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Abstract: Autism spectrum disorder (ASD) is rather common, presenting with prevalent early
problems in social communication and accompanied by repetitive behavior. As vasopressin was
implicated not only in salt-water homeostasis and stress-axis regulation, but also in social behavior,
its role in the development of ASD might be suggested. In this review, we summarized a wide
range of problems associated with ASD to which vasopressin might contribute, from social skills to
communication, motor function problems, autonomous nervous system alterations as well as sleep
disturbances, and altered sensory information processing. Beside functional connections between
vasopressin and ASD, we draw attention to the anatomical background, highlighting several brain
areas, including the paraventricular nucleus of the hypothalamus, medial preoptic area, lateral
septum, bed nucleus of stria terminalis, amygdala, hippocampus, olfactory bulb and even the
cerebellum, either producing vasopressin or containing vasopressinergic receptors (presumably V1a).
Sex differences in the vasopressinergic system might underline the male prevalence of ASD. Moreover,
vasopressin might contribute to the effectiveness of available off-label therapies as well as serve as
a possible target for intervention. In this sense, vasopressin, but paradoxically also V1a receptor
antagonist, were found to be effective in some clinical trials. We concluded that although vasopressin
might be an effective candidate for ASD treatment, we might assume that only a subgroup (e.g., with
stress-axis disturbances), a certain sex (most probably males) and a certain brain area (targeting by
means of virus vectors) would benefit from this therapy.

Keywords: autism spectrum disorder; vasopressin; social behavior; stereotype behavior; medial
preoptic area; lateral septum; amygdala

1. Introduction

The prevalence of autism spectrum disorder (ASD) is unfortunately rather high and
increasing [1], with a 4.3:1 boy-to-girl ratio [2] (Figure S1a). Different countries may report
rather different data, from 0.02% in China to 3.66% in Sweden [3]. Some publications
suggest that the main reason for the uptrend is the change in diagnostic criteria and the rise
in awareness [4,5]. However, the role of other factors in this increase cannot be ruled out [6].
For example, both the maternal and paternal age—which is constantly increasing [7]—
and the higher socioeconomic status can increase the risk for ASD [8]. The total lifetime
estimated cost of ASD increased almost four times over the last 20 years [1] (Figure S1b,d).
Accordingly, the interest in ASD is also constantly increasing, with an almost exponential
growth in the number of publications from 2000 (Figure S1c).

Despite intensive ongoing research, the cause of ASD is still unknown. As most disor-
ders, ASD might also have multiple causes, indicated by the three-hit theory [9] (Figure 1).
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As the first “hit”, ASD is associated with many genes, called high-confidence neurode-
velopmental disorder genes [10]. From the more than 1500 genes participating in neu-
rodevelopment, 1452 genes are located on the autosomes, 129 on the X chromosome, and
5 on the mitochondrial genome. These genes encode key regulators of synaptogenesis,
synaptic plasticity, cytoskeleton dynamics, protein synthesis and degradation, chromatin
remodeling, transcription, and lipid homeostasis [11]. The higher prevalence of ASD in
boys might be due to X chromosome implication. Indeed, two mutations (neuroligin 3 and
4 (NLGN3 and NLGN4)) of the X chromosome may predispose males to ASD [12]. Interest-
ingly, the number of X chromosomes influenced social behavior with parallel changes in
the vasopressin (VP) content of amygdala in mice and VP plasma levels in patients [13].
Moreover, twin studies also supported strong genetic effects in ASD [14]. Interestingly, a re-
cent study found common genetic variants in angiotensin II receptor type 2 in the maternal
and infant DNA samples associated with risk of ASD, presumably through its involvement
in the maturation of the VP–oxytocin (OT) pathway [15]. Additionally, endocrine (among
others VP) and environmental factors might also be responsible for the sex difference (see
later) [16].
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As the second “hit”, numerous early developmental risk factors were identified. A 
meta-analysis pointed out the fetus’s abnormal presentation, umbilical cord complica-
tions, fetal distress, birth injury or trauma, multiple births, maternal hemorrhage, summer 
birth, low birth weight, small for gestational age, congenital malformation, low 5 min Ap-
gar score, feeding difficulties, meconium aspiration, neonatal anemia, ABO or Rh incom-
patibility, and hyperbilirubinemia as possible harmful perinatal events [17]. However, 
earlier intrauterine events might be similarly important, such as infections [18], and other 
maternal immune dysregulations [19], prenatal stress [19], malnutrition [20] or different 
drugs, like the antiepileptic valproate (VPA) [21]. The administration of VPA, a known 
histone deacetylase inhibitor, into the 11.5–13.5-day pregnant rodent mother influences 
the epigenetic machinery and induces ASD-like changes in the offspring, being a widely 
used animal model of ASD [22,23]. Interestingly, when acute VPA injection was used as 
gamma-aminobutyric acid (GABA) agonist, it was able to diminish angiotensin II- as well 
as hyperosmotic stimulus-induced VP rise in normal men [24,25].  

Figure 1. The three-hit theory of autism spectrum disorder. Vasopressin may contribute to the devel-
opment of symptoms at all levels. Abbreviations: ASD: autism spectrum disorder; VP: vasopressin;
KO: knockout; VPA: valproate.

As the second “hit”, numerous early developmental risk factors were identified. A
meta-analysis pointed out the fetus’s abnormal presentation, umbilical cord complica-
tions, fetal distress, birth injury or trauma, multiple births, maternal hemorrhage, summer
birth, low birth weight, small for gestational age, congenital malformation, low 5 min
Apgar score, feeding difficulties, meconium aspiration, neonatal anemia, ABO or Rh in-
compatibility, and hyperbilirubinemia as possible harmful perinatal events [17]. However,
earlier intrauterine events might be similarly important, such as infections [18], and other
maternal immune dysregulations [19], prenatal stress [19], malnutrition [20] or different
drugs, like the antiepileptic valproate (VPA) [21]. The administration of VPA, a known
histone deacetylase inhibitor, into the 11.5–13.5-day pregnant rodent mother influences
the epigenetic machinery and induces ASD-like changes in the offspring, being a widely
used animal model of ASD [22,23]. Interestingly, when acute VPA injection was used as
gamma-aminobutyric acid (GABA) agonist, it was able to diminish angiotensin II- as well
as hyperosmotic stimulus-induced VP rise in normal men [24,25].

As for the third “hit” (exacerbating acute stress), the measles, mumps, and rubella
(MMR) vaccine was accused by the Wakefield report to increase the chance of developing
ASD [26]. However, further studies contradicted this hypothesis [27,28]. Nevertheless, ASD
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patients may be more vulnerable to stress, with higher prevalence of, e.g., post-traumatic
stress disorder [29]. In support, their hypothalamic–pituitary–adrenal (HPA) axis and
autonomic nervous system (ANS) exhibit atypical functions both at resting state and during
the presence of social and/or non-social stressors [30]. Higher levels of perceived stress
and difficulties with coping have been reported in ASD children and adults [31].

It is more of a rule than an exception that people with ASD have at least one comorbid
psychiatric disorder (80.9% of patient), with anxiety disorder being especially frequent
(55.3%) [32–34]. Along the comorbidities, the prevalence of epilepsy [35], anxiety disor-
der [32], depression, obsessive compulsive disorder (OCD), specific phobias, and attention
deficit hyperactivity disorder (ADHD) is higher than in the normal population [36–38]. For
example, 33–37% of children with ASD present ADHD symptoms [39]. This makes the
pathomechanism and therapies even more difficult.

Our aim was to summarize the literature exploring the possible symptoms of ASD
and frequent comorbidities with a known or suggested contribution of VP and the possible
therapeutic considerations. Previous studies focused either on the role of OT [40], on social
skills [41] or on treatment options [42], without attempting to present a comprehensive
view on VP–ASD interaction.

