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Simple Summary: The present research enriches our comprehension of the mitogenomic genetic
features, genetic diversity, evolutionary past, and conservation prerequisites of Psettodes flatfishes
on a global scale. This study focuses on the matrilineal evolutionary path of these primitive groups,
with a specific emphasis on the complete mitogenome of the Psettodes belcheri and casting light on its
genetic composition, structural traits, and evolutionary chronicle. Exploring genetic variations and
phylogenetic relationships uncovers the intricate evolutionary links between Psettodes species and
their broader context within the Pleuronectiformes species. The complex interplay of hydrographic
conditions, ocean currents, and ecological factors emerges as pivotal in shaping the evolutionary
landscape of these flatfishes. Given the potential consequences for conservation, this study highlights
the necessity for a holistic comprehension of marine environments and the ramifications of climate
change and human interventions on flatfish species.

Abstract: The mitogenomic evolution of the Psettodes flatfishes is still poorly known from their range
distribution in eastern Atlantic and Indo-West Pacific Oceans. The study delves into the matrilineal
evolutionary pathway of these primitive flatfishes, with a specific focus on the complete mitogenome
of the Psettodes belcheri species, as determined through next-generation sequencing. The mitogenome
in question spans a length of 16,747 base pairs and comprises a total of 37 genes, including 13 protein-
coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes, and a control region. Notably,
the mitogenome of P. belcheri exhibits a bias towards AT base pairs, with a composition of 54.15%,
mirroring a similar bias observed in its close relative, Psettodes erumei, which showcases percentages of
53.07% and 53.61%. Most of the protein-coding genes commence with an ATG initiation codon, except
for Cytochrome c oxidase I (COI), which initiates with a GTG codon. Additionally, four protein-
coding genes commence with a TAA termination codon, while seven others exhibit incomplete
termination codons. Furthermore, two protein-coding genes, namely NAD1 and NAD6, terminate
with AGG and TAG stop codons, respectively. In the mitogenome of P. belcheri, the majority of
transfer RNAs demonstrate the classical cloverleaf secondary structures, except for tRNA-serine,
which lacks a DHU stem. Comparative analysis of conserved blocks within the control regions of two
Psettodidae species unveiled that the CSB-II block extended to a length of 51 base pairs, surpassing
the other blocks and encompassing highly variable sites. A comprehensive phylogenetic analysis
using mitochondrial genomes (13 concatenated PCGs) categorized various Pleuronectiformes species,
highlighting the basal position of the Psettodidae family and showed monophyletic clustering of
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Psettodes species. The approximate divergence time (35−10 MYA) between P. belcheri and P. erumei was
estimated, providing insights into their separation and colonization during the early Miocene. The
TimeTree analysis also estimated the divergence of two suborders, Psettodoidei and Pleuronectoidei,
during the late Paleocene to early Eocene (56.87 MYA). The distribution patterns of Psettodes flatfishes
were influenced by ocean currents and environmental conditions, contributing to their ecological
speciation. In the face of climate change and anthropogenic activities, the conservation implications
of Psettodes flatfishes are emphasized, underscoring the need for regulated harvesting and adaptive
management strategies to ensure their survival in changing marine ecosystems. Overall, this study
contributes to understanding the evolutionary history, genetic diversity, and conservation needs of
Psettodes flatfishes globally. However, the multifaceted exploration of mitogenome and larger-scale
genomic data of Psettodes flatfish will provide invaluable insights into their genetic characterization,
evolutionary history, environmental adaptation, and conservation in the eastern Atlantic and Indo-
West Pacific Oceans.

Keywords: marine fish; ancient lineages; mitogenome; phylogeny; evolution; oceanography

1. Introduction

Flatfishes, also known as flounders, soles, halibuts, turbots, plaices, and tonguefishes,
are classified as Pleuronectiformes. This order is split into two suborders: Psettodoidei,
which includes the single-family Psettodidae, and Pleuronectoidei, which includes 13 fami-
lies [1]. Flatfishes live mostly in tropical and subtropical marine habitats, preferring shallow
parts of the continental shelf with soft sandy bottoms [2]. Their evolutionary journey,
particularly marked by cranial asymmetry and unique scale structures, has facilitated
their successful adaptation and dominance in benthic aquatic habitats [3–5]. The genus
Psettodes is a “primitive” flatfish group within the monotypic Psettodidae family, with three
recognized species: Psettodes belcheri, Psettodes bennettii, and Psettodes erumei [6]. While
P. erumei, commonly referred to as the Indian halibut, ranges expansively across the Red Sea
and the Indo-West Pacific Ocean, the other two species are confined to the eastern Atlantic.
Intriguingly, the ranges of P. belcheri and P. bennettii exhibit partial overlap, spanning from
the west Sahara to the Liberian coast.

The economic significance of flatfishes has led to their frequent capture through dem-
ersal trawling in marine ecosystems [7]. The Indian halibut (P. erumei) is heavily harvested
within the tropical fishing zone as defined by the United Nations Food and Agriculture
Organization (FAO) [8]. Despite this heavy exploitation, the IUCN Red List classifies infor-
mation on the status of these three Psettodes species as ‘Data Deficient.’ [9]. Furthermore,
the extraordinary transformation from bilateral pelagic larval symmetry to adult flattened
symmetry limits flatfishes to demersal zones on the sea bottom, owing to their unusual
temperature-mediated spawning behavior [10]. While most flatfish species have either a
right-sided (dextral) or a left-sided (sinistral) mouth, several species, including Psettodes,
display varying degrees of dextral to sinistral polymorphism [11]. This sexual dimor-
phism in external morphology often poses challenges in species identification. Moreover,
this characteristic complexity in external appearance frequently hinders precise species
differentiation among flatfishes [12].

