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Abstract: With the innovation of wearable technology and the rapid development of biosensors,
wearable biosensors based on flexible textile materials have become a hot topic. Such textile-based
wearable biosensors promote the development of health monitoring, motion detection and medical
management, and they have become an important support tool for human healthcare monitoring.
Textile-based wearable biosensors not only non-invasively monitor various physiological indicators of
the human body in real time, but they also provide accurate feedback of individual health information.
This review examines the recent research progress of fabric-based wearable biosensors. Moreover,
materials, detection principles and fabrication methods for textile-based wearable biosensors are
introduced. In addition, the applications of biosensors in monitoring vital signs and detecting body
fluids are also presented. Finally, we also discuss several challenges faced by textile-based wearable
biosensors and the direction of future development.
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1. Introduction

With the emergence of wearable technology and the exponential growth of biosensors,
there has been a notable shift toward the advancement of a novel cohort of wearable
biosensors built upon flexible textile materials [1,2]. This groundbreaking technology amal-
gamates the advantageous attributes of textiles and biosensors, opening up unprecedented
avenues for medical monitoring, health management and the acquisition of biological
data [3–5].

Conventional biosensors are commonly made from inflexible materials, which restricts
their comfort and wearability [6,7]. Textiles, in contrast, possess qualities like softness,
breathability and malleability [8]. Specifically, the softness of textiles permits the sensor to
snugly conform to any part of the body for extended durations, maintaining continuous
and comfortable touch with the skin, thereby facilitating the real-time monitoring of
multiple vital signs [9,10]. Moreover, a range of functional materials, including inorganic
nanomaterials, conductive polymers and electronic components, can be incorporated into
the fabric structure using coating, printing or embedding techniques to create an integrated
multi-parameter bio-detection system [11]. This textile-based biosensor platform maintains
its sensing function while providing softness and breathability, resulting in an improved
user experience and expanded applicability across different scenarios [12–14].

Textile-based wearable biosensors will drive the development of health monitoring,
motion detection and medical management and become an essential support tool for
individuals’ well-being, as illustrated in Figure 1. Textile-based wearable biosensors are
capable of monitoring the body’s physiological indicators in real time, non-invasively.
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These indicators include respiratory rate [15–17], pulse [18–20], blood pressure [21–23], skin
temperature [24–26] and humidity [27–29], which provide precise feedback information
for an individual’s health. Real-time monitoring enables people to comprehend their
physiological status, empowering them to take timely action. And they are widely used
in the sports health field, providing personalized health advice by recording information
such as exercise data [30–32], body posture [33,34] and energy consumption [31,35]. This
helps users optimize their health habits and improve their quality of life. In addition,
sensors hold a crucial position in the medical industry, serving as a helpful tool for disease
detection and monitoring. They assist doctors with comprehensive and valuable data to
enhance the management and treatment of diseases [36,37]. For elderly patients and those
suffering from chronic illnesses, these sensors offer monitoring and alerting functionalities
to improve their quality of life and respond to emergencies [38,39].
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Figure 1. Recent advances in textile-based wearable biosensor for applications. Blood Pressure
(Reprinted with permission from Ref. [40]. Copyright 2021, American Chemical Society (Washington,
DC, USA)); Pulse ware (Reprinted with permission from Ref. [41]. Copyright 2020, American
Chemical Society); Sweat (Reprinted with permission from Ref. [42]. Copyright 2022, American
Chemical Society); Respiratory (Reprinted with permission from Ref. [43]. Copyright 2023, American
Chemical Society); Temperature (Reprinted with permission from Ref. [44]. Copyright 2023, American
Chemical Society); Body Motion (Reprinted with permission from Ref. [45]. Copyright 2017, American
Chemical Society).

In this review, we begin by discussing recent advancements in textile-based wearable
biosensors. Next, we outline the materials incorporated in biosensors. Then, the principles
and methods for preparing wearable biosensors are introduced, followed by an overview of
their applications in healthcare monitoring. Finally, we analyze the challenges facing textile-
based wearable biosensors and discuss their future directions and application prospects.

2. Materials and Preparation Methods for Textile-Based Wearable Biosensors
2.1. Materials of Fabrication

Textile-based wearable biosensing technology offers new potential for human
monitoring [46]. Wearable biosensors are fully flexible, unlike traditional silicon-based
chip sensors, and can therefore easily adapt to human skin and movement, effectively
collecting biological signals non-invasively for extended periods of time [47,48]. Wearable
biosensors are typically composed of three basic layers: the substrate layer, the active
layer and the interface layer. By utilizing various flexible materials, these three layers
collaboratively carry out the entire process of acquiring bio-signals and outputting them
into digital information [49–51].
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Textiles containing fibers are natural, synthetic, functionalized and commonly used
flexible substrates [52]. Natural fibers with inherent qualities and features are sourced
from plant or animal sources. Common natural fibers like cotton and silk offer excellent
moisture absorption, breathability and softness. Therefore, they are frequently utilized to
create intimate apparel and sensor substrates, which can maintain comfortable skin contact
for wearable biosensors. They must be combined with other conductive materials because
of having no electrical conductivity [53,54]. On the other hand, artificially produced or
chemically created fibers are known as synthetic fibers. The most popular synthetic fibers
are nylon, polyester and acrylic. Through specific treatment, excellent qualities including
conductivity, moisture wicking, strength and durability are obtained [55–57]. Additionally,
functionalized fibers are given unique properties by incorporating unique elements into
the fibers or applying surface modifications. For instance, conductive fibers are commonly
utilized to transfer data and analyze biological signals. Luminescent fibers offer real-time
visual feedback through incorporating luminous components into fibers [58–61].