2. Major Symptoms of Autism Spectrum Disorder

According to the Diagnostic and Statistical Manual of Mental Disorders Fifth Edition
Text Revision (DMS-5-TR) released in 2022, ASD is a pervasive neurodevelopmental dis-
order (NDD). Differences in behavior and developmental milestones appear in affected
children by the first year of life [43,44]. The core symptoms are (1) deficits in social commu-
nication (e.g., disrupted language skills) together with anomalous socioemotional responses
in several contexts; and (2) restricted, repetitive patterns of behavior [45,46] (Figure 2). Inac-
curate parental recall can hinder the diagnosis [47,48]. The transition to prospective studies
of high-risk infants has enabled a more comprehensive identification of early characteristics.
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grooming in rodents—observable in an open-field—is a sign of stereotyped, repetitive behavior to-
gether with the increased number of buried marbles during the marble burying test. 

Figure 2. Comparison of core human symptoms with animal tests modeling them. Impaired social
interaction can be modeled via the three-chamber sociability test or anxiogenic social interaction
in a new cage. Communication can be measured using ultrasound vocalization, while enhanced
allo-grooming in rodents—observable in an open-field—is a sign of stereotyped, repetitive behavior
together with the increased number of buried marbles during the marble burying test.

The large variation in the severity of symptoms within and across different groups
hampered the ability to distinguish one disorder from another [49]. Of note, ASD and
schizophrenia (SCZ) seem to overlap on many levels. Indeed, before the publication of
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the DSM-III [50], when ASD was first introduced as a different clinical diagnosis, autistic
children were frequently diagnosed with childhood SCZ, which is characterized by abnor-
mal perceptions of reality as well as deficits in social functioning [51]. Though ASD and
SCZ are now classified as distinct disorders, they frequently co-occur and share common
genetic risk factors and symptom presentations [52] (Figure 3).
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differential diagnosis easier.

In 1994, the categorical diagnoses of Asperger’s disorder, childhood disintegrative
disorder, Rett’s disorder, and Pervasive Developmental Disorder not otherwise specified
were introduced [53]. These disorders are distinguished by three core deficits: (1) impaired
reciprocal social interaction, (2) deficient communication, and (3) restricted/repetitive
behavioral or interest patterns [54] (Table 1, Figure 2). The range and severity of these
impairments vary, and they frequently change with the acquisition of other developmental
skills [55].

The 5th edition of the DSM altered the diagnostic criteria and put all the previous
mentioned disorders (excluding SCZ) under the ASD category. The number of deficits in the
core domains has been reduced to two ((1) social communication and (2) repetitive behavior;
see earlier). ASD was diagnosed if a patient showed at least three social communication
symptoms (e.g., reduced eye contact, lack of facial expressions, and impaired ability to
start or maintain a conversation with others) and at least two restricted interests/repetitive
behaviors, with an added behavior of hyper- or hypo-reactivity to sensory input or unique
interests in sensory parts of the environment [56]. In the latest edition, the DSM-5-TR, some
wordings were changed (e.g., “all of the following” criteria must be fulfilled) to tighten the
diagnosis, thereby avoiding overdiagnosis.

Symptoms in Animal Models

To better understand the mechanism and identify new treatment options, animal mod-
els are needed. ASD models can be divided into two categories: genetical (e.g., mutation in
OTR [57], NLGN, SRC homology 3 and multiple ankyrin repeat domains protein (SHANK),
Contactin Associated Protein 2 (CNTNAP2), Melanoma Antigen Gene Family Member L2
(MAGEL2), a zinc-finger transcription factor TSHZ3, fragile-X syndrome [58,59]) and envi-
ronmental [22]. The later can be drug-induced (e.g., VPA), immunological (polyriboinosinic:
polyribocytidylic acid (poly I:C), a kind of maternal immune activation (MIA) [60]; at em-
bryonic age E 11.5–13.5) or developmental, lesion-induced (presumably hippocampus
lesion [61], the CA2 region [62], where V1b receptors might regulate aggression [63,64]).
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A wide range of species is used. The most frequent are rodents (presumable trans-
genic mice [58] and rats), but avian [65], Drosophila melanogaster [11] and even zebrafish
models [66,67] are also available [59].

Researchers can detect some of the behavioral components of ASD using a range of
behavioral tasks in animal models (Table 1) [68]. Sociability, repetitive behavior, narrowness
of the interest and associated symptoms (e.g., anxiety) are some of the parameters that are
widely studied [69]. For example, the three-chamber sociability test [70] measures overall
sociability and interest through direct social approach behaviors when a subject is given
the option of spending time with a stimulus animal or an object. Measuring ultrasonic
vocalizations [71] and grooming during an open-field test (OFT) [72] are two examples of
behavioral tasks with face validity used to study communication deficits and repetitive
behavior as well as comorbid anxiety in ASD animal models.

Table 1. Comparison between human symptoms and animal models.

Symptoms in Humans Behavioral Test Main Parameters in Rodents References

Impaired social interaction
Three-chamber
sociability test Time and fr. near stimulus animal

[70]
Social interaction test Time and fr. of social interactions

Deficient communication MS-USV USV [71]

Repetitive behavior MBT Number of buried marbles, time
of digging [73]

Self-grooming Grooming time and fr. in OFT [74]

Comorbidity

Motor functions

Rotarod Latency to fall [75]
Erasmus Ladder Number of missteps [76]

DigiGait Stance stride length and steps/sec [77]
Delay eyeblink

conditioning test
Successful conditioned response, blink

amplitude and blinking speed [77]

Anxiety OFT Total distance, time in center [72]
EPM Time and fr. in arms [72]

Pain sensitivity Hot plate test Withdraw latency [78]
Tail flick test Withdraw latency [78]

Abbreviations: EPM: elevated plus maze; fr.: frequency; MBT: marble burying test; MS-USV: maternal separation-
induced ultrasonic vocalization; OFT: open-field test; USV: ultrasonic vocalization.

3. Vasopressin

Our behavior is regulated by neuronal communication by means of more than 100 iden-
tified neurotransmitters [79]. While only 12 classical, small molecule neurotransmitters
have been identified, there is an arsenal of oligopeptides that are also utilized by neurons
to convey information. One of the best known pairs is the VP-OT, which are famous for
their extensive role in physiology. These two neurotransmitters have highly similar amino
acid sequences. Their characteristic is a disulfide bridge between position 1 and 6, thereby
forming a ring. In mammals, VP and OT differ in two amino acids only: on position 3
(Phe for VP, Ile for OT) and 8 (Arg for VP, Leu for OT). Interestingly, this sequence seems
to be exceptionally conserved throughout the species and even along different phylums.
There is evidence of so-called VP- or OT-like peptides in invertebrates [80,81] going back
on the phylogenetic tree as far as the Hydras of the Cnidarias [82]. The differences be-
tween them are also rather subtle, and all variants hold similar molecular properties (such
as charge, hydrophobicity, polarity, etc.) [80]. According to our current knowledge, the
common ancestral gene (along with their receptors [83]) went through duplication, and,
over the course of the vertebrate evolution, the VP and OT genes gained their tail-to-tail
orientation [84–86].
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3.1. Vasopressin Receptors

When released from the neurohypophyseal nerve terminals of the magnocellular
neurons of the paraventricular (PVN) and supraoptic nucleus (SON) of the hypothalamus
to the blood, the main effect of the VP is osmoregulation in the kidney [87–89]. The
activation of V2 receptors (Gs pathway) facilitates water reabsorption by increasing the
expression and insertion of aquaporin 2 channel into the apical membranes of the collecting
duct. Moreover, it also regulates the transcription of urea transporters and sodium channels,
resulting in an overall increased water uptake from the urine (thus, the other name of VP is
antidiuretic hormone, ADH).

There are two other known receptors of VP that activate the Gq (phosphatidylinositol)
pathway. V1a receptors can be found in the vessels, liver and brain, with a widespread
role in vasoconstriction, gluconeogenesis, blood clotting, social recognition and circadian
rhythmicity, among others. On the other hand, V1b (or V3) receptors are mainly (but not
exclusively) found on the anterior lobe of the pituitary, playing a role in stress adaptation.

Due to their shared structure, VP and OT can bind to each other’s receptors; however,
this requires higher doses. The OT receptor (OTR) is also a G-protein coupled receptor [90].
Interestingly, its signalization may switch from Gq to Gi during pregnancy [91].

