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Abstract: FTIR (Fourier transform infrared spectroscopy) is one analytical technique of the absorption
of infrared radiation. FTIR can also be used as a tool to characterize profiles of biomolecules in
bacterial cells, which can be useful in differentiating different bacteria. Considering that different
bacterial species have different molecular compositions, it will then result in unique FTIR spectra
for each species and even bacterial strains. Having this important tool, here, we have developed a
methodology aimed at refining the analysis and classification of the FTIR absorption spectra obtained
from samples of Staphylococcus aureus, with the implementation of machine learning algorithms. In
the first stage, the system conforming to four specified species groups, Control, Amoxicillin induced
(AMO), Gentamicin induced (GEN), and Erythromycin induced (ERY), was analyzed. Then, in the
second stage, five hidden samples were identified and correctly classified as with/without resistance
to induced antibiotics. The total analyses were performed in three windows, Carbohydrates, Fatty
Acids, and Proteins, of five hundred spectra. The protocol for acquiring the spectral data from the
antibiotic-resistant bacteria via FTIR spectroscopy developed by Soares et al. was implemented here
due to demonstrating high accuracy and sensitivity. The present study focuses on the prediction of
antibiotic-induced samples through the implementation of the hierarchical cluster analysis (HCA),
principal component analysis (PCA) algorithm, and calculation of confusion matrices (CMs) applied
to the FTIR absorption spectra data. The data analysis process developed here has the main objective
of obtaining knowledge about the intrinsic behavior of S. aureus samples within the analysis regions
of the FTIR absorption spectra. The results yielded values with 0.7 to 1 accuracy and high values of
sensitivity and specificity for the species identification in the CM calculations. Such results provide
important information on antibiotic resistance in samples of S. aureus bacteria for potential application
in the detection of antibiotic resistance in clinical use.

Keywords: Staphylococcus aureus; FTIR spectroscopy; antibiotic-resistant bacteria; amoxicillin induced;
gentamicin induced; erythromycin induced; machine learning algorithms

1. Introduction

Since the discovery of penicillin’s antimicrobial ability by Fleming in 1928, antibiotics
have significantly extended the human lifespan and are regarded as one of the most
crucial medical breakthroughs of the 20th century. Therefore, they are unquestioningly
used for the treatment of numerous life-threatening infectious diseases [1–4]. The current
excessive and inappropriate use of antibiotics in both humans and livestock has resulted
in a surge of antibiotic-resistant bacteria, and over the past few decades, the emergence
of multidrug-resistant organisms (MDROs) has escalated into a worldwide crisis [4,5].
This fact regained global attention amidst the worldwide research aimed at managing
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and combating COVID-19 disease. During that period, it became evident that bacterial
identification techniques include some challenging processes [6], thus implying that a rapid
and quantitative detection of bacterial antibiotic resistance is of high significance for the
prevention and treatment of infections and understanding of drug-resistant mechanisms [7].

Some species known as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella
pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) are
responsible for a large number of hospital-acquired infections with high levels of resistance
to several antibiotics commonly used in the treatment of bacterial infections [8]. In this
context, machine learning algorithms have been increasingly used as an effective tool to
identify patterns and predict bacterial resistance. The identification of resistant strains
aids in the optimization of antibiotic administration, offering precise insights into bacterial
susceptibility to several drugs available [9].

In recent years, different and new techniques have been adopted for the identification
of signals from systems that develop susceptibility to antibiotic resistance [4–6,10–16].
Understanding the mechanisms and genotypic/phenotypic alterations behind resistance
is critical for the further development of new drugs and often requires incorporation of
innovative research strategies [5,11]. Also, it is a priority to shorten the time between
bacterial identification and a diagnosis of antibiotic resistance [4,5]. Research on the topic
is relevant in the health, industrial, scientific, and military systems worldwide [5,11–14].
An example is the need for a rapid and simple method for the accurate identification of
Methicillin-resistant S. aureus (MRSA) [12,16].

Currently, the antibiotic susceptibility test (AST) is based on the following three
methods: disk diffusion, gradient diffusion, and agar/broth dilution [4]. The common tech-
niques for the identification of bacteria are the culture-based one, polymerase chain reaction
(PCR), enzyme-linked immunosorbent assay (ELISA), mass spectroscopy [10,14], and DNA
sequencing [16]. Novel techniques such as flow cytometry [4], matrix-assisted laser des-
orption ionization-time of flight mass spectrometry (MALDI-TOF MS), weighing bacteria
with and without antibiotic treatment by vibration, isothermal microcalorimetry, rotating
magnetic ligand-modified beads, and micro- and nano-droplets [4] have been devised
to advance the pursuit of rapid antibiotic susceptibility testing (AST). Ciloglu et al. [10]
demonstrated that positively charged AgNPs provide a strongly enhanced Raman signal
due to electrostatic aggregation. However, all such techniques are currently under devel-
opment and have not replaced the traditional AST methods [4]. Obtaining a response to
the detection challenger requires the adoption of new techniques that combine laboratory
and computational tools, implying a further advancement in optical and spectroscopy
detection tools and machine learning algorithms toward more user-friendly, safe, rapid,
and cost-effective detection [13,15].