The active layer can respond to external stimuli and convert them into measurable tar-
get signals through various sensing mechanisms [62,63]. Active layers are commonly made
of various materials such as metallic nanomaterials, carbon nanomaterials, conductive
polymers and ionic liquids [64,65]. Metallic nanomaterials, such as gold nanoparticles and
silver nanoparticles, have excellent electrical conductivity and electrocatalytic properties.
They can be used to prepare catalysts or electrodes for sensors that detect and change
biomolecules. Surface modification and functionalization can also boost their interaction
with biomolecules to enhance the performance of the sensors [66–68]. Carbon nanomateri-
als, such as carbon nanotubes and graphene, have excellent electrical conductivity, chemical
stability and biocompatibility. By modifying their structure and surface functionalization,
these materials are employed in electrodes or carriers of sensors and are adjusted for highly
sensitive detection of certain biomolecules. Additionally, carbon nanoparticles are very
biocompatible and have a large specific surface area [69–71]. Conductive polymers, such
as poly(3,4-ethylenedioxythiophene) (PEDOT), polyaniline (PANI) and polypyrrole (PPy),
are a class of polymeric materials with conductive properties. With good electrochemical
activity and biocompatibility, they can be used as active layers or electrode materials for
sensors. Conductive polymers are often used to regulate conductivity and biocompatibil-
ity by controlling the structure and doping impurities to achieve sensitive detection and
analysis of specific biomolecules [72–74]. Ionic liquids are a class of liquids composed of
ions with excellent ionic conductivity and chemical stability. Ionic liquids can function
as electrolytes or carrier materials for sensors, increasing ion transport and promoting
biomolecule–electrode interactions. They also possess a broad electrochemical window and
low volatility, rendering them a potentially advantageous choice for biosensors [75–77].

The interface layer is responsible for connecting and transmitting signals, providing bio-
compatibility and protection. Additionally, it enhances the adhesion properties between the
active layer and the flexible substrate, improving the stability of the sensor [78,79]. Common
interface layer materials include polymeric materials, biocolloidal materials, bioactive nano-
materials, etc. Polymeric materials, such as polyvinyl alcohol (PVA), polyacrylic acid (PAA)
and polydimethylsiloxane (PDMS), are frequently used for fabricating flexible, transparent
sensor interface layers. They possess excellent biocompatibility and tunable physicochemical
properties, which aid in reducing interfacial impedance between the sensors and biological
tissues as well as in enhancing stability and biocompatibility [80–82]. Biocolloidal materials,
such as gelatin and sodium alginate, have a porous structure and multifunctionality for
improving the interaction between biomolecules and sensors. These materials are frequently
employed as sensor interface layers to immobilize enzymes or biomolecules and to create
three-dimensional microenvironments that are favorable for biological reactions [83–85]. Bioac-
tive nanomaterials, including gold nanoparticles, magnetic nanoparticles and quantum dots,
have large specific surface areas and unique biological properties that can enhance sensor
sensitivity and selectivity. Additionally, these materials can immobilize biomolecules or serve
as signal enhancers to enable efficient detection of biomolecules [86–88].
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2.2. Methods for Fabrication

The effective integration of electronic materials into textiles is crucial for realizing
the functionality of textile sensors [89,90]. At present, there are mainly three ways to give
textiles electronic functions: (1) Attachment and embedding is the simplest preparation
method, which is to attach microelectronic components or textile circuits to the surface of
textiles or embed them into the interior to construct external e-textiles. (2) The coating or
printing process integrates electronic materials into the surface of textile substrates and
gives the textile electronic functions; it can be applied to the e-functionalization of ordinary
fibers or fabrics. (3) Through the fiber preparation process, electronic materials can be
directly processed into micro- and nano-structured e-fibers or fabrics. This method can
prepare e-fabrics with more homogeneous overall electrical properties, and the internal
structure design of e-fabrics can be more refined. These three preparation methods are
discussed in detail below.

2.2.1. Attachment and Embedding

To enable e-textiles to transmit data, process information and display/feedback signals,
a straightforward approach is to affix firm microelectronic integrated circuits to the fabric
substrate and construct electronic fibers that have logic operation functions within the
fabric [91–93].

Attachment technology is a method of securing a sensor assembly to a fabric surface.
Common fixing methods include adhesives, hot melt glue and stitching. This approach
is straightforward and convenient for small sensors and uncomplicated circuits [94,95].
However, e-textiles with attached electronic components are less comfortable to wear and
cannot be washed. Kim et al. [96] presented a multipurpose capacitive pressure sensor
with high sensitivity/elasticity and a very fast response time, as shown in Figure 2a. The
pressure sensor was attached to a textile glove or sock for human movement monitoring.
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pressure sensor attached to a glove or sock for use in human movement monitoring (Reprinted with
permission from Ref. [96]. Copyright 2020, Elsevier (Berlin/Heidelberg, Germany)); (b) 3D printed
mask with microphone embedded for monitoring respiratory activity (Reprinted with permission
from Ref. [97]. Copyright 2023, Multidisciplinary Digital Publishing Institute (Basel, Switzerland)).
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Embedding technology entails incorporating the sensor component inside the fabric to
safeguard the sensor via the fabric’s structure. This technology can offer superior durability
and protective features while minimizing the impact on the fabric’s visual and tactile
aspect [98,99]. Romano et al. [97] published a study in which they implanted a smart
microphone sensor in a face mask to estimate the respiratory rate based on breath sounds
during walking and running, as shown in Figure 2b. The signal-to-noise ratio of the breath
signal was enhanced, and the impact of the external environment on motion detection
was minimized.

2.2.2. Coating and Printing

Constructing electrically conductive functional layers directly on the fabric surface is
a facile and low-cost preparation method that retains the inherent softness of the fiber or
fabric [100,101]. Coating and printing technologies play an important role in the fabrication
of fabric sensors.