3.2. Vasopressin and Autism

Since 2006, a yearly average of 15.44 ± 1.34 articles are published on the possible
contribution of VP in ASD (PubMed search with keywords “autism” and “vasopressin”
and “publication date”), which shows a constant, stable interest. Vasopressin may influence
ASD symptoms at several points, and is not restricted to the two major domains, the social
skills and repetitive movements (see Section 2) (Figure 4).
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Figure 4. Alterations in autism spectrum disorders with possible contribution of vasopressin. The
observations were mainly in animals. Both social problems and repetitive behaviors—depicted in
the middle—are core features of autism spectrum disorders and VP is obviously implicated in them.
Peripheral VP functions (blue) might be only indirectly linked to autism, while other central VP effects
(orange) might have a more important, although not yet fully clarified role. Abbreviations: ANS:
autonomous nervous system; HPA: hypothalamic pituitary adrenocortical axis, VP: vasopressin.

3.2.1. Peripheral Vasopressin Function and Autism

In humans, the classical function of VP is the regulation of the salt-water homeostasis
at the periphery (see earlier) and plasma levels are easier to monitor than brain levels.
Therefore, human research initially focused on the correlation between peripheral VP
concentration and ASD symptoms.
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The VP-ASD connection was first raised in the abstract of a 1992 deWied article without
further explanation [92]. In the same year, a brief report provided the first evidence for
elevated VP plasma levels in autistic children (one girl and three boys, 11.75 ± 3.06 years
old); however, it seemed to be a consequence of the disorder rather than a cause [93].
Moreover, in a later study, only 50% (out of 10) children had higher VP levels, while 70%
showed a decrease in adrenocorticotropin (ACTH) levels, the hypophyseal component
of the HPA axis [94], suggesting a blunted central VP effect. In some human cases, the
blood VP levels correlated with the severity of certain aspects of ASD [95,96]. Maternal
levels of VP were also associated with the symptoms of the offspring, with lower levels in
the mother of ASD children [96,97]. Moreover, in human peripheral blood mononuclear
cells, the expression of V1a receptor positively correlated with better social and behavioral
function in ASD children (3–16-year-old) [98]. Despite this evidence, little is known about
how altered peripheral VP homeostasis might influence the behavior in ASD patients.

A possible connection is through osmoregulation, although, for now, we can only talk
about co-occurrence rather than causation. Nevertheless, NDDs are associated with higher
rates of incontinence in children and adolescents, including nocturnal enuresis and daytime
urinary incontinence [99]. In a small-scale study, urinary incontinence was observed in
85.1% of adults (out of 27) and 90% of children/teens (out of 20), and ASD patients had high
prevalence of nocturnal enuresis [100]. Moreover, there is a possible association between
kidney diseases and ASD as well [101,102]. Interestingly, in Caenorhabditis elegans, the
ASD-related NLGN gene was found to also be important in osmoregulation [103] (Table 2).
However, in NLGN3 KO mice, the OTergic system was found to be implicated in ASD-like
symptoms [104]. In mice, heterozygous TSHZ3 +/− haploinsufficiency resulted in both
ASD and renal abnormalities [105] (Table 2). The previously mentioned common genetic
variants of the angiotensin receptor 2 may also contribute to urinary problems in ASD with
a possible involvement of the VPergic system [15].

VP receptors are expressed in the liver as well [106], where the glycogen synthase
produces glycogen to store energy [107]. Indeed, the glycogen synthase kinase 3β, one
of the modulators, has been implicated in ASD [108], so much so that its inhibitors were
even suggested for therapy [109]. VP resistance is observed in poorly controlled non-
insulin-dependent diabetes mellitus subjects, which might contribute to their lower plasma
volume [110]. Glucose transporter 3 (GLUT3) was coregulated in the neurohypophysis with
VP [111] and its deficiency was also implicated in ASD, leading to social and communication
problems and stereotyped behavior [112] (Table 2). In line, in V1a receptor KO mice,
impaired glucose homeostasis was found [110].

VP might influence gut secretion [113]; however, gut microbiome can influence os-
moregulation (at least in gerbils [114]). As the microbiome shapes—among others—the
social behavior of the animals at several points from olfaction (with VP role [115,116]) to
direct effect on social brain and social signaling molecules, e.g., VP-OT [117], we might
assume a trilateral cooperation between VP, microbiome and ASD.

The coagulation pathways might also be altered in ASD [118,119]. Interestingly, desmo-
pressin (1-desamino-8-D-arginine vasopressin, DDAVP), a V2 agonist, is widely used for
promoting coagulation among others in von Willebrand disease (first line treatment) [120]
and hemophilia [121].

However, all these peripheral VP-ASD connections are rather speculative and need
further confirmations. Moreover, in the SHANK3 KO rat model, the plasma VP levels were
normal [122]. Therefore, we concentrated on the central nervous system (CNS).

3.2.2. Social Behavior and Vasopressin with Implication in Autism

Impairments in social behavior are one of the main characteristics of ASD (Figure 3).
Interestingly, both VP and OT have been connected to it and may regulate social behavior
at the genetic, circulatory, neural functioning, and pharmacological levels [123]. Indeed,
existing evidence suggests that VP can influence social functions already at the perceptional
level and influence how sensory information is interpreted [124]. In this regard, the
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importance of VP in olfactory function was also confirmed before [115,116]. Moreover,
VP was also found in the retina [125], VPergic fibers may project to the suprachiasmatic
nucleus (SCN), the known center of circadian regulations (see later) [126,127].

Several animal models of ASD exist, where the contribution of VP was supposed
mainly upon their effect on the social domain (Table 2). In the following section, we tried
to discuss major findings along different phyla/species.

Table 2. Animal models of autism with possible contribution of vasopressin.

Model
Major Problems References

Type Name/Implicated Molecule

G
en

et
ic

m
od

el
s

KO

OTR soc. [57]

CNTNAP2 soc., com. [128]

MAGEL2 soc. [129]

OPRM1 soc. [130,131]

Klf7 soc., rep. [132]

Fragile X FMR1 soc., rep., motor
problem, mood [40]

Rett syndrome MECP2 soc., com. [133]

Tuberous sclerosis TSC1, TSC2 soc., rep.; cerebellum;
V2 antagonist [134]

Indirect evidence

NLGN
mutations soc., rest., com. [103,135]

TSHZ3 KO soc., rep., narrowness of
the field of interest [68,105]

GLUT3 KO soc., rep., com., memory
problems [111,112]

parvalbumin KO soc., rep., com. [136,137]

GAP43 soc., resistance
to change [138,139]

SERT variants soc., rep. [140–143]

En
vi

ro
nm

en
ta

l
m

od
el

s

Drugs VPA soc., rep., com. [144,145]

Maternal infection
and inflammation

poly I:C soc., rep. [146,147]

LPS soc. [148,149]

MIA soc. [147]
Abbreviations: CNTNAP2: Contactin Associated Protein 2; Com: communication problems; Fragile Mental
Retardation 1 locus (FMR1); GAP43: synaptic growth-associated protein-43; GLUT3: neuronal glucose transporter
isoform 3; klf7: Krüppel-like factor 7; KO: knockout; LPS: lipopolysaccharide; MAGEL2: Melanoma Antigen Gene
Family Member L2; MIA: maternal immune activation; methyl-CpG binding protein 2 (MECP2), NLGN: neuroli-
gin; rep: repetitive behavior; poly I:C: polyriboinosinic: polyribocytidylic acid; OPRM1: µ opioid receptor; soc:
social problems; TSC: tuberous sclerosis complex; TSHZ3: a zinc-finger transcription factor; VPA: valproate [59].