Spectroscopic techniques show promise as valuable tools in biomedical diagnos-
tics [4,5,7,11,13–16], and combinations of atomic force microscopy-infrared spectroscopy
(AFM-IR) and chemometric analysis, as well as Fourier transform infrared spectroscopy
(FTIR) and new statistical classification methods have been developed [11]. Infrared absorp-
tion microscopy provides detailed information on the spatial distribution of the chemical
composition at the molecular level [5,11]. The FTIR spectrum of a given molecule is highly
specific due to the dense chemical information contained in a single spectrum [12]. Spectral
information requires advanced data processing algorithms to capture minor differences
in the data acquired in studies focused on identifying resistance susceptibility fast and
safely [6]. These aim to identify changes in the chemical composition of bacteria associated
with the development of resistance [5,11,12]. FTIR along with identification techniques
such as microbial culture and genetic sequencing have been used as an auxiliary tool
for microbial diagnosis. However, they have caused the emergence of a recent challenge
related to the interpretation of similar spectra [10]. Spectroscopic-based pattern recog-
nition implies the adoption of machine learning algorithms (MLAs). Previous research
has shown that MLAs have a high accuracy in distinguishing very similar spectra from
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different strains [10,16]. This identification is essential to successfully monitor and initiate
the necessary treatment and medication [6].

In this context, supervised and unsupervised machine learning algorithms were in-
corporated in this study for the data analyses of the FTIR absorption spectra obtained
from samples with and without induced antibiotic resistance. The aim was to contribute
with a safe tool for the recognition of important information to be used in health science.
The focus was on this research field for developing the methodology from previous and
recent research work with excellent results [1–3]. A strategy for the analyses and pro-
cessing of data from the FTIR spectra of S. aureus bacteria was also conceived here to
develop this study. Each step of this study was accurately conducted and designed for
the acquisition and processing of information by using the aforementioned spectroscopic
tools [4–7,10–16]. This motivated us to study how to refine the analysis and classification
of the FTIR absorption spectra obtained from S. aureus samples, with the implementation
of MLAs. In the first stage, the system conformed by the specified species groups, namely,
Control, Amoxicillin induced (AMO), Gentamicin induced (GEN), and Erythromycin
induced (ERY), was analyzed with the HCA and PCA unsupervised machine learning
algorithms [17–26]. In the second stage, five hidden samples were identified and cor-
rectly classified as with/without resistance to induced antibiotics with CM [16] supervised
machine learning algorithms. The total analyses were carried out in three windows, Carbo-
hydrates (900–1200 cm−1), Fatty Acids (2800–3100 cm−1), and Proteins (1500–1800 cm−1),
in a sample of five hundred spectra acquired following the procedure report by Soares et al.
in [1,3] with the resistance-induced strains protocol by Soares et al. in [2] and processed
in their entirety here in MATLAB [27] and with machine learning algorithms in R free
software (version 4.2.3, 15 March 2023) [28–36] by means of our own codes developed for
this study.

2. Results
2.1. Acquisition, Cleaning, and Processing of Data from FTIR Absorption Spectra

S. aureus is a Gram-positive bacterium with a thick peptidoglycan layer at the outer-
most cell wall. Peptidoglycan biosynthesis is an excellent target for most antibiotics [6].
This study explores the identification of antibiotic resistance in S. aureus bacteria through a
data analysis of the FTIR absorption spectra derived from samples belonging to the Control,
AMO, GEN, and ERY groups [2] and five hidden samples for the identification of antibiotic
resistance susceptibility. Five hundred FTIR absorption spectra were acquired following
the protocol developed to acquire the samples of S. aureus in [1–3].

Once the FTIR absorption spectra of the samples were obtained, the cleaning process
of the entire sample with 500 spectra was started. The first step of the data analysis
process was developed in MATLAB [27] following the protocol introduced in [37] (more
details in Section 4). Figure 1 shows the result of this first process. Subsequently, the
representative spectra sample for each species was identified from the outcomes of the
dendrogram algorithm, establishing the foundation for the implementation of the MLA
for a statistical analysis. The data analysis of the FTIR absorption spectra started with the
hierarchical cluster analysis (HCA) and then the principal component analysis (PCA) and
finished with the confusion matrix (CM) calculations; all these steps were developed in R
software [27–36]. All the details about the calculations step can be found in methods in
Section 4. The data analysis process developed here has the main objective of obtaining
knowledge about the intrinsic behavior of the S. aureus samples within the analysis regions
of the FTIR absorption spectra.
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Figure 1. FTIR absorbance spectrum obtained for S. aureus samples with Amoxicillin−induced
Amoxicillin−induced antibiotic resistance. (a,b) One hundred FTIR absorbance spectra and second
derivative calculation. (c,d) Carbohydrates interval window in record FTIR absorbance spectra and
processed spectra with absorbance normalized intensity for this interval group. The same process
is shown for Fatty Acids interval window (e,f) and Proteins interval window (g,h). Spectra shown
in (a) were acquired following the procedure report by Soares et al. in [1,3] with resistance-induced
strains protocol by Soares et al. in [2]. Spectra (b,d,f,h) were obtained to apply the steps of the data
process in [3] implemented here in MATLAB [27] by means of own codes developed for this study.
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2.2. HCA and PCA Applied for the Study of FTIR Absorption Spectra

The results were obtained with the implementation of the machine learning unsuper-
vised algorithms in the spectrum data analyses in each step, and then in the data analyses of
the FTIR absorption spectra, different statistical methods were implemented, depending on
the data characteristics to be analyzed in each step in the total analyses process. We devel-
oped the spectra data analyses with the identification of the similarities and dissimilarities
in the FTIR absorption spectra samples with machine learning unsupervised algorithm
tools like the dendrogram, PCA-center, and PCA in the free software R [28–36].