The integration of molecular data has become integral in the exploration of global
flatfish species, encompassing diverse aspects such as species identification [13], systematic
classification [14], phylogenetic relationships [15], and population structure estimation [16].
Genetic information has also found utility in identifying valuable commercial species and
managing aquaculture stocks [17,18]. The acquisition of comprehensive genomic resources
is pivotal for advancing flatfish research and its manifold applications [19]. While the
origins of flatfishes have long been debated, recent molecular insights lend support to the
concept of a ‘lower-percoid’ origin, a perspective gaining prominence in the field of teleost
ichthyology [20–22]. The taxonomic placement of Psettodes has stirred argument, especially
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in the context of analyses involving nuclear and mitogenomic data. This genus consistently
diverges from other flatfishes (Pleuronectiformes), instead aligning with other carangi-
morphs [23–26]. A comprehensive phylogenetic analysis utilizing 1000 ultraconserved
DNA element loci across 45 carangimorphs subsequently solidified the monophyly of flat-
fishes [27]. Later studies, involving complete mitogenome-based phylogeny and molecular
clock analyses, offered insights into the enigmatic placement and evolutionary divergence
of the Psettodes genus within the context of other carangimorphs and pleuronectoids [28,29].
However, these investigations were limited to a single Psettodes taxon (P. erumei) from the
Indo-Pacific region, highlighting the need for expanded inquiries involving other congeners
from the Atlantic Ocean.

An integrated strategy that looks beyond superficial investigation is required for an
accurate appraisal of speciation within maritime ecosystems. Advances in technology,
spanning maritime engineering to genomics, are facilitating the investigation of marine
speciation [30,31]. To enhance our grasp of Psettodes’ maternal evolutionary path, this study
seeks to construct the complete mitogenome of P. belcheri, elucidate its genomic attributes,
and establish its phylogenetic relationships. This endeavor contributes to understanding
the maternal evolution of these ancient lineages in marine environments, strengthening
the mitogenomic repository of flatfishes, and expanding our scientific insight into the
Psettodidae family on a global scale. While marine habitats harbor a diverse array of life
forms, our understanding of speciation in marine ecosystems is comparatively limited
compared with freshwater systems, necessitating urgent exploration of the mechanisms
driving speciation and adaptation [32]. Given the unique distribution of Psettodidae
flatfishes across the eastern Atlantic, Red Sea, and Indo-West Pacific Ocean, this study
also aims to estimate the divergence time between two Psettodidae species (P. belcheri and
P. erumei) and investigate potential evolutionary scenarios within the marine environment.

2. Materials and Methods
2.1. Sampling and Species Identification

A solitary specimen of the spottail spiny turbot, scientifically known as P. belcheri, was
acquired from the estuaries of the Kineke River (latitude 2.938611◦ N, longitude 9.911667◦ E)
located in Kribi, Cameroon (Figure 1). The identification process was meticulously carried
out in accordance with available taxonomic keys [33]. Upon euthanizing the specimen with
MS-222 (200 mg/L), muscle tissue was aseptically collected from the ventral thoracic region.
The voucher specimen was duly archived in 10% formaldehyde at the Fisheries and Animal
Industries department (MINEPIA) in Yaoundé, Cameroon. Simultaneously, a tissue sample
was preserved at the Department of Marine Biology, Pukyong National University in
Busan, South Korea. The Institutional Animal Care and Use Committee of the host institute
granted approval (Approval Code: PKNUIACUC-2022-72, dated 16 December 2022) for
the utilization of deceased fish muscle tissue in molecular investigations. To enhance
our comprehension of their geographical distribution, global maps of Pleuronectiformes,
inclusive of the range distributions of P. belcheri and its congeners (P. erumei and P. bennettii),
were obtained in .shp file format from the IUCN database (https://www.iucnredlist.org/,
accessed on 15 August 2023) (Figure 1).

2.2. DNA Extraction, Mitogenome Sequencing, and Assembly

The AccuPrep® Genomic DNA extraction kit, manufactured by Bioneer in Daejeon,
Republic of Korea, was utilized to extract genomic DNA, following the established standard
protocol. The quality and quantity of the resulting genomic DNA were meticulously evaluated
employing a NanoDrop spectrophotometer (Thermo Fisher Scientific D1000, WA, USA). To
obtain the comprehensive mitogenome of P. belcheri, sequencing procedures were executed
using the NovaSeq platform, provided by Illumina and accessible at Macrogen (https://dna.
macrogen.com/, accessed on 15 August 2023) in Daejeon, Republic of Korea. The sequencing
libraries were prepared following the manufacturer’s instructions for the TruSeq Nano DNA
High-Throughput Library Prep Kit (Illumina, Inc., San Diego, CA, USA). In short, 100 ng of