The VP-OT peptide affects social behavior already in ants [150]. Zebrafish (Danio
rerio) is another good model for social behavior [66]. In relation to VP, after an aggressive
encounter, the VP/vasotocin levels were higher in most brain areas of the winning zebrafish
than in the losing ones. Moreover, fishes lacking OTRs showed antisocial-like behavior
by the age of 8 weeks post fertilization [151]. A similar role can be identified in birds:
pair bonding in zebra finches elevated their immunopositive V1a receptor numbers of
selected brain areas [152]. VP/vasotocin was also critical for vocal learning in birds during
development, a form of social communication [125]. In hamsters, it is theorized that VP
serves as an ancestral molecule in scent marking and consequent territorial behaviors such
as pair bonding [153–155].
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Other studies showed decreased aggression after VP treatment in male mice reared in
social isolation [156]. Mice are also widely used to study the effects of genetic alterations. In
relation to ASD, direct manipulation (overexpression or knocking out (KO)) of the V1a gene
may influence social behavioral outcomes [41]. Moreover, VP treatment has been shown to
ameliorate social deficit via V1a receptors in OTR-deficient mice [57] (Table 2). CNTNAP2
is a key gene implicated in the manifestation of ASD symptoms, particularly in language
disabilities (Table 2). In CNTNAP2-deficient mice, social deficits were improved after VP
administration [128]. However, this effect was found to be mediated by OTRs, and not by
V1a receptors. On the other hand, a deficiency of MAGEL2, a candidate gene for ASD and
Prader Willi Syndrome, resulted in impaired social adaptation and discriminative social
exploration caused by diminished VP, but not OT signaling in the lateral septum (LS) [129]
(Table 2). µ opioid receptor (OPRM1)—possibly through a connection with the V1a recep-
tors [130]—was also implicated in ASD with social motivation and skill problems in KO
mice [131] (Table 2). Parvalbumin KO mice exhibited several ASD-like symptoms including
social interactions and communication deficits [136] (Table 2). Linked to VP, developmen-
tally, the V1a receptor modulates the number of parvalbumin positive interneurons in the
cortex [137]. Among drug-induced ASD models, maternal viral infection (named maternal
immune activation, MIA) can be mimicked via polyriboinosinic–polyribocytidylic acid
(poly I:C) administration, which, in mice, induced changes in V1a mRNA expression in
the hypothalamus of the offspring [147]. On the other hand, the bacterial infection model
lipopolysaccharide (LPS) elevated maternal VP expression [157].

In rats, maternal aggression was also tied to VP, as high-anxiety-related behavior (HAB,
based on elevated plus maze behavior) animals have an increased VP mRNA expression in
PVN and limbic areas accompanied by increased maternal aggression putatively mediated
by V1a receptors [158]. However, V1b receptors in the CA2 hippocampal region were also
implicated in aggression [63,64]. One of the most famous rat KO models is the Brattleboro,
which has a naturally occurring single-nucleotide deletion in the VP gene (exon 2), resulting
in an inactive VP precursor. Thus, they have diabetes insipidus and urinate excessively due
to missing the peripheral VP hormone. Moreover, they also exhibit behavioral alterations
in social behavior, cognition [159,160] and stress response [159,161–163], making them an
ideal model for SCZ [164–166]. However, during early development, they can serve as an
ASD model as well. Indeed, we suggest that their social communication deficit during
maternal-separation-induced ultrasound vocalization (MS-USV, Table 1) might provide
a good test for new ASD treatment [167]. Based upon a KO mice model [168], as well as
antagonist treatment in rat pups [169], V1b receptors might be responsible for this reduced
communication. However, the reduced MS-USV was suggested to be a sign of anxiolysis.
Nevertheless, maternal neglect of Brattleboro rats [170] might contribute to the disturbed
development of the offspring, which might lead to the development of ASD-like symptoms
in them [171]. Indeed, V1a receptor was associated with human maternal behavior [172]. In
a VPA-induced ASD model, the subcutaneous (s.c.) administration of VP to adolescent rats
alleviated social preference deficits and stereotyped behaviors, in parallel with an increase
in cerebrospinal fluid VP concentration [173]. Moreover, in a rat MIA model with poly I:C
administration, a reduced maternal VP level was found [146].

The role of VP in social behavior was also confirmed in an outdoor, ecologically
relevant context, in free-living Richardson’s ground squirrels (Urocitellus richardsonii) [174].
In this species, chronic s.c. VP administration via an osmotic minipump increased male
social vocalization and decreased their social aggression, thus supporting its pro-social role.

Despite general belief of the V1a receptor’s contribution to social behavior [175], in a
study based on more than 3000 h of observation of 201 Rhesus macaques, the common genetic
variation in the V1a receptor gene was not responsible for their social behavior [176]. More-
over, a recently developed V1a receptor KO hamster strain showed enhanced rather than
reduced social communication, although this effect might be confounded by compensation
in other systems [177]. Thus, we might assume some role of the V1b receptor as well in,
e.g., maternal behavior [178]. Indeed, in humans, the V1b receptor participates in emotional
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empathy and social behavior [179]. Carriers of the G allele of V1b single-nucleotide poly-
morphism (SNP) rs28373064 have been reported to be more empathetic and pro-social [145].
Furthermore, the rs35369693 and rs28632197 SNPs of V1b were associated with ASD [180].
However, the variations in V1a receptors have been also significantly linked to ASD in
humans [180]. Studies showed that rs11174815, rs7294536, rs3759292, and rs10877969 SNPs
of the V1a receptor were correlated with ASD [181,182]. Moreover, an interaction between
OPRM1, V1a receptor and social behavior was confirmed in students [130].

All in all, the aforementioned data clearly indicate VPergic contribution to social
problems in ASD with V1a receptor implication. However, more human data are needed,
and the sex/gender aspect should also be addressed.

3.2.3. Motor Signs: Repetitive Behavior and Convulsions

Beside social communication problems, alterations in motor function (especially stereo-
typed, repetitive behavior) are further core symptoms of ASD (see earlier), and vasopressin
can also play a central role in the appearance of these.

Grooming

Already in 1981, the allo-grooming- and scratching-inducing effect of intracerebroven-
tricular (i.c.v.), but not peripheral administration of a posterior pituitary extract was de-
scribed in mice [183] (Figure 2). This short effect was not due to vasoconstriction [184], but
was related to the vasoconstrictor properties of the analogues, suggesting the involvement
of V1a receptors [185]. The grooming-inducing effect of low dose (below 100 pg) i.c.v. VP
was also confirmed in rats, together with an inhibitory effect on exploration [186]. Later rat
studies found even larger doses (30 ng) to be effective [187]. In hamster, both peripheral
and central (intra-SCN) injection promoted grooming [188]. In line with this, the male [189],
but not female [190], VP-deficient Brattleboro rat strain also showed reduced grooming,
and in male squirrel monkeys, i.c.v. VP administration increased both grooming and
scent-marking stereotyped behaviors [191]. However, this effect was not specific to VP, as a
similar dose of OT could also elicit grooming both in male and female rats [192].

In contrast, in male rats, peripheral s.c. VP administration reduced grooming in
open-field conditions 15 min, but not 60 min, after its administration [193]. A subsequent
study found arginine VP (major form in humans and rodents) to be ineffective, while lysine
VP had a similar reducing effect on grooming [194]. These discrepancies might be easily
explained by the different peripheral and central role and receptor repertoire of VP.

Marble Burying

Marble burying might also reflect a repetitive behavior (Figure 3), often modeling
OCD [195]. Although we could not detect any genotype difference in female VP-deficient
Brattleboro rats [190], male Brattleboro and V1a KO mice buried fewer marbles than the
controls [196,197], an effect not influenced by manipulation of the peripheral V2 recep-
tors [197]. Moreover, during the adolescent period, both male and female Brattleboro rats
displayed reduced marble burying [198]. However, these alterations were interpreted as
anxiolysis and not reduced repetitive behavior.

Epilepsy—A Comorbidity

Nearly one-half of the individuals diagnosed with ASD have also been diagnosed
with comorbid epilepsy [199]. Especially important, temporal lobe epilepsy (TLE) is highly
prevalent, observable in one-third of ASD patients [200]. This might explain unpredictable
emotional outbursts, hypersensitivity and hyperreactivity to trifling noises; thus, not only
motor symptoms will occur.

I.c.v. administration of VP into rats induced dose-dependent (1–10 ng/rat) barrel
rotations, a violent and apparently uncontrolled motor activity, suggesting a connection
between VP and epilepsy [186]. Furthermore, VP administered s.c. (1 and 3 µg/rat) poten-
tiated pilocarpine-induced seizures [201]. Even in febrile seizures (see later via thermoregu-
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lation), high VP doses had a pro-convulsant effect [202]. Thus, it was generally considered
that VP is a pro-convulsant [175,202]. In accordance, antiepileptic drugs, including VPA,
reduced VP-induced barrel rotation [203], without influencing serum VP levels [204]. Inter-
estingly, the peripheral (intraperitoneal, i.p.) administration of low dose VP (0.1 µg/kg)
lowered the pentylenetetrazol-induced seizures threshold, thus being pro-convulsant,
while higher doses (10 and 20 µg/kg) increased it, thus being anti-convulsant [205]. The
pro-convulsant effect was antagonized by both the V1a and the V1b antagonists, as well as
the V2 antagonist, while only the V1b (and OTR) antagonist prevented the anti-convulsant
action [175,201,205]. This suggests an atypical receptor activation of the higher doses, and
a putative endogenous pro-convulsant effect of VP.