The first step to obtain the individual spectra contribution was implemented in the
study statistical tools provided by means of the dendrogram with the implementation of
the Euclidean distance and single-linkage method in R (Figures S1–S3 in Supplementary
Materials). The PCA-center (results in Figures S4–S6 in Supplementary Materials) and
PCA use the calculation of the principal component percentage variance by means of the
implementation of the default functions in R. For the PCA, the statistical analyses are
shown directly on the figure.

The dendrogram analyses (results in Figures S1 and S3 of the Supplementary Ma-
terials) were implemented to identify the spectral similarities in the species groups and
acquire a comprehensive understanding of each individual spectrum’s contribution to
the PCA. Both unsupervised machine learning algorithms [17–26] were implemented in
R [28–36]. The spectra were classified by HCA. A statistical tool in the dendrogram cal-
culation provided a spatial organization in the entire spectra sample by agglomerative
clustering [22–26,38], enabling the visualization and identification of the FTIR absorption
spectra groups with statistical significance [20,24–26,38–42]. The approach provides a
valuable means to structure the input group of spectra for a PCA within the scope of the
antibiotic resistance study.

PCA was used to reduce the primary FTIR spectrum sample data into two spatial
dimensions representations. The correlations between the original data and each principal
component must be computed for the interpretation of each component [43–49]. The
PCA-center was then conducted for the three windows, namely, the Carbohydrates, Fatty
Acids, and Proteins, for each species group studied, the Control, AMO, GEN, and ERY.
First, the PCA-center calculations, which refer to obtaining the spatial representation of
the mass center for one hundred spectra in each species group, were performed for the
visualization and observation of the intrinsic statistical attributes from the scale results of
the spectra sample. Figures S4–S6 in the Supplementary Materials show the visualization
of the PCA-center’s results and the spatial distribution of the four species in each window
interval group. It also displays the statistical significance of the components, which helps
with data interpretation.

Figures 2–4 show the statistical results for the FTIR absorption spectra of S. aureus
from the analyses of the unsupervised machine learning PCA algorithms. The spatial
distribution obtained with the PCA calculation helps the interpretation and identification of
the cluster formed by the similarities in the samples from the with and without antibacterial
resistance groups.

2.3. Confusion Matrix Results Applied in the Study of FTIR Absorption Spectrum

The use of MLA for data analyses in biomedical applications has increased in recent
years. In particular, the use of CMs [16] has been positioned as a high-performance
tool with a high level of security in the results obtained. For this reason, here, the CM
was implemented in the methodology to develop the identification and classification of
five hidden samples of S. aureus with/without resistance to the antibiotic-induced samples,
from the analyses of one hundred FTIR spectra. All the calculations were developed
without prior knowledge of the antibiotic susceptibility or non-resistance developed in
the samples.
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Erythromycin−induced species. (b) Results of statistical significance calculations for the Proteins
interval in FTIR spectrum of S. aureus.

The CM was implemented in the study of the antibiotic resistance in S. aureus bacteria
from the analyses of the FTIR absorption spectra for four species groups, the Control,
AMO, GEN, and ERY, in the three windows intervals, the Carbohydrates, Fatty Acids, and
Proteins, in the FTIR absorption spectra samples. The code was made with the default
functions in R [16,28–36], and the input data were taken from the spectrum data obtained
from the results of the data analyses performed with the dendrograms and PCA machine
learning algorithms.

In the first step, the spectra input file for the four species, the Control, AMO, ERY,
and GEN, introduced the data into the CM construction. Then, the data analyses began
with the process of classification in the training group and testing group. The last step was
automatically conducted by the CM; in all the processes, we did not develop any manual
classification of the data. When the CM accuracy rose to value 1, after trying different
testing and training percentage groups from the input data, we obtained a safe way to
identify the species in the confusion matrix calculation results. At this point, we were sure
that the data and configuration of our CM were suitable to start the data analyses to identify
and classify the five hidden samples with/without resistance to the antibiotic-induced
samples from the FTIR absorption spectra. Then, we processed the data in the next step,
and we introduced the FTIR absorption spectra data from the hidden samples into the
matrix confusion calculation.