https://www.iucnredlist.org/
https://dna.macrogen.com/
https://dna.macrogen.com/
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genomic DNA underwent fragmentation using adaptive focused acoustic technology (Covaris,
Woburn, MA, USA), resulting in blunt-ended dsDNA molecules with 5′-phosphorylation.
After the end-repair step, DNA fragments were size selected using a bead-based method.
These fragments were then modified with the addition of a single ‘A’ base and ligated with
TruSeq DNA UD Indexing adapters. Subsequently, the products were purified and enriched
through PCR to create the final DNA library. Library quantification was performed using
qPCR, following the qPCR Quantification Protocol Guide (KAPA Library Quantification kits
for Illumina Sequencing platforms), and quality assessment was carried out using Agilent
Technologies 4200 TapeStation D1000 screentape (Agilent Technologies, Santa Clara, CA,
USA). Finally, paired-end (2 × 150 bp) sequencing was performed by Macrogen using the
NovaSeq platform (Illumina, Inc., San Diego, CA, USA). Over 20 million raw reads underwent
processing using the Cutadapt tool (http://code.google.com/p/cutadapt/, accessed on 15
August 2023) to trim adapters and remove low-quality bases, with a Phred quality score (Q
score) cutoff of 20. The Geneious Prime version 2023.0.1 was used to assemble the targeted
genome from the high-quality paired-end NGS reads. This assembly was accomplished by
employing reference mapping with the mitogenome of a closely related species as a reference,
and we employed default mapping algorithms. Mitogenome assembly was accomplished
by scrutinizing the alignment of overlapping regions via MEGA X [34]. The boundaries
and orientations of individual genes were validated using the MITOS v806 (http://mitos.
bioinf.uni-leipzig.de, accessed on 15 August 2023) and MitoAnnotator (http://mitofish.aori.u-
tokyo.ac.jp/annotation/input/, accessed on 15 August 2023) web servers [35,36]. To further
corroborate protein-coding genes (PCGs), the translated putative amino acid sequences were
scrutinized using the Open Reading Frame Finder web tool (https://www.ncbi.nlm.nih.gov/
orffinder/, accessed on 15 August 2023), based on the vertebrate mitochondrial genetic code.
The resultant mitogenome of P. belcheri was duly submitted to the global GenBank database.
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Figure 1. Global distribution of Pleuronectiformes along with the ocean surface currents (warm and
cold currents are marked by the red and blue arrow, respectively). Collection locality of Psettodes
belcheri is marked by a red pin from Cameroon, Africa. The .shp files were acquired from the IUCN
database (accessed on 15 August 2023). The species photographs were taken by the sixth author
(F.Z.G) and edited manually in Adobe Photoshop CS 8.0.

2.3. Mitogenomic Characterization

A spherical representation of the generated mitogenome was crafted using MitoAn-
notator (http://mitofish.aori.u-tokyo.ac.jp/annotation/input/, accessed on 15 August
2023). A comprehensive comparative analysis was carried out to assess the mitoge-
nomic architecture and variations within our generated sequence in relation to two pre-
existing mitogenomes from a single congener, P. erumei (FJ606835, sourced from China,

http://code.google.com/p/cutadapt/
http://mitos.bioinf.uni-leipzig.de
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and AP006835, sourced from Japan). The calculation of intergenic spacers, which separate
adjacent genes, and overlapping regions was performed manually. To determine the nu-
cleotide compositions of protein-coding genes (PCGs), ribosomal RNA (rRNA), transfer
RNA (tRNA), and the control region (CR), we employed MEGA X [34]. Similarly, base
composition skews, as previously detailed, were computed using the following formulas:
AT-skew = [A − T]/[A + T], GC-skew = [G − C]/[G + C] [37]. The verification of initiation
and termination codons for each PCG, as well as adherence to the vertebrate mitochondrial
genetic code, was carried out using MEGA X. Additionally, the boundaries of rRNA and
tRNA genes were confirmed through the use of the tRNAscan-SE Search Server 2.0 in
conjunction with ARWEN 1.2 [38,39]. Structural domains within the control region were
delineated through CLUSTAL X alignments [40], and tandem repeats were explored uti-
lizing the online Tandem Repeats Finder web tool (https://tandem.bu.edu/trf/trf.html,
accessed on 15 August 2023) [41].

2.4. Genetic Distance, Phylogenetic Analyses, and TimeTree Estimation

Genetic distances were computed using the Kimura 2-parameter (K2P) method within
MEGA X. Due to the unavailability of the complete mitogenome of P. bennettii, intra-species
and inter-species distances were determined using the widely employed mitochondrial
COI gene. To elucidate the matrilineal phylogenetic connections, 14 mitogenomes from
13 Pleuronectiformes species were sourced from the GenBank database (accessed on 15 Au-
gust 2023) [28,42–49] (Table S1). Dataset preparation adhered to methodologies outlined
in two recent Pleuronectiformes studies [26,50]. The spotfin flounder, Cyclopsetta fimbriata,
was categorized within the recently established family Cyclopsettidae (=Paralichthyidae II).
Additionally, two Cynoglossidae species were included: Cynoglossus gracilis (=Cynoglos-
sidae I) and Symphurus orientalis (=Cynoglossidae II). The mitogenome of Lates calcarifer
(DQ010541), from the Centropomidae family, was incorporated as an outgroup. Concate-
nation of all 13 PCGs was executed using the iTaxoTools 0.1 tool to construct the dataset
for phylogenetic analysis [51]. In order to prevent inadvertent gaps within the dataset
alignment, we consciously excluded the non-coding rRNA genes and control regions from
the current phylogenetic analysis. Model selection yielded the ‘GTR + G + I’ model as
the most suitable, determined by the lowest Bayesian Information Criterion (BIC) score
using PartitionFinder 2 through CIPRES Science Gateway v3.3 and JModelTest v2 [52–54].
Employing Mr. Bayes 3.1.2, a Bayesian (BA) tree was constructed, employing nst = 6, along
with one cold and three hot Metropolis-coupled Markov Chain Monte Carlo (MCMC)
chains. The analysis spanned 10,000,000 generations with tree sampling at every 100th
generation and 25% of samples discarded as burn in [55]. Visualization of the BA tree
was accomplished using the iTOL v4 web server (https://itol.embl.de/login.cgi, accessed
on 15 August 2023) [56]. Additionally, the divergence time estimation was performed
using the RelTime method following standard protocol as implemented in MEGA X [57].
This approach was intended to reduce the large computational time involved in Bayesian
methods [58,59]. After loading the sequences data, the constructed maximum-likelihood
topology (.nwk format) was used as a baseline tree. After specifying the outgroup taxa,
the TimeTree computation incorporated two calibration constraints through the calibration
editor: the divergence from the sister lineage of Citharidae (55.54 MYA) and Achiridae
(49.73 MYA), as established in a previous study [28].