Stress in Autism—The Third “Hit”

Despite atypical ANS and HPA functioning of ASD patients both at resting state and
during the presence of social and/or non-social stressors being generally accepted [30],
there are still some controversies.

• The Autonomic Nervous System

For the correct interpretation of emotions, feedback from the ANS is essential as for-
mulated by the often debated James–Lange theory [206]. Indeed, recent studies examining
the heart rate variability confirmed dysregulation of the ANS in adult [207] and adoles-
cent [208] ASD patients with reduced parasympathetic and increased sympathetic activity.
The dysregulation of the ANS might lead to both hypo- and hyperarousal [209]. As social
abilities are optimal when arousal is normal, when arousal increases due to misinterpre-
tation of danger signals from the environment, social behaviors are compromised. Thus,
ANS problems may contribute to socio-communication deficits in ASD.

Although VP and ANS were mostly examined separately in ASD, based on the cardio-
vascular peptide nature of VP and its strong interaction with ANS [210], we might assume
a trilateral collaboration between VP, ANS and ASD. Indeed, VP is considered to be part of
the “extended” ANS [211].

However, some authors argue that the reported ANS dysfunction in ASD patients
is confounded by high anxiety related to the study situation or might be due to other
comorbidities [212]. Thus, the question remains open.

• Vasopressin in Thermoregulation with Implication in Autism

Thermoregulation is accomplished via autonomic and behavioral responses controlled
by the ANS [213].

There is no evidence to suggest that individuals with ASD are more prone to fevers
than others. However, fever management may be more challenging in them due to their
sensory hyper-sensitivity [214].

According to some observations, children with ASD show improved communication
and social behavior during their febrile episodes [215,216]. The mechanism behind this has
not yet been fully elucidated. Nevertheless, VP is involved in thermoregulation during
fever: an early study found that central VP release increases during fever in sheep [217].
This phenomenon was later supported by a human study: plasma and cerebrospinal fluid
VP concentrations were found to be elevated in febrile individuals compared to those in
controls [218]. In the literature, VP is also referred to as an endogenous antipyretic: it
influences thermoregulatory neurons in the anterior hypothalamus, preoptic, and septal
areas [219,220] and can participate in tolerance to pyrogens in these areas [221]. However,
in rabbits, the contribution of the peripheral VP effect through the V1 receptors was also
suggested [222]. Thus, VP signaling might contribute to the transient beneficial effect of
febrile episodes in ASD.

However, despite a beneficial antipyretic effect, high levels of VP might even induce
febrile convulsions [202]. Yet, the receptor specificity is still questionable.

• The Hypothalamic–Pituitary–Adrenocortical Axis
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It is textbook knowledge, that—together with corticotropin-releasing hormone (CRH)—
VP from the PVN is a major regulator of the HPA axis, stimulating the ACTH secretion in
the anterior lobe of the pituitary (AL) through V1b receptors [163,220]. There are reports on
blunted [223] or exaggerated [224,225] cortisol (the end-hormone of the HPA axis) release
in ASD patients in response to ACTH or perceived stressors with high individual variabil-
ity [226]. Besides methodological differences (note that the measured stress-hormone levels
are very sensitive to the sampling methods), the selective contribution of central–not only
AL-V1b–receptors might shade the picture resulting in stressor-specific effects.

The synaptic growth-associated protein-43 (GAP43), an ASD candidate gene of interest,
is deeply involved in the regeneration of VP production after injury [138], and, at the same
time, its deficiency in GAP43 KO mice leads to resistance to changes as well as to stress
vulnerability [139], further supporting VPerg’s contribution to an atypical ASD stress
response (Table 2). We might even assume that altered stress reactivity designates a
subpopulation of ASD patients as sensitive to VPergic manipulations.

• Mood Disorders and Autism—A Comorbidity

A meta-analysis conducted in 2019 showed that in adult ASD patients, the current
prevalence of anxiety disorders was 27% (in comparison to 19.1% in a normal popula-
tion), while that of depressive disorders was 23% (compared to 5% among neurotypi-
cal adults) [33,34]. VP was considered an ‘endogenous anxiogenic/depressogenic sub-
stance’ [220] based upon its prevalent role in HPA regulation and the stress-related nature
of anxiety and depression [161,227].

• Anxiety

In a rodent model of anxiety (HAB and low anxiety behavior (LAB) mice and rats,
see earlier), the VP gene was found to be the candidate gene for inborn anxiety [228].
In line with this, the VP-deficient male Brattleboro rats showed reduced anxiety- and
depression-like symptoms [189]. Furthermore, the V1a receptor KO mice exhibited reduced
anxiety [196,229] and the V1a receptor antagonist was found to be anxiolytic [230]. These
results support the theory that the V1a receptor subtype plays an important role in the
regulation of anxiety-like behavior. In support, a newly developed V1a receptor antagonist
reduced anxiety-potentiated startle independently of fear-potentiated startle in healthy
volunteers [231].

At present, we might only assume that VP also contributes to anxiety in ASD, which
raises the possibility of a V1a antagonist treatment. However, its systemic administration
might be questionable as V1a receptors are present in blood vessels; thus, these antagonists
might lead to vasodilatation and hypotension.

• Depression and Serotonin

In relation to depression, many preclinical studies supported the involvement of
the V1b receptor, the major regulator of the HPA axis in the development of the symp-
toms [220,232]. However, clinical studies did not support this notion [233]; therefore, most
investigations following this direction were suspended [234]. For now, we can assume that
V1b antagonists might be effective only in a selected subpopulation or gender.

On the other hand, serotonin is highly implicated in depression, as presently prescribed
drugs are mainly selective serotonin reuptake inhibitors (SSRI). On the other hand, an
average of a 50% increase was found in plasma-based serotonin levels in one-third of
ASD individuals, supporting the connection between serotonin and ASD [235]. This
increased peripheral level is thought to reduce central serotonin function due to negative
feedback [200]. Moreover, genetic variation in the serotonin transporter (SERT) in mice
led to—among others—ASD-like behavioral changes [140,141] (Table 2). However, this
is a rather complex topic and different players of the serotoninergic systems might be
differentially implicated [236]. In terms of the role of VP, abnormal HPA axis function
might lead to mood disorders or even to suicidal behavior via the dysregulation of the
serotonergic system [142]. There is a strong interaction between VP and serotonin in
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social contexts, modulating the appearance of aggressive behavior [143]. Indeed, serotonin
might antagonize VP activity in the CNS [237,238]. In hamsters, VP induced repetitive
aggressive behaviors, which were inhibited by the simultaneous use of a serotonin (5HT1a)
agonist [239]. Thus, VP might contribute to the effectiveness of SSRIs in ASD (see later).

Sleep Disturbances in Autism—Another Third “Hit”?

One of the most frequent comorbidities in patients with ASD are sleep disorders
(prevalence between 50% and 83%) [240,241], which contribute to a decreased quality of
life [242]. Indeed, problems in the development of the sleep–wake rhythm might deeply
contribute to the appearance of the NDDs [243].

In the literature, VP has been associated with sleep mostly in relation to mood disor-
ders [244], but not to ASD. Nevertheless, VP is deeply implicated in circadian regulation
(see Section 3.3.3), which might also be disturbed in ASD [245]. Even a causal gene for
ASD, the Krüppel-like factor 7 (klf7), a transcription factor in the CNS (Table 2), might
induce ASD-like behavior by regulating the circadian rhythm [132], indicating that sleep
disturbances in ASD are causes more than they are consequences. Interestingly, besides
direct regulatory role in the SCN, the potentiating effect of VP on melatonin secretion in
pineal gland was also described in rats [246]. However, it has been disproved in a human
study [247].