The MC helped us process the predicted outcomes of the antibiotic resistance in
the hidden samples due to the excellent performance of the model performed with the
process implemented to make the confusion matrix in this study. We obtained the results
from the MC of the first system, the Control, AMO, ERY, and GEN, in the interval groups:
Carbohydrates, results in 0.941 accuracy; Fatty Acids, results in 0.917 accuracy; and Proteins,
results in 0.772 accuracy. Figure 5 introduces the value results from the MC to the evaluated
windows intervals in the FTIR absorption spectra samples of S. aureus.
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Figure 5. Confusion matrix results obtained with dataset from FTIR absorption spectra from dendro-
grams and PCA. From the input data, 80% of data were chosen to train the models and 20% to test
in all the matrix confusion calculations. To follow the results obtained, (a) Carbohydrates results in
0.941 accuracy, (b) Fatty Acids results in 0.917 accuracy, and (c) Proteins results in 0.772 accuracy for
interval groups in the FTIR absorption spectra. In the table are the statistics of the calculations; the
prediction results are between 0.8 and 1 of accuracy.

The statistics elements in the confusion matrices of the accuracy, sensitivity, and
specificity follow the equation expressions (1)–(3), respectively,

accuracy =
(TP + TN)

(TP + TN + FP + FN)
, (1)

sensitivity =
TP

(TP + FP)
, (2)
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specificity =
TN

(TN + FP)
, (3)

with FN: False Negative, FP: False Positive, TN: True Negative, and TP: True Positive.
These expressions were applied in all the CM calculation results reported in this study.

The results for the calculations of the five hidden samples from the CM results for antibiotic
identification are shown in Table 1.

Table 1. Classification results for antibiotic identification with MC computation applied to FTIR
absorption spectra data from hidden samples. Accuracy, sensitivity, and sensitivity matrix confusion
calculations in the three windows intervals, Carbohydrates, Fatty Acids, and Proteins, in FTIR
absorption spectra samples are presented.

Hidden Sample Window Group Accuracy Sensitivity Specificity Sample Susceptivity

SK

Carbohydrates 0.938 0.95 0.987

ERYFatty Acids 0860 0.8 0.920

Proteins 0.704 0.745 0.861

SW

Carbohydrates 0.812 0.752 0.957

AMOFatty Acids 0.714 0.767 0.936

Proteins 0.818 0.7 0.960

SX

Carbohydrates 0.767 0.701 0.941

ControlFatty Acids 0.775 0.65 0.901

Proteins 0.832 0.75 0.915

SY

Carbohydrates 0.915 0.87 0.962

MRSAFatty Acids 0.933 0.9 0.996

Proteins 0.715 0.833 0.916

SZ

Carbohydrates 0.941 0.91 0.972

GENFatty Acids 0.904 0.86 0.948

Proteins 0.818 0.733 0.960

The analyses of the MC results and statistical parameters in the calculation are intro-
duced in Figure S7 (results in Supplementary Materials) to exemplify and show the way
in which the MC reported the results calculation. The CM results of the identified and
classified resistance to the antibiotic-induced samples from the FTIR absorption spectra
in the hidden samples SK in the Carbohydrates interval window for the species Control,
AMO, ERY, and GEN are shown in Figure S7 (Supplementary Materials). In this calculation,
80% of the data were selected to train the models and joined 20% of the data for testing in
the MC. Figure S7 shows the CM plot results, the prediction results table from the confusion
matrix with 0.938 accuracy, and the CM calculation table with the statistical parameter
results for the accuracy, sensitivity, and sensibility obtained for the hidden sample SK.
With the MC statistical parameter calculations reported for each hidden sample calculation
(Figure S7c), Table 1 was constructed for the five hidden samples, the SK, SW, SX, SY, and
SZ, in the groups Control, AMO, ERY, and GEN, for the interval groups, Carbohydrates,
Fatty Acids, and Proteins, in FTIR absorption.

Here, we report in Table 2 the accomplishment in implementing the CM calculations
to identify the antibiotic resistance from the FTIR absorption spectra for the five hidden
samples. The entire process developed in this study for the hidden samples was performed
without previous knowledge or information about the species involved in the MC cal-
culation from the FTIR absorption spectra in the windows groups, Carbohydrates, Fatty
Acids, and Proteins. From the CM-obtained results, it was possible to detect, in a safe
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way (Tables 1 and 2), three samples with antibiotic resistance to AMO, ERY, and GEN; one
without antibiotic resistance; and one with MRSA.

Table 2. CM identification results of antibiotic resistance of five hidden samples of S. aureus. The
calculations were developed from FTIR absorption spectra acquired for the study.

Hidden Sample Name Real Resistance Detected Resistance Resistance to

1. SK Resistance Resistance ERY Correct
2. SW Resistance Resistance AMO Correct
3. SX No Resistance No Resistance NONE Correct
4. SY Resistance Resistance MRSA Correct
5. SZ Resistance Resistance GEN Correct

The confusion matrix identification results reported in Tables 1 and 2 let us define in
a safe way the identification of antibiotic resistance from the FTIR absorption spectra in
the samples of S. aureus. The accuracy calculation value reported from the CM results is
between 0.70 and 1, and the sensitivity and specificity values are between 0.7–0.95 and
0.861–0.987, respectively (Table 1). According to the results, a CM is an accurate MLA tool
for the identification of samples with/without antibiotic resistance in S. aureus. All the
CM calculations were developed and implemented to safely and carefully obtain intrinsic
information from the hidden samples.