The coating method is a common method for the fabrication of conductive textiles.
The main conductive coating processes are impregnation coating [102–104], deposition
coating [105–107] and spray coating [108–110]. Impregnation coating is accomplished
by submerging the textile material in a conductive compound solution. This technique
produces a conductive textile material that conducts electricity as a whole, demonstrating
exceptional conductivity throughout [111,112]. Lee et al. [113] used a solution impregnation
technique to create a uniform silver conductive film on a Kevlar fiber surface, as shown in
Figure 3a. They utilized this film in an ultrasensitive and flexible pressure-sensing applica-
tion. Deposition coating involves applying conductive materials onto textile surfaces to
produce surface-conductive textiles. The resultant materials are only capable of conducting
electricity across their surface [111,114]. Rehmen et al. [115] applied a coating of a composite
material of polyaniline (PANI) with nanodiamond (ND) onto the surface of wool fabric via
an in situ polymerization technique, as shown in Figure 3b. The resultant nanocomposite
textile showed elevated sensitivity, durability and mechanical strength without diminishing
the base properties of the material. Spray coating, on the other hand, is used to spray a layer
of a conductive material onto the surface of the textile material by means of air spraying,
electrostatic spraying, etc., so that the resulting conductive textile material is also surface
conductive [116,117]. Maity et al. [118] prepared multi-walled carbon nanotube (MWCNT)
modifiers using a spray coating method, in which the resistance of the MWCNT network
on textiles could be altered by adjusting the MWCNT concentration and the quantity of
spray coatings, as shown in Figure 3c.

The printing method enables the targeted placement of conductive elements onto fab-
ric surfaces with improved controllability and flexibility compared to the coating method.
Common printing methods include screen printing and inkjet printing [119–121]. Screen
printing is a low-cost and straightforward preparation method that can easily be ap-
plied to any irregular fabric surface, providing greater design freedom and placement
capability [122]. Jeerapan et al. [123] developed a scalable biofuel cell on a fabric surface
through screen printing, as shown in Figure 3d. The original self-powered function can
be maintained even when subjected to extreme mechanical deformation due to the syn-
ergistic effect between the functional ink and printed serpentine-like conductive lines.
Inkjet printing has the potential to selectively functionalize textiles for electronic purposes.
Inkjet printing theoretically reduces ink material usage and provides a higher spatial
resolution [124,125]. Kim et al. [126] developed a conductive ink for inkjet printing on
fabric that heats the fabric during printing, causing the silver particles in the ink to reduce
and precipitate, as shown in Figure 3e. This enables the production of printed e-textiles
with controlled conductivity and a high resolution, without the use of reactive particles.
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Figure 3. Preparation of wearable sensors using coating and printing methods. (a) Flow chart
for the preparation of conductive Kevlar fibers via impregnation–reduction method (Reprinted
with permission from Ref. [113]. Copyright 2015, Wiley (Hoboken, NJ, USA)); (b) Manufacturing
technology of functional conductive wool fabrics with schematic representation of PANI and ND
coatings on wool fabrics (Reprinted with permission from Ref. [115]. Copyright 2020, American
Chemical Society); (c) Spraying MWCNT suspension on fabrics (Reprinted with permission from
Ref. [118]. Copyright 2021, Springer); (d) Design templates for printing stretchable devices and screen
printing processes (Reprinted with permission from Ref. [123]. Copyright 2016, Royal Society of
Chemistry (Piccadilly, London)); (e) Inkjet printed e-textiles apply current to power LEDs (Reprinted
with permission from Ref. [126]. Copyright 2019, Wiley).

2.2.3. Spinning Technology

In spinning technology, pre-functional electronic materials are infused into the spin-
ning precursor liquid, resulting in a flexible fiber with conductive capabilities through
the spinning process. So far, the two most frequently utilized spinning methods are wet
spinning and electrospinning [127–129].

Wet spinning involves preconfiguring conductive materials into spinning solutions
for spinning or preparing fibers with conductive precursors, followed by reduction to
attain conductive fiber materials [130,131]. Wang et al. [132] used the simplified con-
tinuous wet spinning method to produce conductive MXene@ANF skin-core fibers, for
which the high tensile and modulus ANF layer served as the backbone and skin layer,
and the MXene material contributed to the excellent conductivity of the composite fiber,
as shown in Figure 4a. Liu et al. [133] prepared highly stretchable composite fibers of
carbon nanotubes/thermoplastic polyurethane (CNTs/TPU) via wet spinning, as shown in
Figure 4b. The rotating solidification bath guaranteed full contact between the CNTs and
TPUs. The resultant strain sensors showed an exceptional working strain range and fast
response times.
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Electrostatic spinning is based on the principle of electrostatic forces, and it is achieved
by applying a high voltage to a polymer solution or molten polymer, resulting in the forma-
tion of elongated fibers under an electric field [134,135]. Niu et al. [136] prepared nanofibers
via the electrostatic spinning of a multi-walled carbon nanotubes (MWCNTs)/lauric acid
(LA)/thermoplastic polyurethane (PU) solution and adsorbed (3,4 ethylene dioxythio-
phene:styrenesulfonate) (PEDOT: PSS) on the obtained nanofibers, as shown in Figure 4c.
This smart textile displays an adjustable temperature and phase change enthalpies and can
respond to external stimuli such as voltage and light. Moreover, reversible storage and
efficient conversion of energy are realized. Zhao et al. [137] utilized electrostatic spinning
to prepare MXene/ PVDF hybrid films for highly sensitive flexible pressure sensors. The
doping of MXene nanosheets facilitates the enhancement of the mechanical properties of
PVDF, as shown in Figure 4d. With their excellent piezoelectric response and mechanical
properties, MXene/PVDF thin-film sensors have outstanding voltage sensitivity.
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Figure 4. Preparation of wearable sensors using spinning technology. (a) Fabrication of MXene@ANF
fiber via wet spinning process (Reprinted with permission from Ref. [132]. Copyright 2021, American
Chemical Society); (b) Schematic diagram of CNT/TPU fiber wet spinning process and bonding
mechanism (Reprinted with permission from Ref. [133]. Copyright 2023, Elsevier); (c) Fabrication of
MWCNTs/LA/PU nanocomposite fibers via electrostatic spinning (Reprinted with permission from
Ref. [136]. Copyright 2021, American Chemical Society); (d) Fabricated MXene/PVDF films were
prepared via electrostatic spinning and other processes. (Reprinted with permission from Ref. [137].
Copyright 2023, Elsevier).