Vasopressinergic Pain Regulation with Implication in Autism

In patients with ASD, perceptional disturbances are common and hypersensitivity to
pain might also occur [248]. Interestingly, more recent studies suggest that peripheral VP
plays a direct role in the regulation of pain [249] and might be used even for postoperative
analgesia in humans [250]. Furthermore, the V1a receptor subtype has been described in
mice on the dorsal root ganglia, the major sensory ganglion, which might contribute to the
analgesic effect of VP (as well as OT) [251].

However, another study suggested that VP modulates pain perception through brain
areas outside the pain matrix [252], at least in rats [253]. In support, pain might increase
the expression of VP in the rat PVN, suggesting an increased stress state [254]. We might
assume that alterations in the cerebrospinal fluid VP content described in ASD patients
might also contribute to their pain hypersensitivity, possibly through the PVN [255].

Although there are mainly rodent studies in connection with pain, we can hypothesize
that evolutionarily well-conserved signaling pathways also regulate pain sensitivity in
humans with VP contribution.

3.3. Brain Areas as Possible Links between Vasopressin and Autism

Considering the aforementioned wide range of processes, VP might influence the
development of ASD (or ASD-like) symptoms at several points. We tried to summarize the
available literature on brain areas with VPergic contribution along the two major domains
(social skills and repetitive behavior) and added stress and circadian regulation as possible
third “hits”.

3.3.1. Social Behavioral Network

The signaling mechanisms behind the social role of VP have been studied well. In-
deed, VP receptors have been found in brain areas of the social behavior neural network
(SBNN) [124,256] as well as in the mesocorticolimbic dopamine system [257]. These net-
works control social behavior in mammals according to the hypothesis of Newman [256]
(Figure 5).
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The medial preoptic area (MPOA)—part of the SBNN—might have a role in regulating
social communication and social touch. In this context, MPOA-V1a receptors were found to
be important in the olfactory communication in hamsters, called flank marking [153,258].
Recently, a thalamo-preoptic pathway was found to regulate social touch in female rats,
with an existing human analogue [259]. As VP is released from MPOA [260] and regulates
maternal care, we might assume its involvement in this process as well.

Another SBNN area, the lateral septum (LS), seems to have the most dominant role
in regulating social recognition and social memory through VP [261–263]. Re-expressing
V1a in the LS of KO mice normalized, while the overexpression in WT increased social
memory [261]. Furthermore, in prairie vole (Microtus ochrogaster), the most studied social
animal model, the septal VP fiber density showed alterations according to the paternal
behavior, and V1a antagonist reduced the appearance of paternal responsiveness [155]. As
a part of the paternal repertoire, the grooming of offspring was also elicited by LS injection
of VP [155]. Septal VP may underlie the species differences and different life strategies
of monogamous prairie vole and the polygamous montane vole (Microtus montanus) as
well [264]. In a monogamous mice species (Peromyscus californicus), more VP receptors were
found in the LS compared to a polygamous one (Peromyscus maniculatus) [265]. A recent
study in an animal model of ASD has described a direct relationship between LS, VP, and
social behavior [266]. A similar suggestion can be made based on a placebo-controlled
study in healthy adult volunteers, as intranasal (i.n.) VP administration increased LS
activity while viewing facial photographs [267].

In mice, the medial part of the amygdala (MeA) receives VP innervation [268], but
it contains VP producing neurons as well and is implicated in the regulation of social
behavior [269]. Moreover, VP was able to alter VPA-induced genetic alterations in the
amygdala [144]. A human functional magnetic resonance imaging (fMRI) study suggested
that VP modulates prefrontal cortex (PFC)-amygdala circuitry during emotion processing
using facial emotion recognition [270]. Furthermore, in 3–5-year-old ASD children, negative
functional connectivity of left amygdala and left supramarginal gyrus was accompanied by
lower plasma VP levels; however, this was only detectable in boys [271]. In addition, an
increased volume of the left amygdala has been found in children with ASD, and this was
positively correlated with plasma VP levels. As a possible background, the amygdala of
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ASD patients showed an initial increase in the number of mature neurons followed by a
decline into adulthood compared to healthy controls [272].

The extended amygdala region, the bed nucleus of stria terminalis (BNST) [273],
also contains VP-producing cells [274]. Among others, BNST is associated with anxiety,
addiction [275], and an innate fear response [276]. Moreover, a 2019 human study described
it as one of the central brain areas of social anxiety [277]. Investigations on juvenile
rats showed that VP is important in social play, and the PVN and BNST VP systems, in
particular, regulate this behavior [274]. In the VPA model of ASD, VPergic BNST projection
was significantly altered [278]. Moreover, maternal LPS injection-induced reduction in
juvenile play was accompanied by reduced VP mRNA content here as well as in the
MeA [149].

The PFC plays a pivotal role in social interactions, serving as a hub for motivation,
affiliation, empathy, and social hierarchy [279]. In maternal VPA-treated monogamous
prairie voles, PFC expressed less V1a receptor mRNA together with reduced sociability [280].
Additionally, VP altered VPA-induced genetic alterations in the PFC [281].

An often-neglected brain area is the olfactory bulb, containing VP as well [115,116].
Indeed, olfactory bulb dysgenesis was described in ASD and—according to the theory
of Brang and Ramachandran [200]—might even be causally involved in mirror neuron
system malfunction.

There are interactions between the above-mentioned areas, as LS receives VPergic
innervations from BNST and MeA, forming a regulatory network for shaping social behav-
ior [282–284]. The role of VP in aggression, a specific social behavior often observable in
ASD patients, is brain-area-specific as its release in the LS facilitates, while BNST decreases,
intermale aggression in rats [285]. Moreover, a fine balance exists between different areas,
as SON replacement of VP in Brattleboro rats led to an increase in friendly interactions,
which were originally normal in KO animals [159]. The VP immunoreactivity in both the
LS and BNST is sexually dimorphic, and, in males, it is dependent on neonatal testosterone
levels, later shaping aggressive behavior in mice [286]. In hamsters, VP injections to the
ventrolateral hypothalamus facilitated aggression, an effect which was antagonized by i.p.
SSRI administration [237].

Maternal behavior is another interesting social behavioral type, strongly influenc-
ing infant development, where VP is also deeply implicated [172]. Interestingly, MPOA
administration of V1b antagonist increased, while its BNST injection decreased offspring
care [178]. However, it is mostly the LS V1a receptors that are assumed to be involved in
this process [287].

In summary, the dysfunction of the social behavioral network occurring during ASD
might be related to VP at many points, among which the role of LS is best clarified.

3.3.2. Motor Behavior and Vasopressin

The previously mentioned flank marking in hamsters is, in fact, a stereotyped behavior,
which was elicited by VP injection into the MPOA [288] and was antagonized by the V1
antagonist in the LS and BNST [154]. Furthermore, periaqueductal grey (PAG) injections of
VP were also able to elicit this behavior both in male and female hamsters [289]. Moreover,
SCN injection of VP in hamsters reduced spontaneous nocturnal running [188].

Interestingly, a recent study using optogenetic technique in mice elicited immediate
grooming via the stimulation of the PVN VPergic cells [290]. On the other hand, grooming
was elicited via amygdalar VP injection in male rats as well [291,292]. However, a repeated
injection induced not only grooming, but also barrel rotations and myoclonic/myotonic-like
convulsive behavior [293].



Biomedicines 2023, 11, 2603 16 of 37

Barrel rotation was also induced by nodular cerebellum VP injections [294]. Indeed,
cerebellum has attracted renewed interest as a brain area at the crossroads of cognitive and
motor symptoms characteristic of ASD [295]. The cerebellum is not only critical for the
coordination and adjustment of movement but is also involved in higher functions such
as cognition, speech and emotion, all of which are altered in ASD [296]. Of interest is the
fact that perinatal cerebellar injury is the highest risk factor for ASD, apart from an affected
monozygotic twin [22,297]. In the tuberous sclerosis model of ASD, Purkinje cell damage
was associated with ASD-like symptoms [298]. VP administration increased cerebellar
activation to infant cry, supporting its contribution to emotional regulation [299].

The hippocampus is a prominent source of epileptic seizures. It contains both V1a
and V1b (as well as OTR) receptors and both were shown to contribute to hippocampal
excitability [300]. Moreover, the magnocellular PVN and SON, as well as parvocellular
BNST and amygdala, project to the hippocampus.