3. Discussion

The increasing number of antimicrobial-resistant bacteria is a major threat to global
health, and the identification of resistant strains is a critical topic in different fields of
research [50]. Antimicrobial resistance occurs when bacteria develop the ability to resist
the effects of antibiotics, thus causing more severe infections, prolonging hospitalization,
and increasing both treatment costs and the risk of mortality [51]. Antimicrobial resistance
mechanisms can occur through the mutations or transfer of genetic material between
different bacterial species and through the artificial selection of strains with an excessive
and inappropriate use of antibiotics [52].

MLA has been employed in the generation of newly discovered and new research
topics in different knowledge areas, like life sciences, the biological system, biosciences,
bioinformatics, biomedical and biomechanics; it is due to its versatility and
accuracy [10,12,29,42,53,54]. In the current study, MLA methodology was implemented for
the identification and classification of antibiotic resistance in S. aureus samples with the
analyses of the FTIR absorption spectra.

The biomolecules detected in the FTIR are mainly those present on the surface of the
bacterial cell [55]. Figure 1 displays four hundred FTIR absorbance spectra for the sample,
evidencing the challenge for the identification and determination of the spectra similarities
and dissimilarities toward obtaining the statistical significance of individual spectra [29,56].
The MLA results from the investigation of the antibiotic resistance in the FTIR absorbance
spectra of S. aureus in the Carbohydrate, Fatty Acids, and Proteins windows for the Control,
Amoxicillin-induced (AMO), Gentamicin-induced (GEN), and Erythromycin-induced (ERY)
species proved to be useful for the data analysis of the spectroscopy database shown in
Figure 1. Moreover, the HCA and PCA applied to the FTIR absorption spectra dataset
enables the identification of the individual contributions and intrinsic behavior in the
samples of each data (spectra) and in each window of the four species.

Such connections help the classification of samples, because spectra dissimilarities
lead to an increase in the separation distance and a change in the cluster composition, i.e.,
the distance between the objects in the Euclidean space increased with the spectra dissimi-
larities [18–26,57], and clustering by similarity distance metric and linkage criterion [29,38].

From the PCA-center (results in Figure S4–S6 of the Supplementary Materials), the
results of the analysis in the first principal component indicate a significance of 62.4% for
the Carbohydrate window, 95.5% for the Fatty Acids window, and 59.1% for the Proteins



Antibiotics 2023, 12, 1502 11 of 18

window. The PCA-center statistical significance gets to 81.7%, 98.8%, and 83.8% between
the first and second component for the same interval windows groups. Then, the statistical
significance is directly related to and dependent on the variance value of the sample. The
PCA-center spatial representation promotes a clear visualization of the calculation results
and the general behavior of the FTIR absorbance spectra in the four species samples groups
for the studies of the susceptibility to the antibiotics.

The statistical reports, shown in Figures 2–4, from the classification spectra process
obtained with the HCA methods used before to implement the PCA determine a represen-
tative sample to be analyzed with accuracy. This is reflected in the statistical information
obtained from the PCA for the species groups studied for antibiotic resistance in S. aureus
with the spectra sample selected and associated to the statistical weight of the entire sample
of the FTIR absorption spectra. This is due to between ~70% and 80% of the sample analyses
being contained in the two first components for the three windows. That brings a safe
report from the methods implemented to the classification of spectra and data analyses
tools implemented in the machine learning algorithms used in this study.

The PCA calculation (Figures 2–4) results from the spectra samples classification were
obtained with the HCA methods (results in Figures S1–S3 of the Supplementary Materials).
The spatial distribution of the Control, Amoxicillin-induced, Gentamicin-induced, and
Erythromycin-induced species and the results of the statistical significance calculations
for the Carbohydrates, Fatty Acids, and Proteins intervals in FTIR’s spectrum of S. aureus
with values of 74.3%, 85.4%, and 79% between the first and second principal components
of the analyzed samples are displayed. The different responses obtained for S. aureus in the
three windows implies the bacteria interact with the antibiotic species in different ways.
Consequently, some convergent strategic solutions are introduced to break the reproduction
of resistant bacteria. FTIR absorption spectra can vary due to the biochemical composition
of a bacterium, which can be modified in function of the culture conditions under which
it grows. Therefore, FTIR can be used not only to classify bacteria at broad levels such as
genus but also to identify the degrees of antimicrobial resistance.