3. Textile-Based Wearable Biosensors and Their Applications

Textile-based sensors combine the comfort, softness and wearability of textile materials
with advanced sensing technology. They offer a convenient way for individuals to monitor
their health in real time without needing extra devices or equipment. These sensors can be
effortlessly integrated into day-to-day activities, sports training or medical management,
playing a critical role [138–140].

3.1. Vital Signs Testing
3.1.1. Tissue Pressure

In recent years, increasing attention has been paid to monitoring respiration, arterial
pulse and blood pressure, as these fundamental physiological characteristics are directly
connected to an individual’s well-being [141,142]. Real-time monitoring based on sensitive
and efficient sensors allows for the timely acquisition of an individual’s physiological
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state and early detection of major diseases or emergencies. Tissue pressure data, including
arterial pulse and blood pressure, are highly correlated with human physiological functions.
The monitoring of tissue pressure holds potential for early diagnoses [143,144]. Therefore,
pressure sensing is a critical function in wearable biosensors. Pressure sensors can be
classified into four types based on their working mechanisms, including piezoresistive
sensors, piezoelectric sensors, capacitive sensors and triboelectric sensors [145,146]. A
comparison of the performance parameters of pressure sensors with different sensing
mechanisms is indicated in Table 1.

Textile-based piezoresistive pressure sensors offer simple preparation, easy integration
and convenient signal processing [147]. Researchers have made significant efforts to
improve the performance of piezoresistive sensors by developing novel materials and
designing various microstructures. Examples of such materials include graphene, carbon
nanotubes, conductive nanowires and conductive polymers [148,149]. Yang et al. [150]
fabricated a wearable graphene textile stress sensor with negative resistance change through
the simple thermal reduction of GO, as shown in Figure 5a. Graphene oxide was utilized
as a color additive to dye the polyester textile. This addition endowed the graphene textile
strain sensor with excellent performance. Furthermore, the sensor exhibits remarkable
properties, such as a wide strain range (up to 15%), high sensitivity and long-term stability.
Park et al. [151] fabricated pressure sensors based on piezoresistive materials by inducing
wrinkles on a shrink film. This process not only reduced stress but also enhanced pressure-
sensing sensitivity by a factor of 12,800 while reducing the response time to less than
20 milliseconds. Zhao et al. [152] developed a highly sensitive textile-based piezoresistive
sensor by layering gold-nanowire-embedded cotton textiles and silver ink screen-printed
nylon textile electrodes, as shown in Figure 5b. The resultant sensing patch demonstrates
superior performance, including a fast response time (load: 38 ms, recovery: 34 ms), a
low detection limit (0.49 Pa) and high sensitivity (914.970 kPa−1, <100 Pa). It is capable
of detecting respiration, pulse and blood pressure accurately during physical activity.
Chen et al. [153] created strain sensors by immobilizing polypyrrole (PPy) onto knitted
stretchable textiles made of polyester and spandex through low-temperature interfacial
polymerization. The resulting sensors display excellent flexibility with a large dynamic
range and high sensitivity, permitting the real-time monitoring of respiration and heart
rate during exercise. This provides a uniform and dense coating method for conductive
polymers on textiles that produces highly sensitive and stretchable sensors.

Textile-based piezoelectric pressure sensors rely on the property of piezoelectric mate-
rials to produce charge separation when subjected to an external pressure or force, which
allows for the measurement and determination of the applied pressure to the sensor [154].
Piezoelectric sensors provide high sensitivity, a broad frequency response range, a rapid
response time, a wide operational temperature range, corrosion resistance, durability and
low power consumption for a diverse array of applications [155]. Li et al. [156] produced
breathable and electrically conductive nanofiber mats that are highly flexible by utilizing
electrostatic spinning techniques, as shown in Figure 5c. These textiles exhibited good
electric conductivity, mechanical properties (up to 35.4 ± 7.3 MPa) and stability (≥10,000),
enabling direct monitoring of human physiological signals. The successive inclusion of
MWCNT into PVDF-HFP nanofibers showed a synergistic effect. A highly sensitive flexi-
ble pressure sensor based on piezoelectric MXene/PVDF hybrid films was proposed by
Zhao et al. [137]. The doping of MXene nanosheets facilitates the enhancement of the me-
chanical properties of PVDF. The piezoelectric response and mechanical properties of the
MXene/PVDF thin-film enable the sensor to demonstrate outstanding voltage sensitivity
(Sv up to 0.0221 V/N)

Textile-based capacitive pressure sensors generally comprise parallel conductive elec-
trodes and a dielectric layer that accumulates charge [157]. The sensing mechanism relies
on changes in capacitance under an external force, which impacts the contact area, thick-
ness and dielectric constant of the dielectric layer situated between the electrodes [158].
Moreover, as a wearable capacitive pressure-sensing device, the sensor should be flexible,



Biosensors 2023, 13, 909 9 of 26

comfortable, breathable, washable and durable [159]. Fu et al. [139] presented a piezoca-
pacitive sensor with a flexible ceramic nanofiber network with high structural elasticity
for real-time health monitoring, as shown in Figure 5d. It minimizes performance degra-
dation in polymer-based sensors due to the viscoelastic behavior of polymers. It has high
sensitivity (≈4.4 kPa−1), a low detection limit (<0.8 Pa) and a fast response time (<16 ms).
Wu et al. [160] fabricated an all-textile wireless pressure sensor utilizing a 3D penetrating
textile as a dielectric layer sandwiched between two highly conductive textile electrodes, as
shown in Figure 5e. The sensor exhibited high sensitivity (0.283 KPa−1), high conductivity
(0.33 Ω/sq), good stability (≥20,000) and excellent mechanical robustness. Zheng et al. [161]
developed a capacitive sensor that is wearable and based on the capacitive coupling effect.
This design improves the capacitive coupling effect and achieves high non-contact detection
rates while having low sensitivity to tensile strain and pressure, compared to previous
sensor designs.

Table 1. Comparison of performance parameters of pressure sensors with different sensing mechanisms.

Analyte Materials Sensor Mechanism Fabrication Method Response Time Gauge Factor Sensitivity Stability Ref.