3.3.3. Vasopressinergic Link to Stress, and Related Disorder

The anxiolytic effect of VP is presumably connected to V1a receptors localized in
BNST [301]. Moreover, its effectiveness, similar to that of SSRIs, may be due to a BNST-
derived VP-ergic innervation into the dorsal raphe nucleus (one of the main serotoninergic
nuclei), but this pathway has only been described in mice to date.

On the other hand, the depressive-like behavior of HAB rats was accompanied by
the overexpression of the VP gene in the PVN [302]. Differences in PVN have also been
reported in human depressed patients compared to healthy controls, where both the VP
genes and the V1a receptor were overexpressed [303,304].

PVN is also a major regulator of the ANS, being a concertmaster and providing a place
for VP-ANS-ASD interaction [210,305].

3.3.4. Circadian Rhythm and Vasopressin

Electroencephalography (EEG) studies have suggested that ASD patients show al-
terations in rapid eye movement (REM) sleep [306], possibly due to a disturbance of
the SCN, the center of endogenous clock. Indeed, in the VPA-induced animal model of
autism, circadian dysregulation was found due to alterations within the core clockwork of
SCN [307].

One of the first discovered neurotransmitters of the SCN was VP, confirmed later
in many species, including humans [308]. The neuronal activity of VPergic cells of the
SCN shows daily variation and may control neuroendocrine (stress and gonadal axis)
and other (e.g., sleep–wake) rhythmic changes [309]. Research on hamsters showed that
SCN VP cells might possibly respond to melatonin signals [310]. Furthermore, in rats,
VP administration into the PVN elevated the plasma melatonin levels [311]. This might
strengthen the hypothesis that VP can mediate circadian responses to melatonin in the SCN.
Investigations into melatoninergic VP regulation in the human SCN may pave the way for
new perspectives to understand the mechanism of sleep disturbances in ASD [312].

All in all, VP may play a key role in the onset of ASD symptoms and comorbidities
in several brain areas, which can be different depending on the symptoms. In fact, ASD
is a network disorder; thus, highlighting an area in particular would be difficult. For a
summary of the possible brain areas with VPergic contributions to ASD symptoms, see
Figure 6.
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4. Sex Differences in Autism with Focus on Vasopressin

The higher prevalence of ASD in males [313] suggests sex-dependent regulatory pro-
cesses. However, ASD can be under-diagnosed in females since they can better compensate
for the lacking social skills or might show atypical signs [314,315]. Nevertheless, promi-
nent theories have been proposed to explain sex biases, like genetic factors, sex hormones,
sociological factors, cognitive differences between the sexes, and environmental insult [316].

In relation to our present topic, differences in the VP and OT system could be one
of the underlying causes of the male bias. Since ASD is known as a neurodevelopmental
disorder, the disruption of the VP system during early development may play an important
role in the pathomechanism disrupting sex-specific neural circuits that are responsible for
the sexually dimorphic nature of the social behavior [317]. Excess VP or dysregulation in
the VP system could contribute to male vulnerability, while processes mediated via the OT
system may explain the resistance in females [318].

In adult rodents, there are gender differences in the amount of VP produced and the
density of V1a receptors in specific brain regions [317]. In these regions, the level of VP
tends to be higher in male rats and mice than in females [268,283,319]. Of note, the LS of
adult male rats have denser VP fibers but fewer V1a bindings than females [320,321]. This
is in good agreement with the idea of brain-based sex differences in ASD; however, the
authors suggested different neurodevelopmental trajectories leading to the masculinization
or feminization of the brain [322]. Indeed, cortico-cerebellar hyperconnectivity was found
in ASD females, while hypoconnectivity was found in males [323]. Nevertheless, the effect
of VP treatment can also be sex-dependent, as, in free-living, female Richardson’s ground
squirrels, it resulted in increased “anxiety-like” behaviors during social challenge, while, in
males, it increased social communication and reduced aggression [174].

Alterations in sex hormones may also contribute to sex differences in ASD, as androgen
receptors can be found in ASD-related brain regions [316]. On the other hand, sex hormones
can affect the levels of VP, and could thus further contribute to male vulnerability in ASD.

https://scalablebrainatlas.incf.org/composer/index.php
https://scalablebrainatlas.incf.org/composer/index.php
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In the BNST and MeA, more than 90% of the VPergic neurons contain androgen receptors
in rats, and VP synthesis was also androgen-dependent in those areas [324]. PVN also
has a higher number of androgen receptors in human males compared to females [325].
Testosterone injected in female or neonatally castrated male rats on the first, second or third
week of life resulted in an increase in VP fiber density [326]. In contrast, progesterone could
inhibit the synthesis of VP in the BNST, the central nucleus of the amygdala and the LS in
male rats [327].

In line with this predominant role of VP in males, the VP-deficient male, but not female
Brattleboro rats, showed reduced social abilities [166,190]. To date, social deficit has been
described in male V1a KO mice only [196,229,261]. In adolescent autistic patients, plasma
VP showed negative correlation with repetitive behaviors in boys, while, in girls, the
association was positive [328]. In relation to VP-serotonin interaction, gender differences in
the response to SSRIs have been also reported [329].

The effects of exogenous VP treatment are also sexually dimorphic and dose-dependent.
In prairie voles, i.c.v. low dose VP (0.5 ng) heightened the partner preference in males [330],
but had no effect in females [331], further supporting the dominant role of VP in males.
However, when 100 ng VP was administered, partner preference was enhanced in both
genders [332].

5. Vasopressin-Related Possible Therapies in Autism

There is no cure for ASD, and there is currently no medication to treat it. The medica-
tions are prescribed mainly to treat self-injury, inability to focus, anxiety and depression
(SSRIs), aggression (alpha-2 adrenergic agonist, Clonidine) and hyperactivity (dopamine
and noradrenaline stimulant methylphenidate, Ritalin) [333]. Currently, strategies to treat
the core symptoms of ASD are directed to correct synaptic dysfunctions, abnormalities in
central VP, OT and serotonin neurotransmission, and neuroinflammation [42]. Although,
for now, only two antipsychotics (risperidone and aripriprazole) are approved by the
American Food and Drug Administration (FDA) for the treatment of some ASD symptoms,
there are multiple drugs undergoing active investigation and trials to assess their safety
and efficacy, including both VP agonists and—surprisingly—antagonists. However, OT is
more intensively studied, even called a pro-social pill [334].

5.1. Available Therapies with Possible Vasopressinergic Contribution

Among the most prescribed medications for autism [333], the following VP interactions
can be supposed:

From the second-generation antipsychotics used for the treatment of irritability,
cariprazine is promising and their serotoninergic effect suggest a possible VPergic contribu-
tion [335].

For the improvement of mood, as well as to reduce the frequency and intensity of
repetitive behaviors and improve eye contact, SSRIs are often used. In this regard, VP–
serotonin interaction might contribute to the possible effectiveness of aggression treatment
using SSRIs [238].

As regards methylphenidate (Ritalin), a dopamine (DA) reuptake inhibitor, it is used as
a stimulant for the treatment of hyperactivity (paradoxically) and lack of attention in ASD.
It was shown that it may influence the VP system [336] and it acts—at least partly—via the
V1a receptor [337].

Alpha2-agonist (e.g., Clonidine) may be used for ASD-related hyperactivity, attention
deficit, and aggression, and may interact with VP on the cardiovascular function. Indeed,
i.c.v. Clonidine administration-induced pressor response was prevented by i.c.v. V1 an-
tagonist administration in rats [338]. Interestingly, in humans, Clonidine administration
decreased plasma VP levels [339]. In horses, no interaction was found between Clonidine
and VP on HPA axis [340]; however, in rats, Clonidine reduced the firing of SON VPergic
cells, further supporting an interaction at the level of water balance [341].
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As for applied behavior analysis (ABA), in a backtranslation study using ASD model
mice, this intervention normalized VP and V1a expression in several brain areas, including
MeA [342].

Even transcutaneous electrical acupoint stimulation elevated VP levels in connection
with an improvement of ASD symptoms [343].