The data analyses started in the Carbohydrates windows, obtaining a very clear
response on the organization of data for linearities, the cluster formation, and the spatial
distribution in the 2D space for each species group studied (Figure 2). All the statistical
contributions and information from the samples in that window are contained in the four
principal components. The results from the PCA for the studies of the antibiotic response
in the Carbohydrates group window are promising for the implementation in studies
with FTIR absorption spectra. This is in association with the fact that Carbohydrates are
present in glycoproteins and in the very constitution of the cell wall, which is mainly
composed of peptidoglycan, a polysaccharide of chains of Carbohydrates and amino
acids [58]. Carbohydrates are inherent to metabolic pathways and, despite not being
direct targets of antibiotics, they are affected by beta-lactam antibiotics, which inhibit the
synthesis of peptidoglycan and can lead to a loss of cell wall integrity [59]. Resistance
associated with beta-lactams is related to changes in the constitution of the cell wall [60].
As shown in Figure 2a, the data referring to AMO-induced S. aureus bacteria are located in
different quadrants in relation to the Control group, and ERY-induced S. aureus, which, as a
macrolide, affects the synthesis of Proteins in bacteria by blocking the binding of amino
acids and tRNA [61]. It can also indirectly affect the synthesis of Carbohydrates, because
the enzymes involved are generally encoded by genes that are in the same operon as those
that encode Proteins.

Figure 3 shows the results of the Fatty Acids, which are constituents of the bacterial
plasma membrane. In the Fatty Acids window, the results from the PCA report excellent
statistical significance associated to the study of the FTIR spectrum of the S. aureus spectra
in response to antibiotics resistance. Figure 3a shows data that AMO-induced bacteria are
the most separated ones from the other groups analyzed. Because amoxicillin interferes
with the synthesis of the bacterial cell wall, it can affect the bacterial metabolism indirectly,
including the synthesis and use of Fatty Acids. ERY-induced and GEN-induced bacteria
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highly overlap, because both act on the ribosome despite being in different regions [62].
They permeate all quadrants, overlapping with the regions of the Control and AMO-
induced bacteria. Therefore, ERY- and GEN-induced resistance can lead to uncertain
conclusions on the classification between sensitive and resistant in the analysis of the
overall data. This spatial distribution for the Fatty Acids windows is inherent to the spectra
contained in them; this implies some special deterministic behavior in this region for the
samples in which antibiotic resistance was induced in S. aureus bacteria. According to the
statistical calculation obtained by the PCA for the Fatty Acids window (Figure 3b), 80%
of the samples were classified in the first component, which may be associated with the
structural conformation of the samples in that window. Although Fatty Acids are not the
direct target of Amoxicillin, Erythromycin, and Gentamicin, such antibiotics can affect their
metabolic pathways [59].

The results from the PCA in the Proteins interval window for the four species (Figure 4)
in the FTIR absorbance spectra of the S. aureus display the spatial distribution, which is
a result of the intrinsic properties of the sample in the window studied, and also supply
statistical contribution information of the spectra analyzed. The results can be associated
with the fact biomolecules such as Proteins and enzymes are affected by different types of
antibiotics [63] and, consequently, the spectra in this window display a different behavior
in relation to the one exhibited in both previous group windows. Macrolides and amino-
glycosides have an inhibitory action on Protein synthesis, directly targeting the Protein
synthesis machinery of bacteria, and the ribosome, and blocking the translation of essential
Proteins and enzymes for cell survival [62,64]. Amoxicillin blocks the transpeptidation
reaction by binding to Penicillin-Binding Proteins (PBPs) [65]. Such different relationships
of antimicrobials with Proteins result in different distributions among the quadrants for the
analyzed groups in the PCA, with only some data from Gentamicin present in the quadrant
of the Control group.

This study revealed a profile for the identification of MRSA, a pathogenic bacterium
that has developed resistance to the methicillin antibiotic and beta-lactams. It shows
modifications in its structural components as a consequence of the effects of different
antimicrobial resistance factors. A change in the PCA was observed for the MRSA profile
of lipids, Proteins, and Carbohydrates compared to the non-antibiotic resistant strains.
Changes in both composition and structure of lipids occur especially in cell membranes and
in membrane fluidity, involving an increase and a reduction in saturated and unsaturated
Fatty Acids, respectively, resulting in the thickening of the membrane which affects the
permeability of the membrane, making it difficult for the entry of antibiotics in bacterial cells.
On the other hand, the modification of the peptidoglycans (Carbohydrates) observed in the
PCAs is directly related to methicillin resistance and the modification of the peptidoglycan
precursors that influence the cell wall. Another point that is part of the resistance profile
studied is the presence of altered Proteins, which interfere with the binding of beta-lactam
antibiotics. An explanation for such changes is the genetic modifications resulting from
gene expression, which is part of the peptidoglycan synthesis system in the bacterial cell
wall, and the production of enzymes, such as hemolysins, leukocidins, and exotoxins.

The results of the identification and classification of the samples with/without resistance-
induced antibiotics (results in Figure 5 and Tables 1 and 2) have confirmed that the
confusion matrix (CM) enables a safe calculation and a highly accurate identification of
S. aureus samples. The CM calculation from one hundred FTIR absorption spectra samples
to five hidden samples report accuracy values between 0.70 and 1, with sensitivity and
specificity values between 0.80–0.93 and 0.92–0.98, respectively (Table 2). The confusion
matrix prediction results led to the successful identification of antibiotic resistance from
the FTIR spectra samples of S. aureus. They are associated with the intrinsic classification
of the biologic, chemical, and physical properties of the system, which can be obtained by
the MLA applied to the spectra windows of Carbohydrates, Fatty Acids, and Proteins for
the three antibiotic species and Control groups, thus suggesting an inherent response of
S. aureus to the antibiotics in each FTIR spectra window studied. All the CM calculations
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were developed and implemented to obtain the intrinsic information from the hidden
samples in a safe and careful way and to check with rigor.

