for effective marker or-
dering in these types of datasets.

The roses dataset is characterized by higher-quality markers,
and the genomic ordering can be almost entirely reproduced us-
ing only biallelic markers. In this scenario, the inclusion of multi-
allelic markers also leads to a slight inflation of the map size while
improving the ordering accuracy through MDS. Unlike the aspen
dataset, the MDS algorithm in the roses dataset tends to reduce
the genetic distances, resulting in an underestimation of recombi-
nation breakpoints. However, considering that there are no signif-
icant inversions or translocations (see dot plots in Fig. 7), we can
have more confidence in the genomic order, even if the map is
larger. Any discrepancies between the MDS-based order and the
genomic order are likely attributed to local changes, which are
likely to be errors introduced by MDS.

Final Considerations

The Reads2Map workflows have a robust structure to generate
production-level results with simple inputs and optimized usage
of computational resources. The structure allowed us to test the
quality of genetic maps built with the following scenarios: (i) us-
ing different SNP calling software (GATK, TASSEL, Stacks, and
Freebayes), (ii) using different genotype calling software (GATK,
Freebayes, TASSEL, Stacks, updog, polyRAD, SuperMASSA), (iii)
using different linkage map-building software (OneMap 3.0 and

GUSMap), (iv) establishing different error probabilities (relative to
genotype call software; 10%, 1%, 5%, and 0.001% global error; and
the combination of the global error rate with the genotype call
probabilities), (v) applying different marker filtering (vi) with or
without multiallelic markers, (vi) in empirical and simulated data,
(vii) with and without segregation distortion, (viii) with and with-
out contaminant samples, (ix) with different GBS library prepa-
ration aspects, and (x) with different sequencing depths. These
scenarios are commonly found by researchers trying to produce
high-quality linkage maps using sequencing technologies. The
Reads2Map and Reads2MapApp are the first tools to guide best
practices for building linkage maps with sequencing data point-
ing software, parameters, and marker filters to be used in diverse
scenarios.

We elaborated and limited the scenarios explored according
to our experiences as developers of OneMap. OneMap first version
was released in 2007, and since then, it has been used to build
linkage maps in a diversity of species. Its strategies and structure
also served as a base for more complex software such as MAPpoly
[15] for building linkage maps in polyploid species. With time,
new methods for genetic marker identification using sequenc-
ing data emerged, changing the context where OneMap was used.
We included updates in this version 3.0 to resolve issues with
inflated genetic maps and marker ordering. Two major changes
allow users to read and build genetic maps with the genotype
probabilities and haplotype-based multiallelic markers informa-
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tion from the input files (OneMap format or VCF file). However,
the success of genetic map building will be proportional to the
quality of the information provided by upstream procedures such
as library preparation, SNP and genotype calling, genotype prob-
abilities estimation, and the combination of SNPs into haplotype-
based markers. With Reads2Map and Reads2MapApp, we provide
users tools to select the best approaches before using oneMap 3.0

to guarantee thatit will result in the best-quality genetic map pos-
sible with the data available.

Itisimportant to highlight that we did not design the workflows
to be a tool to build a final linkage map but to select the bioin-
formatic pipeline that provides the best-quality genetic markers.
Once the pipeline is selected, the respective VCF file and oneMap
functions can be used in the R environment to build the final
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map. Building the complete linkage map will require evaluations
and edits that are highly specific and cannot be fully automated
within the workflows. These tasks include addressing the pres-
ence of translocations and inversions, identifying outlier markers,
and linkage between markers located in different chromosomes.

The diversity in the results of the pipeline suggested for both
empirical datasets highlights that pipelines perform differently
with datasets with different properties. This means that the
pipelines presented here as the best cannot be considered the best
for every dataset. We could reduce the number of required tests
by users identifying the dataset-independent approaches and set-
ting them as default in Reads2Map. However, we suggest users re-
produce the tests presented here for the dataset-dependent ap-
proaches using the Reads2Map workflows with their empirical
dataset and select the best pipelines for their specific conditions.

The workflows were built using WDL and containers to ensure
high reproducibility. This guarantees that different results run-
ning different datasets are due to the dataset’s properties and
not to bioinformatic pipeline changes. Also, updates can be easily
made in the workflows as the software implemented are improved
once the versions are controlled by Docker images. This makes
Reads2Map also a useful tool for software developers to validate
updates because it facilitates checking the consequences of the
changes in the quality of the markers by easily controlling ver-
sions, rerunning datasets, and checking the map quality.