Although experts do not recommend any specific diets for children (not even gluten-
or casein-free), some probiotics might improve gastrointestinal symptoms [344]. As a
possible link to VP, in prairie voles, Limosilactobacillus reuteri administration resulted in
lower anxiety, but also lower social affiliation in female but not male individuals, with a
decrease in PVN V1a expression [345].

For a summary, see Figure 7.
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5.2. Influencing the Vasopressinergic System in Autism-Related Problems

Besides the aforementioned indirect effects, the direct influence on the VP pathway
might have therapeutic potential on its own.

As VP does not cross the blood–brain barrier [175], for influencing the central VPergic
system, i.c.v. or i.n. application is preferable.

In a rat VPA model, acute i.c.v. VP administration prevented social-interaction-induced
brain activation based on blood oxygenation level (BOLD) signal in fMRI [346].

5.2.1. Intranasal Vasopressin Application

In rats, i.n. VP treatment (from PND 21 for 3 weeks) improved maternal VPA injection-
induced (E12.5) social deficit, elevated the serum VP level and corrected expression changes
related to synaptic and axon dysplasia and oligodendrocyte development in the PFC [281]
and amygdala [144].
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In male, but not female, marmosets, i.n. VP administration reduced food sharing
with increased aggressive vocalization [347]. Accordingly, in monogamous male prairie
voles [348], as well as in the coppery titi monkey (Callicebus cupreus) [349], a similar treat-
ment reduced partner preference. These preclinical results did not suggest a possible
positive effect on ASD symptoms.

However, when VP was administered i.n. for 4 weeks in ASD children aged 6–13 years
in a phase 2 randomized clinical trial, improved social responsiveness and social abilities
with decreased anxiety and limited repetitive behavior were reported [350]. The response
was the strongest in high-plasma VP patients, and depended on the expression pattern of
the V1a and OTR receptors. The latter might explain the controversially decreased anxiety,
as V1b receptors were more involved in this stress-related disorder. In contrast, a random-
ized, double-blind, placebo controlled, between-subjects design on 125 undergraduate
students (with 41 placebo, 30 females in each), using i.n. VP administration, did not find
any effect on social outcomes [351]. In support, i.n. VP administration in rats failed to
influence social recognition [352], despite previous effectiveness of the direct olfactory
bulb manipulation [116]. Moreover, in healthy male volunteers, i.n. VP administration de-
creased goal-directed top-down attention control to social salient stimuli with an increase in
bottom-up social attentional processing [353]. This effect was similar to OT administration
and accompanied by an anxiolytic effect as well. In another study on face processing, a
single low-dose i.n. VP (20 IU) administration to men decreased social assessments with
a most pronounced effect in V1a risk allele carrier subjects [354]. This suggest that via i.n.
application, significant amounts of VP might not reach behaviorally relevant areas in the
brain described previously as targets for the central administration of the peptide [352].

For other ASD-related alterations, where we suggested possible VP contribution
(Figure 4), the following treatment effects were found:

The activity of brain regions implicated in emotion processing was altered by i.n. VP
treatment [41]. In this regard, in humans, i.n. VP regulated the processing of infant cry
sounds with emotional contextual information in fathers [299]. In male volunteers, i.n.
VP administration increased approaching ratings to some faces, together with increased
processing suggested by higher N1 amplitude on the electroencephalograph; however,
this effect was highly context-dependent [355]. Another study using fMRI in healthy
male subjects reported reduced amygdalar activation to emotional faces after i.n. VP
administration [356]. In contrast, another study reported enhanced neural pattern in the
right amygdala to social–emotional stimuli observed via MRI [357].

As mentioned before, i.n. VP administration was also able to reduce pain in relation to
postoperative orthopedic surgery [250].

Regarding its thermoregulatory role, i.n. VP (more specifically desmopressin, a V2
receptor-selective agonist) reduced persisting coldness after brain injury in six patients [358].

In contrast, i.n. VP administration exacerbated physiological ANS parameters in
combat veterans [359].

In healthy, elderly subjects, i.n. VP promoted sleep time and improved sleep architec-
ture [360], reinforcing the potential beneficial effect of VP in ASD treatment. However, it
was ineffective as regards verbal memory function [361].

5.2.2. Vasopressin Antagonist Treatment

In recent years, vasopressin receptor antagonists have been in the spotlight of drug
discovery, especially V1a selective molecules [362]. Publishing Balovaptan as a possible
treatment for ASD greatly increased the interest in CNS-acting vasopressin antagonists.
Although clinical trials were unsuccessful in many cases, there is still potential in the VP
antagonists as shown by several currently ongoing clinical studies.

The main focus is on V1a receptor antagonists. In this context, SRX246, a V1a recep-
tor antagonist, blocked the effect of i.n. VP administration-induced reduced amygdalar
activation to angry faces [356]. Moreover, in 2017, a multicenter double-blinded crossover
study found that single-dose intravenous (i.v.) infusion of RG7713, a highly selective V1a
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antagonist in adult males with high-functioning ASD, resulted in a subtle but statistically
significant improvement in social communications and social sensitivity [363]. As a follow
up, the VP Antagonist to Improve Social Communication in Autism (VANILLA), a double-
blinded placebo controlled clinical trial, examined 223 adult men with high-functioning
ASD using another selective V1a receptor antagonist, RG7714 (commercially known as Balo-
vaptan) for 3 months [364]. The treatment was well tolerated and resulted in improvement
in communication and socialization scores, though not in all aspects of the ASD spectrum
(e.g., social responsiveness was not improved). Despite effectiveness during the phase 2
trial [365], in subsequent phase 3 trials in high-functioning children (5–17-year) [366] and
adults (above 18-year) [367], the 6-month Balovaptan treatment was ineffective as regards
social communication.

Other selective V1a receptor antagonists (like the orally active Relcovaptan) might
be effective as regards comorbid epilepsy [175]. On the other hand, for many years,
V1b receptor antagonists were developed to treat mood disorders. Despite previous in-
effectiveness in major depression [233], V1b receptor antagonists might be effective in
subpopulations [368,369] and are therefore still under development (e.g., THY1773 [370],
TS-121 [371], ABT-436 [372]). We cannot ignore V2 receptors either, as Tolvaptan, a V2
antagonist was implicated in the treatment of tuberous sclerosis, a genetic ASD, in a case
report [134] (Table 2).

5.2.3. Oxytocin Treatment

As VP might bind to OTRs (see earlier), it is important to note that several animal
trials of OT treatment suggested beneficial effects. In children, even a single intranasal OT
administration increased the nonverbal information-based judgments [373]. Despite mixed
results, a recent meta-analysis found moderate evidence that a 6-week OT treatment might
improve the reduced interest and repetitive behavior of ASD children and the effect lasted
for at least 6 months [374].

5.2.4. Contradiction

There is an apparent contradiction between the effectiveness of VP as well as its
antagonist. A possible explanation can be the age of the participants as well as the method
used for drug administration (i.n. for children, other peripheral routes for adults), thereby
targeting central or peripheral receptors. Moreover, although VP may stimulate all receptors
including OTRs, its effectiveness can be different on them, while antagonists are highly
selective, which might shift balance between the VP receptor actions.

6. Conclusions

VP as a social hormone with a ubiquitous role might influence the development of ASD
symptoms at several points (Figure 4). Although we might even suppose a causative role
of VP, at present, only a symptomatic treatment can be assumed. The available treatment
options might also influence the VPergic system; however, VP or antagonist administration
can also be considered. Controversially, both VP itself and V1a antagonist have already been
proven to ameliorate several symptoms (Figure 7). This discrepancy drew our attention
to the possibility of subpopulation (i.e., stress-sensitive, male individuals) and/or brain-
area-specific manipulation, which was not emphasized before. One may suppose that
ASD patients with low blood VP level might benefit more from VP therapy [350,375],
and the doses should thus be adjusted accordingly. Although, in humans, systematic
treatments are preferable, viral vectors are widely used in therapy nowadays to provide a
possible life-long treatment with a single injection [376]. However, it would not be easy
to dissect a certain brain area, as the role of VP in socioemotional functioning recruits
multiple brain networks distributed across the whole brain [377] (Figures 5 and 6). As the
aforementioned clinical studies have limitations (e.g., low sample size, male-biased sample,
short treatment duration, not medication-free patients [350]), further preclinical and clinical
trials are needed.
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