The results from the implementation of the supervised and unsupervised algorithms
for the identification of antibiotic resistance from the FTIR absorbance spectra enabled
accurate data organization by statistical weight and a clear visualization of the organization
for each species. According to the statistical reports, the methods and principles applied
here in the data analyses were successfully conducted and, therefore, can be extended to
other systems and to another bacteria of interest.

4. Materials and Methods
4.1. FTIR Absorption Spectrum of S. aureus Acquisition and Data Process in MATLAB

FTIR absorption spectra of S. aureus were acquired following the procedure reported
by Soares et al. in [1,3] with resistance-induced strains protocol by Soares et al. in [2], and
data processing code was developed following the steps of the protocol of Naumann [37]
in MATLAB (R2021b) [27].

Nine hundred FTIR absorption spectra of S. aureus were acquired with FTIR equip-
ment by Attenuated Total Reflection (ATR) on the Agilent Cary 630 FTIR Spectrometer®

instrument in the wavelength range of (650–4000) cm−1, acquisition time of 20 min to each
spectrum record. In total, 800 spectra for the species group and 100 spectra for hidden
samples were recorded. Spectra species group was acquired two times in order to guarantee
measurement; due to no representative variances in the spectra sample being obtained, the
first records in all samples analyzed were chosen.

Five hundred FTIR absorption spectra of S. aureus were analyzed in the study in the
following way: 400 spectra for species group, Control (100 spectra), Amoxicillin-induced
(AMO) (100 spectra), Gentamicin induced (GEN) (100 spectra), and Erythromycin induced
(ERY) (100 spectra); and 100 for hidden samples (100 spectra) with 20 for each one.

Data analyses of the FTIR absorption spectrum of S. aureus bacteria from each species
mentioned before received the same data process; these were processed according to the
next steps:

(i) FTIR absorption spectra acquisition one by one [1].
(ii) Calculation of the second derivative for each spectrum individually for each species

group of one hundred FTIR absorption spectra [37]. It was performed by means of
the implementation of the second-order difference of dataset in MATLAB [27]. That
means that each point in the spectrum dataset was associated to one vector (λ1, I1). It
corresponded to one array formed by the wavelength value and its correspondent
FTIR absorption intensity record value. Then, each vector was processed to compute
the second-order difference. This method also allows for calculating differences
between adjacent elements. The entire calculation process was developed with default
functions available in MATLAB [27].

(iii) Normalization by maximum value of FTIR absorption intensity [37]; process con-
ducted in each spectrum individually.

(iv) Extract the window interval group; it conformed the array of one hundred FTIR
absorption spectra intensity with the same wavelength values [37].

To illustrate the spectra obtained in each step, Figure 1 displays the spectra obtained
from the calculations process for the species group Amoxicillin induced (AMO) for the three
windows intervals: Carbohydrates, Fatty Acids, and Proteins. The array obtained from the
data spectrum analyses performed in MATLAB [27] was the input data worked into the data
analyses with machine learning algorithms in R Project for Statistical Computing (version
4.2.3, 15 March 2023) https://www.r-project.org/ (accessed on 15 March 2023) [28–36].

4.2. Supervised/Unsupervised Machine Learning Algorithms Applied to Spectrum Analysis

Implementations of spectral tools for bacterial analyses offer advantages, such as rapid
test, easy handling, nondestructive data acquisition, and fingerprint detection [16]. Spectra
from surface-enhanced Raman spectroscopy (SERS) can be reduced to a few independent

https://www.r-project.org/
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latent variables that account for most variability in the original dataset by multivariate
statistical analyses [15]. Current supervised classification machine learning algorithms
were implemented toward that goal. Principal component analysis (PCA), hierarchical
cluster analysis (HCA), linear discriminant analysis (LDA), k-nearest neighbors (kNN), and
linear support vector machines (SVM) have provided optimal results, according to research
reports [5,7,10,16]. Deep learning [16], convolutional neural network (CNN) [16], and deep
neural network (DNN) have been adopted for discriminating antibiotic-resistant bacteria
with the use of surface-enhanced SERS [6,13,14]. Supervised classification techniques can
be used especially for the strain level classification [10], whereas unsupervised machine
learning technique is adopted for anomaly detection and works well in multivariable
datasets [10]. The confusion matrix of kNN classifier has been shown to achieve the highest
accuracy among other methods [10].

4.3. Machine Learning Algorithms

This subsection describes the steps followed in the data processing and analysis,
which include sample preparation, acquisition of FTIR spectra record for the four species
and hidden samples, data loading, classification, preprocessing for the three window
groups in the four species, clustering for spectra selection, dimensionality reduction, data
visualization, and sample evaluation and validation of antibiotic resistance by confusion
matrix. Available functions were used in MATLAB (R2021b) [27] and R Project for Statistical
Computing (version 4.2.3, 15 March 2023) [28–36]. All codes were implemented for the
development of the spectra data analysis techniques for the antibiotic resistance study of
S. aureus samples.