Every Reads2Map workflow run returns a large amount of in-
formation. Every step of the workflow, from the reads’ alignment
to the completed linkage map, provides quality measurements for
users to evaluate each scenario. The Reads2MapApp shiny app re-
ceives all this information compressed in a single workflow out-
put file and converts it into comprehensive interactive graphics.
Through the app interface, users can evaluate the performance
of each combination of software and parameters in each step. If
results show issues in any of them, users can rerun the workflow
with adapted parameters or include new filters that make sense
in their context. Once the upstream steps are established based
on the app graphics for the built linkage map subset, users can re-
produce it for the complete dataset, inputting the VCF files from
Reads2Map into OneMap.

Availability of Source Code and
Requirements

® Project name: Reads2Map

® Project homepage: [32]

* Main workflows: EmpiricalReads2Map [33] and Simulate-
dReads2Map [34]

® Operating system(s): Platform independent

® Programming language: WDL

® Other requirements: Docker or singularity

® License: MIT

® RRID: SCR_023593

® biotoolsID: reads2map

Additional Files

Supplementary File S1. Emission function for outcrossing.
Supplementary File S2. Reads2MapApp interface demonstration.
Supplementary Fig. S1. Reads2MapApp about page. The red arrow
indicates the menu icon to access the app’s other pages.

Supplementary Fig. S2. Reads2MapApp upload page. The red ar-
row indicates the button to upload the EmpiricalMaps workflow
results.

Supplementary Fig. S3. Example of the “SNP calling efficiency”
section. Venn diagrams are built to show the number of markers
identified in the pipelines defined in the options and the common
markers between them.

Supplementary Fig. S4. Example of the “Map size” section of
Reads2MapApp. The graphic shows the number of markers (left)
and the distances between adjacent markers (right) for each
method.

Supplementary Fig. S5. Example of the “Breakpoint count” sec-
tion of Reads2Mapapp. The graphic shows the number of esti-
mated breakpoints in each progeny haplotype according to the
method selected in the options.

Supplementary Fig. S6. Example of the “Progeny haplotypes” sec-
tion of Reads2MapApp. The graphic shows the estimated haplo-
type for the individuals selected in the “Individuals from progeny”
options according to the method selected in the options.
Supplementary Fig. S7. Venn diagrams show the number of mark-
ersidentified by freebayes, GATK, and simulated (true). The inter-
section between the datasets represents markers with the same
position in the reference genome Populus trichocarpa version 3.0.
The empirical datasets include markers spread across the entire
reference genome. The simulations only include markers in the
first 8.426 Mb of chromosome 10 (2.1% of the genome). The mean
and standard deviation of number markers are shown for the sim-
ulated dataset once the simulation and SNP calling are repeated
60 times. Markers were filtered by 25% maximum missing data
and MAF 5% in empirical and simulated data. xNumber of mark-
ers common to all 60 repetitions.

Supplementary Fig. S8. The relation between filters applied (x-
axis), the map size (A, y-axis), and the number of markers (B, y-
axis) for genotype calling software used in the empirical datasets.
The datasets shown in the figure contain only biallelic markers.
The horizontal red line indicates the expected map size (38 cM)
for the subset of the genomes used.

Supplementary Fig. S9. ROC curves with the true and estimated
genotypes from the 5 families simulated with mean depth 10 and
20 and with the first 8.426 Mb of chromosome 10 (37% or 38 cM).
Here, only biallelic markers are considered. The specificity and
sensitivity profiles consider different thresholds in the genotype
probabilities for each scenario. The higher the area under the
curve, the higher the genotype’s probability reliability. Genotype
probability thresholds closer to the left superior corner have a
higher capacity to differentiate right and wrong genotypes.
Supplementary Fig. S10. See Supplementary Fig. S9 description.
Supplementary Fig. S11. Effect of contaminant samples in the
map size (A) and in the number of estimated recombination
breakpoints range (B) among progeny individuals. The empirical
aspen datasets presented in this figure contain multiallelic mark-
ers and the allele counts from the VCF file, and they are filtered
by genotype probability higher than 0.8 to keep only informative
markers.

Supplementary Table S1. Emission function values according to
marker types. The error rate is represented by e, unphased geno-
types as “a,” “b,” “c,” “d,” and their combination. The estimated
phased genotypes are represented by “AA” “AB,” “BA,” and “BB.”
The “0” represents null alleles. Marker types follow the segrega-
tion pattern as described in Wu et al. [53].

Supplementary Table S2. Continued from Supplementary Table
S1.



Supplementary Table S3. Continued from Supplementary Table
ztpplementary Table S4. Continued from Supplementary Table
zipplementaw Table S5. Continued from Supplementary Table
zipplementaw Table S6. Continued from Supplementary Table
ztpplementary Table S7. Continued from Supplementary Table
zipplementaw Table S8. List of third-party software and images
versions used.
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