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Abstract: Optic pathway glioma (OPG) is one of the causes of pediatric visual impairment. Unfor-
tunately, there is as yet no cure for such a disease. Understanding the underlying mechanisms and
the potential therapeutic strategies may help to delay the progression of OPG and rescue the visual
morbidities. Here, we provide an overview of preclinical OPG studies and the regulatory pathways
controlling OPG pathophysiology. We next discuss the role of microenvironmental cells (neurons,
T cells, and tumor-associated microglia and macrophages) in OPG development. Last, we provide
insight into potential therapeutic strategies for treating OPG and promoting axon regeneration.

Keywords: optic pathway glioma; optic nerve; neurofibromatosis type 1; tumor microenvironment;
cancer neuroscience; tumor-associated microglia and macrophages; T cells

1. Introduction

Optic pathway glioma (OPG) is a type of brain tumor that develops within the optic
pathway, which connects the eye to the brain. Most OPGs (59%) arise in children younger
than 10 years of age [1]. Most OPGs are histologically characterized as grade 1 pilocytic
astrocytoma (2021 WHO classification), in which KIAA1549-BRAF, BRAF, and NF1 are the
commonly altered genes [2]. OPGs are low-grade gliomas with features that include a low
proliferation index [3,4] as well as glial fibrillary acidic protein (GFAP) and oligodendrocyte
transcription factor 2 (OLIG2) immunoreactivity [5,6], and they are often slow-growing.
Whereas glial markers in OPG display high positivity, they stain negatively for NeuN, indi-
cating the glial feature exhibited by the tumor cells [5]. OPGs can develop in both anterior
(prechiasmatic) and posterior (chiasmatic and postchiasmatic) visual pathways. Because
the tumor is located along the optic pathway, patients may experience vision decline or
vision loss in severe cases [7–10]. Some OPGs are located close to the hypothalamus and
can thus induce endocrine abnormalities, including precocious puberty [10,11].

Optic pathway gliomas can be categorized into two groups: neurofibromatosis type 1
(NF1)-associated OPG and sporadic (non-NF1) OPG. As an autosomal dominant genetic
disease, NF1 is a cancer predisposition syndrome that affects 1 in 2500–3000 people world-
wide; 15–20% of children with NF1 develop gliomas, approximately 65–75% of which
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are OPGs [9,10,12,13]. Children with NF1-OPG tend to develop anterior tumors more
frequently than children with sporadic OPG [14–17]. The spontaneous regression of OPG
has been reported in NF1 patients [18–20]. In sporadic OPGs, the most common genetic
event is BRAF-KIAA fusion [21], which increases BRAF activity and its downstream MAPK
signaling. NF1-OPG has a better prognosis than sporadic OPG, probably because of the
higher incidence of anterior tumors along the optic pathway in NF1-OPGs [10,22].

The NF1 gene encodes neurofibromin protein, a large protein comprising approxi-
mately 3000 amino acids and with partial-sequence homology to a family of proteins that
inhibit RAS activity, also known as RAS GTPase-activating proteins (RAS-GAPs) [23]. Neu-
rofibromin can inhibit several RAS proteins—namely HRAS, NRAS, and KRAS—through
RAS-GTP hydrolysis (the conversion of active RAS-GTP to inactive RAS-GDP), leading to
the abrogation of RAS activity [24,25]. Therefore, it is understandable that in NF1 patients,
loss-of-function NF1 mutations heighten RAS activity, which in turn may be responsible
for tumorigenesis [26,27]. Indeed, in both murine and human NF1-associated tumors,
reduced neurofibromin expression is accompanied by RAS protein hyperactivity and the
elevated activation of the RAS downstream pathways (e.g., RAF-MEK-ERK, PI3K-AKT,
mTOR signaling pathways) [28–30]. Neurofibromin also has RAS-independent functions:
for example, it positively mediates cyclic adenosine monophosphate (cAMP) levels in
retinal ganglion cells (RGCs) via PKC-zeta/GRK2 [31].