Breathing, Pulse Wave Graphene Piezoresistive Impregnation Coating - −26 (15%) - 10,000 cycles [150]
Pulse Wave CNTs/PDMS Piezoresistive Shrinking Fabrication <20 ms - 278.5 kPa–1 - [151]

Breathing, Pulse Wave AuNW/textile Piezoresistive Impregnation Coating <40 ms - 914.970 kPa–1 30,000 cycles [152]
Motion, Respiration PPy/polyester/spandex Piezoelectric Spray Coating <15 ms −0.46 (0–71%) - 500 times [153]
Heartbeat, Motion MWCNT/PVDF-HFP Piezoelectric Electrospinning - −0.7 (40%) 0.25 kPa–1 10,000 cycles [156]

Breathing, Pulse Wave MXene/PVDF Piezoelectric Electrospinning 3.1 ms - 0.0480 V/N - [137]
Blood Pressure TiO2 nanofibrous network Capacitive Electrospinning <16 ms −2.1 (60%) 4.4 kPa–1 50,000 cycles [139]

Motion, Heartbeat PVA/Ag NFs Capacitive Electrospinning <10 ms - 0.283 kPa–1 ≥20,000 cycles [160]
Pulse, Respiratory LMs@PDMS Capacitive Stencil Printing - 0.33 (0–50%) 0.0021 kPa–1 1000 cycles [161]

Heartbeat, Respiratory Conductive/nylon yarns Triboelectric Weaving 20 ms - 7.84 mV Pa−1 >100,000
cycles [162]

Pulse Wave, Motion Nylon yarns/PTFE filament Triboelectric Twisting and Weaving <15 ms 7.2 (30%) 1.33 V·kPa–1 4200 cycles [163]

Textile-based triboelectric pressure sensors are capable of measuring the pressure
distribution on body contact surfaces as well as sensing and monitoring pulses in a
self-powered manner, without the requirement of an external power supply [164,165].
Fan et al. [162] reported a triboelectric textile sensor array (TSA) capable of capturing
fine epidermal pressures. The TSA has various advantages, including high sensitivity
(7.84 mV Pa−1), a fast response time (20 ms), high stability (>100,000 cycles) and machine
washability (>40 washes). Additionally, it can monitor arterial pulse waves and respiratory
signals simultaneously. The team also developed a smart health monitoring system that
transmits the measured physiological parameters to a mobile application for CAD analysis
and SAS assessment. For the complex and fine structure of friction nanogenerators, it
is difficult to further improve the sensing ability of textiles within a limited contact area.
To solve this problem, Lou et al. [163] developed a friction-based electric-sensing textile
utilizing core-shell yarns. The positive and negative layers were made of nylon and poly-
tetrafluoroethylene (PTFE) wires, respectively, and a spiral stainless steel wire acted as
the inner electrode layer, as shown in Figure 5f. This innovative textile displays excellent
sensing ability and mechanical stability. Moreover, it can be easily attached to the carotid
artery to record arterial beat physiologic signals. This study provides a new approach for
the development of highly wear-resistant textiles for large pressure sensors.

3.1.2. Body Motion

The continuous monitoring of human joint motion in everyday environments is
important for medical rehabilitation, healthcare and athletic performance [166]. Strain
sensors play an important role in biomedical electronics to monitor a variety of body
signals, including physical, chemical and biological signals [160,167]. Laminating strain
sensors on human skin to detect bending or stretching is a frequent method in monitoring
human activity [168]. Strain tactile sensors and pressure sensors have numerous benefits
in this context, including a high tensile strength, a lightweight design, affordability, high
sensitivity and a large range, and as a result, they are extensively employed [169–171]. A
comparison of the performance parameters of different strain sensors for human motion is
indicated in Table 2.
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Figure 5. Detection of body tissue pressure by wearable pressure sensors. (a) Detecting various
movements of the human body with wearable graphene fabric strain sensors (Reprinted with permis-
sion from Ref. [150]. Copyright 2018, American Chemical Society); (b) Monitoring flexion of body
parts with AuNW/textile wearable sensors (Reprinted with permission from Ref. [152]. Copyright
2022, American Chemical Society); (c) Conductive MWCNT/PVDF−HFP nanofiber mats can be
attached to human skin to directly detect tactile excitation and the output voltage of the nanofiber
mats under different pressures (Reprinted with permission from Ref. [156]. Copyright 2019, American
Chemical Society); (d) Schematic diagram of LC monitoring capacitive pressure sensor (Reprinted
with permission from Ref. [139]. Copyright 2022, Wiley); (e) Schematic of breathable and wearable
sensors and monitoring of respiration before and after exercise (Reprinted with permission from
Ref. [160]. Copyright 2019, American Chemical Society); (f) Different structural designs of fabric
pressure sensors and perception of body joint movements (Reprinted with permission from Ref. [163].
Copyright 2020, American Chemical Society).

Evaluating strain sensor performance entails considering several crucial factors, in-
cluding the sensing materials and device construction. These factors can significantly
impact sensitivity, stretchability, response time and durability. Consequently, extensive
efforts have been made to develop innovative manufacturing techniques and materials that
can enhance strain sensor performance [164,172]. Materials including nanoparticles have
been widely utilized in the field of stretchable strain sensing. Wang et al. [173] prepared
graphene–silk textile strain sensors, as shown in Figure 6a. Graphene oxide deposited
on silk textiles was converted into graphene to endow the textile sensor with electrical
conductivity. Compared with other strain sensors, the sensor exhibits a linear and high
resistive rate of change with increasing strain and can be used for the detection of human
motion. Seyedin et al. [164] utilized the wet spinning technique to produce Ti3C2Tx MX-
ene/PU composite fibers, as shown in Figure 6b. The resulting composite fibers display
low conductivity at extremely low permeability thresholds, surpassing MXene-based poly-
mer composites reported previously. They also exhibit high strain coefficients (~12,900)
and large sensing strains (~152%). Yang et al. [174] constructed a self-powered laminated
textile sensor using Schottky contacts. They sandwiched a polypyrrole (PPy)-coated textile
between a nickel-coated textile and an aluminum–plastic film. The electrical output under
strain is attributed to a single Schottky contact between PPy and Al.
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Table 2. Comparison of performance parameters of different strain sensors for human motion.