3. Results and Discussion
3.1. Mitogenomic Structure and Organization

In this study, the mitogenome of P. belcheri (16,739 bp) was characterized and assigned
the GenBank accession number OR231239. The circular mitogenome of P. belcheri comprised
13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes
(rRNAs), and a non-coding AT-rich control region (CR). Among these, 28 genes (12 PCGs,
2 rRNAs, and 14 tRNAs) were positioned on the heavy strand, while NAD6 and 8 tRNAs (trnQ,
trnA, trnN, trnC, trnY, trnS2, trnE, and trnP) were situated on the light strand (Table 1, Figure 2).

https://tandem.bu.edu/trf/trf.html
https://itol.embl.de/login.cgi
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Table 1. List of annotated mitochondrial genes of Psettodes belcheri.

Genes Start End Strand Size (bp) Intergenic
Nucleotide Anti-Codon Start Codon Stop Codon

tRNA-Phe 1 69 H 69 0 TTC . .

12S rRNA 70 1030 H 961 0 . . .

tRNA-Val 1031 1102 H 72 26 GTA . .

16S rRNA 1129 2830 H 1702 0 . . .

tRNA-Leu 2831 2903 H 73 0 TTA . .

ND1 2904 3878 H 975 4 . ATG AGG

tRNA-Ile 3883 3952 H 70 1 ATC . .

tRNA-Gln 3954 4024 L 71 −1 CAA . .

tRNA-Met 4024 4093 H 70 0 ATG . .

ND2 4094 5138 H 1045 0 . ATG T--

tRNA-Trp 5139 5211 H 73 2 TGA . .

tRNA-Ala 5214 5282 L 69 1 GCA . .

tRNA-Asn 5284 5356 L 73 38 AAC . .

tRNA-Cys 5395 5460 L 66 0 TGC . .

tRNA-Tyr 5461 5530 L 70 1 TAC . .

COI 5532 7082 H 1551 0 . GTG TAA

tRNA-Ser 7083 7153 L 71 8 TCA . .

tRNA-Asp 7162 7230 H 69 8 GAC . .

COII 7239 7929 H 691 0 . ATG T--

tRNA-Lys 7930 8004 H 75 1 AAA . .

ATP8 8006 8170 H 165 −7 . ATG TAA

ATP6 8164 8844 H 681 2 . ATG TA-

COIII 8847 9629 H 783 2 . ATG TA-

tRNA-Gly 9632 9702 H 71 0 GGA . .

ND3 9703 10,050 H 348 1 . ATG T--

tRNA-Arg 10,052 10,120 H 69 0 CGA . .

ND4L 10,121 10,414 H 294 −4 . ATG TAA

ND4 10,411 11,791 H 1381 0 . ATG T--

tRNA-His 11,792 11,859 H 68 0 CAC . .

tRNA-Ser 11,860 11,927 H 68 6 AGC . .

tRNA-Leu 11,934 12,006 H 73 0 CTA . .

ND5 12,007 13,845 H 1839 −1 . ATG TAA

ND6 13,845 14,363 L 519 0 . ATG TAG

tRNA-Glu 14,364 14,432 L 69 5 GAA .

Cytb 14,438 15,578 H 1141 0 . ATG T--

tRNA-Thr 15,579 15,652 H 74 −1 ACA . .

tRNA-Pro 15,652 15,724 L 73 0 CCA . .

Control region 15,725 16,747 H 1023 . . . .
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A similar distribution of genes on heavy and light strands was evident in other
Pleuronectiformes species, with total lengths ranging from 16,506 bp (C. fimbriata, family
Cyclopsettidae, AP014590) to 18,706 bp (Samariscus latus, family Samaridae, KF494223).
Variability in mitogenomic lengths was largely attributed to duplications in the control
regions (CRs) [44]. The mitogenome of P. belcheri showcased five overlapping regions,
spanning a total of 14 bp. The longest overlap (7 bp) was observed between ATP syn-
thase 8 (atp8) and ATP synthase 6 (atp6). Similarly, both P. erumei mitogenomes (FJ606835
and AP006835) displayed five overlapping regions totaling 23 bp, with the longest over-
lap (10 bp) between atp8 and atp6, mirroring P. belcheri. Moreover, P. belcheri exhibited
15 intergenic spacer regions spanning a total of 106 bp, with the longest (38 bp) situated
between trnN and trnC. Conversely, P. erumei mitogenomes contained 11 intergenic spacer
regions spanning 77–78 bp, with the longest (37–38 bp) found between trnN and trnC
(Table S2). Nucleotide composition analysis revealed the AT-biased nature of P. belcheri
mitogenome (54.15%), encompassing 28.09% A, 16.24% G, 29.56% C, and 26.06% T. Sim-
ilar AT richness was observed in the nucleotide composition of the other two P. erumei
mitogenomes, ranging from 53.07% to 53.61% (Table 2). The AT skew and GC skew of P.
belcheri mitogenome were recorded as 0.037 and −0.291, respectively. Comparative analysis
of P. erumei mitogenomes demonstrated an AT skew range of 0.076 to 0.077, and a GC skew
range of −0.323 to −0.328 (Table 2). This consistent nucleotide composition pattern and
AT bias were also observed in other previously described fish mitogenomes [60,61]. The
genetic variations identified within the Psettodes mitogenome may be tied to their evolution-
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ary progression and energy metabolism, echoing findings in other fish species [62]. This
research offers valuable insights into the structural attributes of Psettodes mitogenomes,
which hold significance in deciphering the functionalities of these mitogenomes and their
encoded genes.

Table 2. Nucleotide composition of the mitochondrial genomes of two Psettodes species.