The study of human OPG is difficult because OPGs are rarely resected, and even when
they are, the low-grade glioma cells are rarely grown in culture or as xenografts [32,33].
To overcome this barrier and gain a deeper understanding of OPGs, researchers have
generated genetically engineered mouse models of OPG [34–39]. One such model, Nf1OPG

(Nf1flox/−; Gfap-Cre) mice, recapitulates the genetics of NF1 patients: the mice harbor a
germline Nf1 mutation in all cells and a second-hit Nf1 loss in the glioma-initiating neural
stem cells [34].

2. Methods

Following the PRISMA guidelines, authors searched the PubMed/MEDLINE and
Web of Science databases and examined the relevant literature published from 1980 to 2023.
Combinations of the following keywords were used to screen the topic, maximizing the
specificity and sensitivity: “optic pathway glioma”, “neurofibromatosis type 1”, “cancer
neuroscience”, “cancer therapy”, and “neuroinflammation”. We used these combination
keywords to further screen the title and abstract.

3. Results
3.1. Effect of Optic Pathway Glioma on Vision and Retinal Ganglion Cell (RGC) Function

Approximately 30–50% of patients with NF1-OPG experience vision decline [13,40–43].
The radiographic characteristics of the OPG tumor do not seem to correlate with visual
outcome [41,44,45], although a recent study suggests that larger OPG volume (measured
by magnetic resonance imaging [MRI]) is associated with less retinal nerve fiber layer
thickness [46]. Most NF1-OPG patients exhibit good visual outcomes [47]. Conversely,
sporadic OPGs have a higher chance of progressing and producing worse visual outcomes
than NF1-OPGs [10,22,48–50].

Although some support using MRI screening for the early diagnosis of NF1-OPG and,
thus, better vision outcomes [51], some may oppose MRI scans of young patients due to
the effects of the repeated sedation involved in the process [52]. Sometimes MRI is carried
out only when optic nerve abnormalities or visual impairments are detected [47], and
MRI may not detect a tumor or tumor progression when vision loss is observed. Optical
coherence tomography (OCT) is becoming increasingly popular for monitoring vision and
can detect changes in retinal nerve fiber layer thickness early on, thereby facilitating crucial
decision-making processes [53,54]. Similarly, the electrophysiological monitoring of OPG
patients by using electroretinography (ERG) and visual evoked potentials (VEP) may also
provide early evidence of optic nerve or RGC dysfunction [55–57]. However, the choice of
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modality is still at the discretion of the treating clinician. The optimal diagnostic modality
for NF1-OPG management may be better clarified in future multicenter trials.

Like patients with NF1-OPG, the Nf1OPG mice exhibit thinner retinal nerve fiber layers
as measured by OCT and reduced VEP amplitudes than the non-tumor controls [58,59].
The Nf1OPG mice also display RGC death and optic nerve myelin defects [58,59]. Some
NF1-associated retinal and visual deficits may potentially be intrinsic to the germline
NF1 mutations, because Nf1+/− RGCs exhibit more frequent cell death, shorter neurite
length, and smaller growth cone area than RGCs from wild-type counterparts [31]. The
neurofibromin-cAMP axis is responsible for these phenotypes observed in primary Nf1+/−
RGC culture [31].

Several risk factors for OPG-induced visual impairment have been identified, includ-
ing age <2 years, postchiasmatic tumor location, and female sex [9,10,17,60]. In patients
with NF1-OPG, females are more likely than males to undergo MRI and treatment for
visual symptoms. Similarly, in mouse models of Nf1OPG, females have more severe RGC
loss than males [42].

3.2. The Role of Immune Cells in Optic Pathway Glioma Growth

Microglia and macrophages are the immune cells found in the central nervous system
(CNS). However, the origins of microglia and macrophages are different. Microglia are
derived from yolk sac progenitors and are the resident immune cells in the brain, whereas
macrophages are derived from circulating monocytes and can infiltrate the CNS from
the bloodstream [61]. Microglia are important for maintaining brain homeostasis and
responding to various types of insults, including pathogens [62,63], injury [64], and neu-
rodegeneration (e.g., Alzheimer’s disease) [65,66]. In the context of brain tumors, microglia
and macrophages can contribute to tumor progression.