Materials Fabrication Method Strain Gauge Factor Stability Ref.

Graphene Coating 10% 124 1000 cycles [173]

MXene/PU Wet spinning 50% 238 1000 cycles [164]152% 12,900
PPy/Al Impregnation coating 25.3% 15 600 cycles [174]

CNTs/PDMS Drop coating 5%–30% 10 5000 cycles [175]>30% 200

RGO Adhere
0%–60% 16.2 >5000

cycles [176]>60% 150

Recent studies have demonstrated that the stretchability and sensitivity of strain sen-
sors can be improved through designing layered microstructures using a rational approach.
This improvement addresses their reliability and accuracy in practical applications [177].
Du et al. [175] designed a stretchable multiple-stimulus responsive strain sensor based
on a textile microstructure sensitive layer, as shown in Figure 6c. The sensitive layer of
the sensor was designed as a textile microstructure. Carbon nanotubes were embedded
in the microstructure region, and electrodes were added and encapsulated. The sensor
exhibits excellent tensile, pressure and bending-sensing properties. Furthermore, it is
proficient in recognizing human activities when placed on the skin. Liu et al. [176] reported
a high-performance strain sensor with a fish-scale graphene sensing layer, as shown in
Figure 6d. Changes in contact resistance are observed when the rGO slices in the initially
overlapped area are stretched, enabling the detection of tensile and bending deformations
with high sensitivity (strain coefficients ranging from 16.2 to 150), a wide sensing range
(82% strain), a low detection limit (<0.1% strain) and excellent stability (>5000 cycles).

3.1.3. Temperature and Humidity

Human body temperature and humidity need to be maintained within appropriate
ranges to maintain normal body function and comfort [178]. Excessively high or low body
temperatures as well as excessively high or low humidity may adversely affect human
health; therefore, maintaining an appropriate body temperature and humidity is necessary
for health and comfort, so much so that the real-time monitoring of body temperature and
humidity is critical [179,180].

Temperature sensors are obtained based on materials with temperature-sensitive
properties [181]. Conductive nanomaterials and resistive metals, such as gold nanoparticles
and silver nanoparticles, are popular choices due to their high temperature tolerance and
sensitive electrical properties [182,183]. Li et al. [184] fabricated a temperature sensor
made of fibrous material. Thermoplastic polyurethane (TPU) fibers were used as the
base material, and poly(3,4-ethylenedioxythiophene) (PEDOT) was grown in situ on their
surface to produce a fibrous temperature sensor. The sensor possesses high sensitivity to
temperature, a good temperature resolution (0.2 ◦C) and a high degree of linearity (0.998).
The sensor can be used to monitor skin temperature during exercise, as shown in Figure 7a.
Kim et al. [185] developed a wearable thermochromic sensor using electrostatic spinning
technology. The nanofibers feature thermochromic properties and were created by adding
an appropriate amount of thermochromic material to the spinning solution. These sensors
can be applied to masks, bracelets and patches to monitor changes in body temperature in
real time, as shown in Figure 7b. Wang et al. [186] reported a combined e-skin that measures
temperature and pressure, using flexible and transparent silk nanofiber-derived carbon
fiber membranes as active materials, as shown in Figure 7c. Temperature stimulation
increases carrier hopping and induces tunneling conduction, leading to an increase in the
conductance of the silk-based membrane. The silk-based temperature sensor demonstrates
high sensitivity and a minimal response to external pressure stimulation.
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Figure 6. Wearable strain biosensors for human motion detection. (a) Detection of finger movement
by RGOSF strain sensors (Reprinted with permission from Ref. [173]. Copyright 2019, Wiley);
(b) Record of the strain-induced response of the MXene/PU sheath during bending and straightening
(Reprinted with permission from Ref. [164]. Copyright 2020, Wiley); (c) Deformation states of flexible
sensing devices under different human activity strains (Reprinted with permission from Ref. [175].
Copyright 2023, Wiley); (d) Relative resistance response of FSG strain sensors in detecting different
degrees of finger bending (Reprinted with permission from Ref. [176]. Copyright 2016, American
Chemical Society).
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Figure 7. Wearable biosensors for human temperature and humidity monitoring. (a) Monitoring of
body temperature during exercise with the PTCF temperature sensor (Reprinted with permission
from Ref. [184]. Copyright 2022, American Chemical Society); (b) Body temperature monitoring
using wearable thermochromic sensors for respiratory masks, bracelets and patches (Reprinted with
permission from Ref. [185]. Copyright 2022, Wiley); (c) Fabrication process for silk-based combined
temperature–pressure electronic skin sensors (Reprinted with permission from Ref. [186]. Copyright
2017, American Chemical Society); (d) Real-time respiratory measurements of deep breathing using a
micro−controlled flexible humidity sensor (Reprinted with permission from Ref. [187]. Copyright
2022, Springer); (e) Resistance change of an SWCNT/PVA fiber sensor sewn to a highly hydrophobic
textile before and after water spray (Reprinted with permission from Ref. [188]. Copyright 2017,
American Chemical Society).