Species Name Size (bp) A% T% G% C% A + T% AT-Skew GC-Skew

Complete mitogenome

P. belcheri (OR231239) 16,747 28.09 26.06 16.24 29.56 54.15 0.037 −0.291

P. erumei (FJ606835) 17,315 28.83 24.78 15.71 30.68 53.61 0.076 −0.323

P. erumei (AP006835) 16,683 28.57 24.50 15.78 31.15 53.07 0.077 −0.328

PCGs

P. belcheri (OR231239) 11,427 25.00 27.73 16.00 31.27 52.74 −0.052 −0.323

P. erumei (FJ606835) 11,427 25.37 25.75 15.62 33.25 51.13 −0.008 −0.361

P. erumei (AP006835) 11,426 25.33 25.62 15.62 33.43 50.95 −0.006 −0.363

rRNAs

P. belcheri (OR231239) 2689 31.42 21.38 21.87 25.33 52.81 0.190 −0.073

P. erumei (FJ606835) 2680 32.43 20.56 20.86 26.16 52.99 0.224 −0.113

P. erumei (AP006835) 2680 32.43 20.45 20.90 26.23 52.87 0.227 −0.113

tRNAs

P. belcheri (OR231239) 1556 27.83 27.31 23.14 21.72 55.14 0.009 0.032

P. erumei (FJ606835) 1553 27.17 26.85 23.82 22.15 54.02 0.006 0.036

P. erumei (AP006835) 1554 27.28 26.83 23.68 22.20 54.12 0.008 0.032

CRs

P. belcheri (OR231239) 1015 30.25 33.40 12.51 23.84 63.65 −0.050 −0.312

P. erumei (FJ606835) 1601 38.91 33.92 10.31 16.86 72.83 0.069 −0.241

P. erumei (AP006835) 968 42.15 36.36 7.13 14.36 78.51 0.074 −0.337

3.2. Protein-Coding Genes

A cumulative length of 11,427 bp in P. belcheri mitogenome was occupied by a total of
13 protein-coding genes (PCGs), accounting for 68.27% of the whole sequence. Among these,
the shortest PCG was ATP8, spanning 165 bp, while NAD5 represented the longest PCG
with a length of 1839 bp. In both P. erumei mitogenomes, the total length of PCGs ranged
from 11,426 bp (68.49%) to 11,427 bp (65.99%). The PCGs of P. belcheri were characterized
by an AT bias of 52.73%, accompanied by AT skew and GC skew values of −0.052 and
−0.323, respectively (Table 2). Similarly, the mitogenomes of P. erumei displayed an AT bias
ranging from 50.95% to 51.12%, coupled with AT skew values of −0.008 to −0.006 and GC
skew values of −0.363 to −0.361. Most of the PCGs commenced with an ATG (Methionine)
initiation codon, except for COI, which began with a GTG (Valine) codon. A parallel pattern
of initiation codons was apparent in all PCGs of the other two P. erumei mitogenomes.
Among the PCGs, the conventional TAA termination codon was observed in four instances
(COI, ATP8, NAD4L, and NAD5), while seven PCGs featured incomplete stop codons
(T--/TA-). Additionally, two PCGs, NAD1 and NAD6, terminated with AGG and TAG
stop codons, respectively. A corresponding distribution of stop codons was also noted in P.
erumei mitogenomes (Tables 2 and S3). These incomplete stop codons could potentially be
completed with TAA during RNA processing, as previously suggested [63]. As observed in
other fish species, the identified genetic disparities might lead to the independent selection
of PCGs [64]. PCGs play pivotal roles in oxidative phosphorylation, ATP synthesis, and the
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encoding of proteins within the electron transport pathways. Consequently, the inclusion
of mitogenomes from various Psettodes species could facilitate the exploration of variations
in gene expression and energy utilization.

3.3. Ribosomal RNA and Transfer RNA Genes

Within the P. belcheri mitogenome, the ribosomal RNA genes collectively spanned
2689 bp, equivalent to 16.06% of the complete mitogenome. This encompassed a small
ribosomal RNA (12S rRNA) measuring 961 bp and a large ribosomal RNA (16S rRNA)
with a length of 1702 bp. Comparatively, the total length of P. erumei’s rRNAs (2680 bp)
was shorter than that of P. belcheri (Table 2). The ribosomal RNAs AT composition ranged
from 52.81% (P. belcheri) to 52.99% (P. erumei). Comparative analysis indicated AT skew
values ranging from 0.190 (P. belcheri) to 0.227 (P. erumei), while GC skew values ranged
from −0.113 (P. erumei) to −0.073 (P. belcheri) in the ribosomal RNA (Table 2). These rRNA
genes’ structural arrangement, notably the conserved loops, offer critical insights into the
catalytic chemical processes underlying protein synthesis [65]. Additionally, the P. belcheri
mitogenome featured 22 tRNA genes, exhibiting varying lengths from 66 bp (trnC) to 75 bp
(trnK), collectively constituting 1556 bp or 9.29% of the entire mitogenome. The combined
tRNA length in both P. erumei mitogenomes was shorter (1553 bp and 1554 bp) than that
of P. belcheri (Table 2). The tRNAs displayed an AT bias in both P. belcheri (55.14%) and P.
erumei (54.02% to 54.12%). AT skew values ranged from 0.006 (P. erumei) to 0.009 (P. belcheri),
while GC skew values ranged from 0.032 (P. belcheri and P. erumei, AP006835) to 0.036 (P.
erumei, FJ606835) (Table 2). Most tRNAs were predicted to adopt the typical cloverleaf
secondary structure, except for trnS1, which lacked the DHU stem, consistent with findings
in other Pleuronectiformes [66,67]. These genetic attributes are pivotal for shaping transfer
RNAs secondary structures and their functional roles within diverse biological systems [68].
In terms of comparative structural features, 15 tRNA genes (trnA, trnF, trnQ, trnM, trnW,
trnN, trnC, trnY, trnS2, trnD, trnG, trnR, trnH, trnE, trnP) were constructed through both
conventional Watson–Crick base (A=T and G≡C) pairing and wobble base pairing (G-T),
while the remaining seven tRNA genes were exclusively built with Watson–Crick base
pairs (Figure 3).