Glioma cells can recruit and reprogram microglia and macrophages to adopt a pro-
tumor phenotype, collectively known as glioma-associated microglia and macrophages
(GAMs) [67]. GAMs can release growth factors, cytokines, and chemokines that promote
tumor cell survival, invasion, and angiogenesis [68]. Targeting GAMs has been suggested
as a potential therapeutic strategy for gliomas [69,70]. Overall, microglia and macrophages
are critical components of the CNS immune system and have complex roles in brain tumor
biology.

Although both macrophages and microglia exist in the optic nerve [71], microglia
are often reported to be involved in several optic neuropathies, including optic nerve
trauma [72] and OPGs [73]. Growing evidence shows that the inhibition of microglia
activation by the c-Jun-NH(2)-kinase (JNK) inhibitor [74] or minocycline (a crude microglia
inhibitor) [75,76] is able to delay glioma formation in the Nf1OPG mice. In addition to
pharmaceutical approaches, genetically reducing the expression of CX3CR1, the receptor
that modulates microglial migration [77], delays OPG formation [73]. Among the secretion
molecules from GAMs, chemokine (C-C motif) ligand 5 (CCL5) is a key promoter for
NF1-OPG growth. Neutralization with CCL5 antibody [78] or the deletion of Ccl5 [79]
dramatically attenuated tumor growth in vivo. An interesting observation suggests that
the reduced RGC numbers and thinner retinal nerve fiber layer in female Nf1OPG mice
compared with male ones may be due to estrogen-induced microglial activation [80]. Thus,
suppressing microglial activation, either during cell migration or mitogen secretion, is a
potential therapeutic strategy against OPG.

T cells (T lymphocytes) are white blood cells that modulate adaptive immune re-
sponse [81,82]. T cells are further identified as CD4+ helper T cells and CD8+ cytotoxic
T cells [83]. In cancer pathology, CD8+ T cells are detected around the tumors and are
thought to mediate anti-tumor responses [84]. However, CD8+ T cells fail to do so during
long-period tumorigenesis because they differentiate into dysfunctional states [85]. In
the case of mouse NF1-OPG, CD8+ T cells are involved in neuron-mediated T cell CCL4
production and subsequently induce microglial CCL5 secretion to support tumor growth,
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and the depletion of CD8+ T cells suppressed tumor growth [86], thereby suggesting that
CD8+ T cells could be a therapeutic target in the optic nerve for patients with OPG.

3.3. The Role of Neurons in Optic Pathway Gliomagenesis

In the past years, ample studies have confirmed the key function of neurons in modu-
lating cancer progression [87]. OPG grows within the optic pathway and is surrounded by
neurons. Preclinical studies have shown that light-induced neuronal activity in the optic
nerve is required to initiate NF1-OPG. In the Nf1OPG mice, dark-rearing inhibits tumor ini-
tiation and maintenance [88]. Molecularly, the germline Nf1 mutation aberrantly increases
neuronal activity-induced secretion of ADAM10, a protease that cleaves membrane proteins,
in the optic nerve. One of the substrates of ADAM10 is neuroligin-3. This Nf1/ADAM10
axis results in the increased cleavage of the ectodomain of neuroligin-3, which is sufficient
for increasing OPG cell growth in vitro. Supporting the role of ADAM10/neuroligin-3 axis
in the pathogenesis of NF1-OPG, genetically ablating neuroligin-3, or pharmacologically
inhibiting ADAM10 in Nf1OPG mice inhibits optic gliomagenesis [88].

In addition to the light-dependent regulation of NF1 optic gliomagenesis, a light-
independent neuronal pathway regulates OPG growth [89]. Certain germline Nf1 mutations
in RGCs induce neuronal hyperactivity by inhibiting the hyperpolarization-activated, cyclic
nucleotide-gated (HCN) channels. This RGC hyperactivity increases neuronal production
of midkine, which functions to recruit T cells that support OPG growth, as discussed in the
above section. Midkine-neutralizing antibodies rescued the Nf1-mutation-induced RGC
hyperactivity and inhibited tumor growth in the Nf1OPG mice [89].