For this work, no novel software was developed. In this work, the functions contained
and supplied by default in the software versions installed were used. We employed these
established functions to create our own codes sources; we implemented them to develop
the spectra data analysis techniques for antibiotic resistance study of S. aureus samples.

In the following, we introduce the general information about owner code sources
construction (more details in the Supplementary Materials in the section Code and program-
ming). The first step was the introduction and code implementation of the protocol of [37]
for the organization of 500 spectra data from FTIR vibrational spectroscopy for the four
species, Control, AMO-induced, ERY-induced, and GEN-induced bacteria, and 100 spectra
for hidden samples, in MATLAB (R2021b) [27]. The steps included (i) tests for spectral
quality, (ii) application of a smoothing/derivative filter, (iii) normalization, (iv) spectral
window selection, and (v) feature selection [37]. The data analysis implied the addition
of multidimensional scaling (MDS) for data classification [20–26,38,57]. MDS calculations
were developed from the similarities that analyzed spectra had in the dendrogram (results
in Figures S1–S3 of the Supplementary Materials).

HCA is a statistical method that finds relatively homogeneous clusters of cases based
on measured characteristics [22–26,38]. Such methodological analyses build tree-like groups
by dividing or merging them successively. It starts with each case in a separate cluster and
then combines the clusters sequentially, reducing their number at each step until only one
cluster has been left [22–24]. A tree-like structure illustrates the arrangement of groups by
hierarchical clustering [24–26,38].

Clustering algorithms and PCA have been widely implemented, yielding relevant
and precise results for explorations of data in machine learning algorithms and extraction
of safe information [66,67]. PCA involves the understanding of different features in a
dataset and can be used in conjunction with cluster analysis [54,66,68–73]. It aims to
map high-dimension data into low-dimension space [43–49,53,74–76]. It helped with the
interpretation and understanding of the general behavior of the samples studied with no
surplus overlapping, because the total number of spectra for each species was encapsulated
in a PCA-center value. All PCA-center calculations and representations were performed by
R Project for Statistical Computing [28–36].
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Principal components–linear discriminant analysis correctly distinguished several
degrees of drug-resistant strains, thus opening possibilities for the discovery of drug targets
in S. aureus by SERS combined with PCA [7]. A classification based on latent structure
discriminant analysis provided spectral variability directly [14]. The high sensitivity of
SERS not only quantitatively distinguishes antibiotic-susceptible strains but also diagnoses
the molecular targets of different antibiotics on bacteria [7].

An accurate identification of bacteria at resistance levels by FTIR can be challenging.
Spectra of different bacterial species are known to be quite similar; therefore, FTIR is
often used as an auxiliary tool in those cases. However, the identification of antimicrobial
resistant bacteria shows a typical combination of lipid, Protein, and Carbohydrate spectra.
The construction of machine learning algorithms can help to deal with characterizing
biochemical profiles for the identification of MRSA.

4.4. Microorganism

Staphylococcus aureus strain (ATCC 25923) was cultured aerobically in a Brain Heart
Infusion (BHI) liquid medium overnight at 37 ◦C and 150 rpm. The inoculum was cen-
trifuged at 3000 rpm, and the pellet suspended in phosphate buffer saline (PBS) was
centrifuged again. The inoculum was standardized at 107 to 108 colony-forming units
per milliliter (CFU/mL) by optical density at 600 nm, and resistance was induced by
amoxicillin, erythromycin, and gentamicin by cultivation in 6 mL of MH medium with an
antibiotic concentration of 1/4 MIC for 24 h at 37 ◦C, 150 rpm. Subsequently, the inoculum
was centrifuged at 300 rpm and suspended in MH for standardization 108 CFU/mL. The
procedure was repeated for 3 cycles, and after resistance had been induced, the bacteria
were plated in BHI agar.

4.5. Fourier Transformation Infrared Spectroscopy

Colonies from the plated samples at 37 ◦C for 24 h were collected for analysis by
Attenuated Total Reflection (ATR) on an Agilent Cary 630 FTIR Spectrometer® instrument.
Colonies were evenly distributed over the crystal surface. A dry sample was scanned
250 times and recorded with a resolution of 4 cm−1, accumulating 16 scans per spectra.
The result was the average of the measurements. The FTIR spectrum was measured in the
4000 cm−1 to 650 cm−1 wavelength range in all samples.

5. Conclusions

This study demonstrated that spectral analysis in the infrared regime enables the
determination of whether a sample of bacteria is resistant to antibiotics and the antibiotic
that has probably developed resistance in specific bacteria. This possibility goes beyond the
detection of resistance, because it allows for evaluating the antibiotics that have contributed
the most to this, giving the chance to understand the entire process of developing these
resistances. Future studies with this technique will be of high relevance to the topic.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antibiotics12101502/s1, Figures S1–S7: Dendrograms of entire
sample FTIR spectra of S. aureus for four species studied, PCA-center, Confusion matrix results of
identified and classified resistance to antibiotic induced sample from FTIR absorption spectra in the
hidden samples SK into Carbohydrates interval window for the species: Control, AMO, ERY, GEN;
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