3.4. Features of Control Region and Gene Arrangements

The comprehensive length of P. belcheri control region (CR) reached 1015 bp, compris-
ing 63.65% AT content. Conversely, the complete lengths of P. erumei’s CRs varied, ranging
from 968 bp to 1601 bp. The AT skew fluctuated between −0.050 (P. belcheri) and 0.074 (P.
erumei), while the GC skew ranged from −0.337 (P. erumei, AP006835) to −0.241 (P. erumei,
FJ606835) (Table 2). P. belcheri mitogenome recorded more than two copies of 72 bp tandem
repeats, whereas the mitogenomes of P. erumei hosted over eight copies (FJ606835) and
more than twelve copies (AP006835) of 56 bp repeats. Four conserved blocks (CSB-D, CSB-I,
CSB-II, and CSB-III) were detected in both P. belcheri and P. erumei mitogenomes, consistent
with their presence in other teleost fishes [66,69]. Of these blocks, CSB-II was the longest
at 51 bp, compared with CSB-D (27 bp), CSB-I (36 bp), and CSB-III (35 bp) (Figure 4A).
Comparative analyses unveiled substantial nucleotide variability and parsimony informa-
tive nucleotides within CSB-II relative to the other three conserved domains. This AT-rich
regulatory region holds the potential for assessing population structures and identifying
inter- and intra-specific differences among Psettodes species via these variable nucleotides.
As demonstrated in other species, such conserved domains are integral for mitochondrial
genome replication and transcription [69,70]. Intriguingly, these primitive Pleuronecti-
formes fishes maintain a gene order within their mitochondrial genomes that aligns with
that of ancestral teleosts [71] (Figure 4B). However, Pleuronectiformes mitogenomes ex-
hibit repeated instances of control region duplications and gene rearrangements [72–76].
These mechanisms involving genomic rearrangement through double replications, random
loss, dimer-mitogenomes, and non-random loss contribute to understanding the structural
diversity of mitogenomes and the intricacies of mitochondrial genome evolution.
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Biology 2023, 12, 1317 11 of 20

Biology 2023, 12, x FOR PEER REVIEW 11 of 20 
 

 

mitogenomes, consistent with their presence in other teleost fishes [66,69]. Of these blocks, 
CSB-II was the longest at 51 bp, compared with CSB-D (27 bp), CSB-I (36 bp), and CSB-III 
(35 bp) (Figure 4A). Comparative analyses unveiled substantial nucleotide variability and 
parsimony informative nucleotides within CSB-II relative to the other three conserved do-
mains. This AT-rich regulatory region holds the potential for assessing population struc-
tures and identifying inter- and intra-specific differences among Psettodes species via these 
variable nucleotides. As demonstrated in other species, such conserved domains are inte-
gral for mitochondrial genome replication and transcription [69,70]. Intriguingly, these 
primitive Pleuronectiformes fishes maintain a gene order within their mitochondrial ge-
nomes that aligns with that of ancestral teleosts [71] (Figure 4B). However, Pleuronecti-
formes mitogenomes exhibit repeated instances of control region duplications and gene 
rearrangements [72–76]. These mechanisms involving genomic rearrangement through 
double replications, random loss, dimer-mitogenomes, and non-random loss contribute 
to understanding the structural diversity of mitogenomes and the intricacies of mitochon-
drial genome evolution. 

 
Figure 4. (A) Comparison of length and nucleotide composition of four conserved domains of two 
Psettodes species control regions. The variable nucleotides are marked in stars; (B) The gene ar-
rangements of two Psettodes species mitogenomes. 

3.5. Genetic Distances and Mitogenomic Phylogeny 
The species under investigation, P. belcheri, displayed substantial inter-species ge-

netic distances of 14.00% and 17.30% when compared with its congeners P. bennettii and 
P. erumei, respectively, as confirmed through the analysis of the COI gene (Figure S1). A 
particularly noteworthy finding is the pronounced genetic divergence of 14% observed 
between P. belcheri and P. bennettii, despite their shared presence in the western Atlantic. 
This genetic disparity, noteworthy in the context of their parapatric distribution and sig-
nificant overlap, points to a significant level of reproductive isolation between these spe-
cies. The examination of population genetic structures within P. belcheri and P. bennettii 
will provide valuable insights into their migratory patterns within the mutual habitat of 

Figure 4. (A) Comparison of length and nucleotide composition of four conserved domains of
two Psettodes species control regions. The variable nucleotides are marked in stars; (B) The gene
arrangements of two Psettodes species mitogenomes.

3.5. Genetic Distances and Mitogenomic Phylogeny

The species under investigation, P. belcheri, displayed substantial inter-species genetic
distances of 14.00% and 17.30% when compared with its congeners P. bennettii and P.
erumei, respectively, as confirmed through the analysis of the COI gene (Figure S1). A
particularly noteworthy finding is the pronounced genetic divergence of 14% observed
between P. belcheri and P. bennettii, despite their shared presence in the western Atlantic. This
genetic disparity, noteworthy in the context of their parapatric distribution and significant
overlap, points to a significant level of reproductive isolation between these species. The
examination of population genetic structures within P. belcheri and P. bennettii will provide
valuable insights into their migratory patterns within the mutual habitat of the eastern
Atlantic Ocean. Employing a phylogenetic analysis grounded in mitogenomes, the study
effectively categorized all studied Pleuronectiformes flatfishes using a concatenation of
13 PCGs, supported by robust posterior probability (Figure 5). The resultant phylogeny
derived from mitogenomes aligns harmoniously with previous evolutionary hypotheses
concerning Pleuronectiformes species [26,28,29]. Importantly, representative species from
the suborders Psettodoidei and Pleuronectoidei formed coherent monophyletic clusters
within the present topology. The spottail spiny turbot, P. belcheri, clustered consistently with
its congeners, most notably P. erumei. The family Psettodidae emerged as the basal node of
Pleuronectiformes, occupying a unique position as an ancestral group among other flatfish
families. Furthermore, the conducted cladistic analysis showcased a sister relationship
between C. gracilis (=Cynoglossidae I) and S. orientalis (=Cynoglossidae II) (Figure 5). The
application of mitochondrial genome-based and phylogenomic assessments has proven
successful in elucidating higher teleostean phylogenies, encompassing flatfishes [77–79].
To establish the precise matrilineal evolution of Psettodes flatfishes within the monotypic
family Psettodidae, the generation of the P. bennettii mitogenome emerges as a pivotal
task. Notably, a wealth of genetic data, spanning multi-locus exon-capture data and whole
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genome sequencing, has recently provided fresh insights into the phylogeny and genetic
evolution of flatfishes [80–85]. The integration of such extensive genetic information depicts
the potential to illuminate the evolutionary landscape of primitive Psettodes flatfishes in the
near future.
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Figure 5. The Bayesian matrilineal phylogeny based on the concatenated sequences of 13 PCGs
exhibits the evolutionary relationship of Psettodes species with other Pleuronectiformes. The Bayesian
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3.6. Divergence Time and Diversification