The above-mentioned studies were conducted in the context of NF1-OPGs. Whether
neurons are important microenvironmental contributors to sporadic OPGs that do not
harbor the germline NF1 mutation remains to be determined.

3.4. Implications for Optic Pathway Glioma Treatment
3.4.1. Targeting the Neoplastic Cells

Because surgery may damage the optic pathway and radiation imposes risks for
secondary malignancies and cognitive issues in NF1-OPG, the first line treatment for
NF1-OPG is chemotherapy, which often involves platinum-based and vinca alkaloids-
based chemotherapy agents (e.g., carboplatin and vincristine) that target the neoplastic
(tumor) cells [13,90–95]. Because both NF1-associated and sporadic OPGs exhibit MAPK
hyperactivation, targeted therapy is a potential strategy. In addition, NF1 loss leads to the
hyperactivation of RAS and its downstream effectors (e.g., MEK/ERK, PI3K/AKT, and
mTOR). Targeting these pathways inhibits tumor growth in preclinical mouse models [30].
Ongoing clinical trials primarily aim to target these aberrantly hyperactive pathways within
the neoplastic cells [96,97].

3.4.2. Targeting the Microenvironment

Given the emerging evidence that the microenvironment (e.g., neurons, T cells, mi-
croglia) is critical for OPG pathogenesis, future clinical studies could consider adjuvant
strategies that target microenvironmental factors, including ADAM10, neuroligin-3, mid-
kine, CCL4, and CCL5. Environmental factors, especially light, could potentially serve
as targets for preventing or treating OPG; however, because light is important for the
development of visual pathway, preclinical studies should be conducted to determine the
optimal light conditions that can be used to treat OPG without affecting visual pathway
development. In addition, ADAM10 inhibitors and HCN activators may represent new
neuron-targeting strategies to treat OPG. In malignant high-grade gliomas, neuronal ac-
tivity leverages the ADAM10/neuroligin-3 axis to drive tumor growth [98,99], which has
led to a clinical trial that evaluates an ADAM10 inhibitor (INCB7839) in treating recur-
rent or progressive pediatric high-grade gliomas (NCT04295759). Lamotrigine, an HCN
agonist that is used clinically for treating seizures, rescues Nf1-mutation–induced RGC
hyperactivity and inhibits tumor growth in Nf1OPG mice.
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In addition to targeting the neuronal components, targeting the tumor immune mi-
croenvironment is another attractive strategy. Tumor associated microglia and macrophages
(TAMs) and myeloid-derived suppressor cells (MDSCs) are tumor-promoting in many
solid tumors [100,101]. Because TAMs are the most abundant immune cells in the tumor
microenvironment and can be associated with poor prognosis of patients [102], several
small-molecule inhibitors have been developed against TAMs and their inflammatory
signaling (e.g., in prostate, breast, ovarian, colon, and skin cancers) [103]. Although suc-
cessful cases of tumor inhibition were reported by small molecule treatment, liver and renal
toxicities remain issues [104,105].

The development of a TAM-targeting strategy for treating OPG remains an unmet
need. In preclinical models, CD8+ T cells were shown to secrete CCL4, which binds to
microglial CCR5 to stimulate the microglial secretion of CCL5 via the nuclear factor-κB
(NFkB) pathway [86]. Targeting these critical molecules in the immune regulation of OPG
may be an effective strategy. Additionally, using a natural small molecule to inhibit aldose
reductase was found to suppress microglia and macrophage migration and inflammatory
cytokine secretion in mouse eyes [106,107]. Studies also showed that aldose reductase
inhibition alleviated microglia activation triggered by beta-amyloid [66] and optic nerve
injury [108], suggesting that aldose reductase blockade plays a protective role in the CNS
and may be a therapeutic avenue for OPG. Table 1 is presented below.

Table 1. Genetically engineered mouse models used to study optic glioma.