Humidity affects humans’ experience with wearables. Too much humidity can cause
symptoms such as increased body temperature, a rapid heartbeat, dizziness and fatigue,
and too little can increase the probability of respiratory diseases [189,190]. Carbon nano-
materials, such as carbon nanotubes and graphene, have become the material of choice
for humidity sensors due to their unique electrochemical properties and high specific
surface area, and they have excellent mechanical properties and good flexibility [191,192].
Kim et al. [187] developed a low-resistance flexible humidity sensor based on CNTs. The
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sensor had a core–shell structure of CNT@CPM that was prepared with Chit and PAMAM,
making it highly sensitive with an average response/recovery time of less than 20 s, as
shown in Figure 7d. Zhou et al. [188] fabricated a humidity sensor using SWCNT/PVA
filaments. The amount of SWCNT in the monofilaments can be adjusted to modify the
conductive network of the CWCNT. Under humid conditions, the SWCNT/PVA filaments
reach twice the diameter of the dry ones and exhibit high sensitivity at high relative hu-
midity levels (RH), as shown in Figure 7e. Cho et al. [193] developed an rGO/SF humidity
sensor with superior mechanical properties compared to rGO alone. The hybrid material
exhibits up to a 232% higher elastic bending modulus and can be optimized by adjusting
the reduction temperature. Li et al. [194] developed a capacitive humidity sensor utilizing
a hybrid film comprising In2O3 and GO nanosheets. The integration of GO and In2O3
significantly improved the humidity-sensing capability. In2O3 has a cubic nanostructure,
which is very favorable for the absorption and dispersion of water molecules by the
In2O3/GO thin-film sensor.

3.2. Sweat Analysis

The human body contains multiple types of body fluids, including tissue fluid, saliva,
sweat and so on. These fluids are closely related to potential diseases and maintain the nor-
mal physiological functions of the body. Unlike traditional medical methods (microneedle
penetration, osmosis, pathological anatomy, etc.) for detecting body fluids, novel wearable
fabric-based electronic devices have great potential for body fluid analysis, benefiting from
their fast response and high efficiency [195,196]. Sweat is rich in physical information,
more stable and easier to sample than tissue fluids such as tears, saliva and urine [197].
Today, fabric sweat sensors are mainly based on the principles of electrochemistry and
colorimetry. Electrochemical biosensors convert the concentration of the substance into an
electric current or voltage signals [198,199]. Colorimetric sensors determine the substance
amount according to the color changing degree. Therefore, a wide range of biomarkers in
sweat is detected, e.g., glucose, lactate, PH, cortisol, etc. Sweat sensors are useful for the
monitoring of multiple biomarkers in sweat, as indicated in Table 3.

Glucose is one of the key molecules essential to the human body and is associated with
energy and blood sugar levels. However, high concentrations can lead to diabetes, as well as
complications such as kidney failure, blindness and stroke [200]. Zhao et al. [201] proposed
a flexible enzyme-free sweat glucose sensor based on coated carbon cloth, as shown in
Figure 8a. The sensitivity index of the sensor can reach 63.9µA/mM/cm2. Glucose reacts
catalytically with the electrodes, generating a current between electrodes, which changes
as the glucose concentration changes. Piper et al. [202] developed a wearable glucose
detection device with stretchability by sewing conductive gold-plated threads into fabric,
as shown in Figure 8b. Glucose reacts with oxidizing enzymes attached to the electrode to
produce hydrogen peroxide. Hydrogen peroxide has electrochemical properties, and by
comparing it to a reference electrode, the glucose content is determined according to the
potential difference. In addition to electrochemical sensors, glucose can also be detected
with colorimetric sensors. Promphet et al. [203] developed a wearable sensor based on
cotton thread that can detect glucose concentrations in the range of 0.01−0.2 mM, as shown
in Figure 8c. When the sensor’s detection zone comes in contact with sweat, oxidizing
enzymes react with glucose to produce hydrogen peroxide. Hydrogen peroxide reacts with
potassium iodide and results in a color change.
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Figure 8. Application of sweat sensors in glucose and lactate detection. (a) Schematic of sensor
based on coated carbon cloth (Reprinted with permission from Ref. [201], Copyright 2023, Elsevier);
(b) Schematic representation of glucose assay chemistry performed with unstitched gold wires
(Reprinted with permission from Ref. [202], Copyright 2021, Elsevier); (c) Systematic sensing mecha-
nisms for glucose and urea detection (Reprinted with permission from Ref. [203], Copyright 2021,
Elsevier); (d) Systematic sensing mechanisms for glucose and urea detection (Reprinted with permis-
sion from Ref. [204], Copyright 2023, Elsevier); (e) System fiber layer breakdown (Reprinted with
permission from Ref. [205], Copyright 2023, Elsevier).