The application of TimeTree analyses has illuminated the temporal aspects of the evo-
lutionary history of P. belcheri and P. erumei. These two species have a wide divergence time
during the late Eocene to early Miocene, approximately 35 to 10 million years ago (MYA)
(Figure 6). Remarkably, the family Psettodidae (suborder Psettodoidei) demonstrated an
early divergence of approximately 56.87 MYA from other flatfish families (suborder Pleu-
ronectoidei) during the late Paleocene to early Eocene (Figure 6). The other Pleuronectoidei
flatfish families diverged from each other between the Oligocene and early Eocene periods,
with dates ranging from 29.93 MYA to 54.98 MYA (Figure 6). The distribution pattern of
Psettodes flatfishes, specifically within the family Psettodidae, has fascinated many ichthyol-
ogists. The interannual variability in early life phenology and dispersal of flatfishes has
been established as being influenced by bathymetry, changes in water salinity, oceanic
temperature, and wind conditions [86,87]. Thus, the study of the evolution and diversifica-
tion of marine fishes necessitates a discussion that takes into account genetic connectivity,
divergent selection, as well as possible demographic and ecological opportunities [88].
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The Miocene epoch, spanning from around 23 million to 5.3 million years ago, marked
a period of substantial environmental transformation on Earth [89]. This era witnessed
shifts in both climate and oceanic conditions, representing a transition between the stable
warmth of the early Cenozoic and the later variable and colder conditions [90]. During the
Miocene, elevated temperatures contributed to higher sea levels through the melting of
polar ice and seawater expansion [91]. Furthermore, the tectonic activity in the Miocene
shaped ocean basins and seafloor topography, with the collision of tectonic plates, influ-
encing ocean currents and marine habitats. Consequently, coastlines took on different
configurations than those seen today, with numerous present-day land areas submerged
under shallow seas. The epoch was characterized by significant biological evolution, with
the emergence of contemporary marine species lineages influencing the rich biodiversity
of modern oceans [92,93]. Such diversification was prompted by factors such as varying
oceanic temperatures, changing sea levels, and the availability of ecological niches.

In the context of understanding the evolutionary scenarios of Psettodes flatfishes,
particularly following their colonization in the eastern Atlantic and Indo-West Pacific
regions by the demersal lineage, a critical integration of the maximum-likelihood time-tree
computation framework and marine ecological factors becomes essential. Notably, while
P. belcheri is distributed across both the South and North Atlantic Oceans, spanning the
western coast of Africa from Angola to western Sahara, P. bennettii is confined solely to
the North Atlantic, with a distribution encompassing Gambia, Guinea, Guinea-Bissau,
Mauritania, Morocco, Senegal, and Western Sahara. The sympatric speciation of these
two species may be attributed to ecological selection within the pelagic environment.



Biology 2023, 12, 1317 14 of 20

Since ancient time, the hydrographic and climatic conditions in the North and South
Atlantic Oceans have differed significantly due to the Coriolis effect induced by Earth’s
rotation (Figure 7A). In the North Atlantic, the circulation of oceanic currents results in
distinct oceanic gyres, with the warm Gulf Stream current flowing northward and the
cold Canary Current flowing southward [94]. The interplay of these currents, along with
the North Equatorial Current, contributes to the formation of the North Atlantic gyre
(Figure 7B). Conversely, the southern Atlantic Ocean features counterclockwise current
circulation, dominated by the anticyclonic subtropical gyre and bounded by several major
surface ocean currents (the Antarctic Circumpolar Current, the Benguela Current, the South
Equatorial Current, the Brazil Current, and the Malvinas Current) (Figure 7C).
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Figure 7. (A) Maps displaying the maritime environments during the Eocene and Miocene periods
(source: Encyclopædia Britannica, Inc.). Schematic representation of the major current systems, as
defined by the International Group for Marine Ecological Time Series, in the North Atlantic, South
Atlantic, and Indo-West Pacific regions. This section also explores the potential diversification and
colonization of primitive flatfishes: (B) P. bennettii, (C) P. belcheri, and (D) P. erumei. The illustration of
the Psettodes species was sourced from the free media repository (Wikimedia Commons), as well as a
previous study [33]. The maps were generated using the DIVA-GIS platform, utilizing IUCN range
distribution data (.shp files). Additionally, the illustration of ocean currents is based on insights from
a previous study [94]. Violet arrows indicate the warmer currents, while the blue arrows signify the
cooler currents.

The Indian Ocean, characterized by the presence of the Arabian Sea and the Bay of Ben-
gal, as well as warm and cold currents such as the Western Australian cold current, forms
the Indian Ocean gyre. The divergence time of Psettodidae from other Pleuronectiformes
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during the late Paleocene to early Eocene suggests that these primitive flatfishes may have
emerged in the eastern Atlantic Ocean. The currents and salinity levels of both the North
and South Atlantic Oceans may have constrained the distribution of the two Psettodidae
species, P. belcheri and P. bennettii, to the continental shelves of western Africa. The other
congener, P. erumei, likely evolved during the early Miocene and colonized into the Red Sea
to the Indo-West Pacific Ocean due to the formation of the Antarctic Circumpolar Current
(Figure 7D). Notably, the Agulhas Current may have acted as a barrier to the distribution
of P. erumei between the Indian Ocean and the Atlantic Ocean. Despite the differences in
hydrography, the high saline outflow from the Red Sea to the Indian Ocean results in similar
characteristics of these two marine environments, allowing for similar flatfish communities
to thrive. However, the Indian Ocean and Western Pacific Ocean are seismically active due
to the presence of tectonic plate boundaries. Ecological speciation scenarios are frequently
invoked to explain such patterns, yet distinguishing between ecological adaptation and
allopatric speciation remains challenging [95]. The dispersal of P. erumei from the Indian
Ocean to the West Pacific Ocean may have been driven by the Equatorial Counter Current
of the Indian Ocean gyre. Such ecological features greatly influence the evolution and
adaptation of other flatfish species, including Psettodes, and have the potential to increase
endemism in certain demersal ecosystems in marine settings. An intriguing case of rapid
ecological speciation has been observed in Baltic flounder species, involving the develop-
ment of a new ecological niche through a demersal spawning behavior, constituting the
fastest speciation event documented for a marine vertebrate [32]. As a result, the peculiar
spawning behavior attributes of Psettodes flatfishes, as well as ecological variables that may
lead to reproductive isolation, suggest a process of ecological speciation.

3.7. Conservation Implication

Marine ecosystems remain relatively unexplored on a global scale, facing substantial
gaps and challenges in terms of biodiversity assessment and the generation of genetic
data [96,97]. In addition to the overarching influence of climate change, anthropogenic
activities consistently pose threats to marine organisms, including flatfishes, across all
oceanic regions [98–100]. Given the conservation significance of Psettodes flatfishes, the
co-occurrence of both East Atlantic species within a portion of their range underscores the
necessity for regulated harvesting within the framework of a multispecies fishery strategy.
As global climate change progresses, marked alterations in environmental conditions such
as elevated water temperatures, decreased oxygen levels, and modified wind patterns
impact fish reproduction and recruitment on a global scale [101]. Consequently, increasing
environmental variability is poised to exert negative repercussions on fish stock dynamics.
Adaptations in fisheries and fishery management will likely encompass adjustments in
fishing locales, target species, and the establishment of Marine Protected Areas (MPAs),
highlighting the need for flexibility in both exploitation practices and management ap-
proaches. Nonetheless, predictions indicate that climate change will lead to heightened
freshwater runoff in the eastern Atlantic Ocean (including basins of the Senegal, Gam-
bia, Volta, Niger, and Congo Rivers), Indian Ocean (encompassing basins of the Zambezi,
Limpopo, Indus, Ganges, Godavari, Brahmaputra, Irrawaddy, and Mekong Rivers), and
western Pacific Ocean (such as the Pearl and Yangtze River Basins). This rise in runoff
is anticipated to lower salinity levels, thereby constricting the distribution of numerous
marine species. The reduction in salinity, driven by climate change, may exert severe selec-
tive pressure on pelagic-spawning species, potentially prompting a shift in reproductive
behavior towards demersal spawning and even leading to local extinctions. Concurrently,
the combined impact of eutrophication and climate change has accelerated the occurrence
of hypoxia and anoxia in bottom waters where salinity conditions are conducive to pelagic
spawning [102,103]. Consequently, the spawning habitat of pelagic flatfishes, currently
delimited by geographic constraints, is likely to diminish in the future. This evolving
scenario raises concerns about the potential local extinction of these species, underscoring
the urgent need for comprehensive conservation strategies.
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4. Conclusions

In conclusion, this study investigated the detailed analysis of the mitogenome of P.
belcheri, shedding light on its genetic composition, structural organization, and evolutionary
history. Furthermore, the genetic distances and phylogenetic relationships were explored,
unveiling the evolutionary relationships among Psettodes species and their broader place-
ment within the Pleuronectiformes order. Notably, the study identified significant genetic
divergence between P. belcheri and P. bennettii in the mitochondrial COI gene, suggesting
reproductive isolation despite their shared habitat. The phylogenetic relationship, diver-
gence times, and diversification patterns were also estimated, providing insights into the
emergence and distribution of Psettodes species in various oceanic regions. The interplay
of hydrographic conditions, ocean currents, and ecological factors played crucial roles in
shaping the evolutionary landscape of these flatfishes. Given the potential conservation
implications, this study highlighted the need for a comprehensive understanding of marine
ecosystems and the effects of climate change and anthropogenic activities on flatfish species.
Conservation strategies and the establishment of MPAs were emphasized as essential
components in safeguarding the diversity and sustainability of marine life, particularly
species such as Psettodes flatfishes. In summary, the present analysis of the mitogenome and
evolutionary history of Psettodes flatfishes offers valuable insights into the genetic attributes
and possible ecological adaptations in East Atlantic and Indo-West Pacific Oceans.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biology12101317/s1, Table S1. Dataset of Pleuronectiformes flatfishes
for present phylogenetic analyses (GenBank Accessed on 15 August 2023); Table S2. Comparison of
the intergenic nucleotides of two Psettodes species mitogenomes.; Table S3. Start and stop codons of all
13 PCGS in two Psettodes species mitogenomes; Figure S1. Mitochondrial COI-based Bayesian phylogeny
clearly discriminate three Psettodes species with high posterior probabilities branch supports. The K2P
genetic distances of three Psettodes species were overlaid on the topology.
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