Lactic acid supplies energy to muscles to meet consumption demand, regulates the
body’s acid–base balance and possesses a bactericidal effect in sweat [206]. Normal lactate
levels in sweat are likely in the 5–25 mM range. However, high concentrations of lactic
acid breaks the body’s acid–base balance and impairs the normal functions of cells [207].
Wang et al. [204] proposed an electrochemical sensor based on stretchable gold fibers for
detecting sweat lactate levels, as shown in Figure 8d. The electrode is coated with lactate
oxidase, which reacts with the lactate in sweat in the air to form pyruvate and hydrogen
peroxide. Data on lactate levels are output by measuring the current of hydrogen peroxide
during the redox process. Mei et al. [205] developed a lactate detection sensor based on
electrospun nanofibers with an integrated colorimetric analysis, as shown in Figure 8e.
The limit of detection (LOD) is 0.4 mm, and the limit of quantification (LOQ) is 1.3 mm.
The nanofibers direct sweat into the sensor, and the lactic acid spreads out in the matrix to
react with oxidative enzymes. Through the NFC chip inside the system, color images are
analyzed with the help of a cell phone.
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The PH value is one of the key factors in ensuring normal physiological activity in
the human body. Only in a suitable range can proteins maintain their normal structure
and function [208]. The PH level in sweat is usually between 4 and 7. Otherwise, a PH
imbalance can lead to acid–base imbalance in the human body and can reduce the activity of
other molecules [209]. Wang et al. [210] proposed an electrochemical sensor fabricated with
sensing fiber units to monitor glucose concentrations within sweat, as shown in Figure 9a.
The sensing fibers were constructed into glucose-sensing fibers by passing them through
a Prussian blue membrane. Glucose oxidase was immobilized within the permeable
membrane coated as the active layer of the sensor. Oxidase reacts with glucose, resulting in
potential changes according to its concentration. Chung et al. [211] combined polyurethane
electrostatic spinning materials and gold sputtering coatings to form a nanofiber flexible
substrate, as shown in Figure 9c. The substrate was functionalized using responsive
molecules. Sweat that flows through the substrate reacts with microelectrodes to measure
the PH in sweat. Promphet et al. [212] proposed a wearable device to detect PH in sweat
by preparing three different chemical layers on cotton fabric, as shown in Figure 9c. A
colorimetric analysis was used to reveal different degrees of color as the concentration of
PH increased, and they then compared it with a standard amount to derive the PH value.
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Figure 9. Sweat sensor for PH and cortisol applications. (a) Schematic of nanosensing fibers to
fabricate electrochemical fabrics (Reprinted with permission from Ref. [210], Copyright 2018,Wiley);
(b) Application of SERS activated AUTPU electrostatically spun wearable sweat PH sensor. (Reprinted
with permission from Ref. [211], Copyright 2019, American Chemical Society); (c) Schematic manu-
facturing process of textile colorimetric sensors to detect sweat PH (Reprinted with permission from
Ref. [212], Copyright 2019, Elsevier); (d) Schematic illustration of the fabrication of a paper-based
sensor using a wax-printing method (Reprinted with permission from Ref. [213], Copyright 2020,
Elsevier); (e) System fiber layer breakdown (Reprinted with permission from Ref. [205], Copyright
2019, Elsevier).
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Cortisol is a steroid hormone in the human body that regulates blood sugar and pro-
motes the breakdown of proteins and fats. Excessive cortisol secretion leads to conditions
such as high blood pressure and osteoporosis [214,215].Lee et al. [213] proposed an electro-
chemical sensor based on stretchable nanostructures to detect sweat cortisol, as shown in
Figure 9d. Electrochemical impedance spectroscopy was utilized. The working electrode
reads out the Faraday signal after the electrochemical reaction occurs, and the data of the
cortisol content are obtained and combined with wireless data transmission. This sensor
can stably detect cortisol levels from 1 pg/mL to 1 µg/mL, and the difference was about
14.7% compared to conventional testing. Apilux et al. [216] developed a paper-based sensor
using a colorimetric analysis to detect sweat cortisol, shown in Figure 9e. A monoclonal
antibody for cortisol was used as a signal indicator, and its contact with cortisol in sweat
reveals different degrees of color. The degree of color represents different concentrations of
cortisol, giving the user an intuitive feeling.

Table 3. Sweat sensors are useful for the monitoring of multiple biomarkers in sweat.

Detectives Material Response Time Sensitivity Detection Range Limit of Detection Ref.

Glucose Au NFs 2~3 s 63.9 µA/mM/cm2 0.1~5 mM - [201]

Glucose Conductive Gold
Coated Threads 4~6 s 126 ± 14 nA/mM 0.01–100 mM 301 ± 2 nM [202]

Glucose Cellulose nanofiber 3~4 s - 0.1~3 mM 0.1 mM [203]
Lactic acid Gold fibers 1~3 s 14.6 µA/mM cm2 0.1~5 mM 14.6 µA/Mm/cm2 [204]
Lactic acid Nanofiber 1~2 s 70.3 nA Mm−1 - 0.38 mM [205]

PH Sensing Fiber 0.15~0.25 h - PH 4.0~7.0 PH 3.0 [210]

PH Thermoplastic
Polyurethane 1.5~2 h 0.14–0.33 PH PH 5.5~7.0 PH 4.0 [211]

PH Cotton Fabric 0.2~0.4 h - PH 1.0~14.0 PH 1.0 [212]
Cortisol Nanometer 0.15~0.25 h 0.25 Ohm/ng mL−1 1 pg/mL~1 µg/mL 1 pg/mL [213]
Cortisol Paper Fibers 0.15~0.25 h - 25–50 g/dL 21.5 g/dL [216]

4. Conclusions and Outlook

In this review, we summarize recent advances in textile-based wearable biosensors,
including materials, fabrication and devices. The characteristics of stretchability, comfort,
breathability and biocompatibility from fabric materials enable biosensors to contact or
fit well onto human skin, providing a more comfortable wearing experience. In the field
of healthcare, textile-based wearable biosensors play an important role by enabling real-
time, non-invasive monitoring of human physiological indicators, such as respiratory rate,
pulse, blood pressure, skin temperature and humidity, which provide helpful suggestions
for users. Therefore, more biochemical information through non-invasive monitoring is
obtained, including metabolic levels, electrolyte balance and biomarkers of certain diseases
from body fluids like sweat, tears and urine.

Despite the many potential applications of fabric-based wearable biosensors, there
are still some technical defects and limitations, such as (1) the problem of target parameter
selectivity and the signal interference of multimodal sensors. This problem concerns how
to ensure that sensors make accurate measurements of specific physiological parameters
without the influence of other parameters and the mutual interference of signals from
multimodal sensors working simultaneously. This requires including the design of smarter
signal processing algorithms and techniques to distinguish and eliminate interfering signals,
as well as optimizing the selectivity of the sensors so that they can accurately measure
the target parameters. (2) Stability and Durability: Textile biosensors are often subjected
to frequent bending, stretching and washing environments, which may cause damage
or failure of the sensor. Reliable sensor materials and construction must be designed
to withstand daily use and washing. (3) Power and Communication: Textile biosensors
typically require power and communication with external devices. However, integrating
a battery and communication module may increase the weight and size of the sensor,
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which can affect user comfort. (4) Data Security and Privacy: Ensuring data security and
privacy protection is an important challenge. The development of secure data transmission
and storage schemes and the adoption of appropriate data encryption and authentication
measures to protect the security of personal health data is an urgent issue. (5) User
Acceptance and Adoption Rate: Factors such as user acceptance, comfort and ease of use
play an important role in whether users are willing to wear and use sensors in the long
term. Therefore, further efforts are required in designing user-friendly sensor interfaces and
providing personalized user experiences, as well as continuous technological innovation
and market promotion.

In summary, textile-based wearable biosensors are revolutionizing health monitoring,
medical management and personal health management. We anticipate that these sensors
will continue to innovate and evolve in the future and provide more accurate, convenient
and personalized health support for human beings.
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