Genotype Optic Glioma Phenotype Ref

Nf1flox/−; hGfap-Cre
Nf1flox/flox; hGfap-Cre

tumor developed by 2 months of age [35]

Nf1flox/neo; Gfap-Cre *# tumor developed by 3 months of age [34]

Nf1flox/neo; Ptenflox/+;
Gfap-Cre

tumor developed by 3 months of age [37]

Nf1flox/neo; Olig2-Cre tumor developed by 6 months of age [109]

Nf1flox/neo; Prom1-CreER tumor developed by 3 months of age [109]

Nf1flox/R681X; Gfap-Cre tumor developed by 3 months of age [39]

Nf1flox/G848R; Gfap-Cre no tumor detected by 3 months of age [39]

Nf1flox/C383X; Gfap-Cre 25% mice developed tumor by 3 months of age [36]

Nf1flox/R1278P; Gfap-Cre tumor developed by 3 months of age [36]

* neo, engineered neomycin insertion to disrupt Nf1 function. # the activity of the Gfap promoter was detected
around E15, whereas the activity of the hGfap promoter was detected around E12.

4. Discussion

Several rodent models were established for OPG studies (Table 1), in which the tumor
can be observed as early as two months of age. However, the study of OPG in larger
animal or non-human primates remains an unmet need, despite the recent development of
NF1 pig models [110,111] Whereas survival for patients with OPG is excellent, no effective
treatments for OPG-induced visual impairment are currently available [8,41,49,50,112,113],
likely because tumor-induced RGC loss cannot be reversed. Strategies that improve RGC
survival and regeneration and that promote the remyelination of RGC axons are needed to
rescue OPG-impaired vision.

Since the molecules/proteins in Table 2 are known activators for OPG pathophysiol-
ogy, the pharmaceutical development of agonists/antagonists to those molecules may be
beneficial for OPG therapy. Interestingly, neuroinflammation has been reported to promote
axon regeneration [114], with the chemokine CCL5 seen as a critical factor [115]; however,
CCL5 is also a mitogen that increases OPG growth. The balance of neuroinflammation
in axon regeneration and glioma growth is another key consideration in treating OPG. In



Brain Sci. 2023, 13, 1424 6 of 12

addition, the cell-intrinsic deficits induced by germline NF1 mutations (e.g., in neurons
and oligodendroglial cells) will need to be considered as these strategies are tested in the
context of NF1-OPG.

Table 2. Critical cell/tissue types and the corresponding molecules in optic glioma pathophysiology.

Cell/Tissue Type Molecule Role in Optic Glioma
Progression Ref

Retinal ganglion cells Midkine stimulate T cell Ccl4 production
by binding to LRP1 [86]

Retinal ganglion cells HCN

Nf1 mutation induced HCN
dysfunction induces neuronal
hyperactivity; modulates
midkine level

[89]

Optic nerve ADAM10
increased secretion in response
to light-induced neuronal
activity; cleaves neuroligin-3

[88]

Optic nerve Neuroligin-3 required for optic gliomagenesis [88]

CD8+ T cells CCL4 stimulate microglial Ccl5
production by binding to CCR5 [86]

Microglia CCL5 binds to CD44 on tumor cells
and increases tumor cell survival [86]

Microglia CX3CR1 required for tumorigenesis [73]

Glioma formation in the optic nerve causes axon degeneration [46], leading to vision
impairment. Thus, promoting axon regeneration is one of the goals for treating OPG.
In optic neuropathy, adeno-associated virus (AAV)-mediated gene therapy that targets
RGC is promising in axon regeneration and partial visual restoration in optic nerve crush
models [116,117]. Recently, the food and drug administration (FDA) approved Luxturna,
an AAV-based gene therapy for treating RPE65-positive retinal dystrophy [118], which
marked a clinical milestone. However, so far, no evidence shows that AAV-mediated gene
therapy is able to extend regenerative axons from RGCs to go through OPG in animal
models. More studies are required to warrant this therapeutic strategy in treating OPG.

In OPG patients, RGCs die followed by axon degeneration. Unfortunately, RGCs do
not regenerate or are not replaced after injury in humans. RGC transplantation seems a
feasible approach to replace RGCs, but the source of primary human RGC is limited. Stem
cell (SC)-derived RGCs provide the opportunity for cell replacement therapy. In addition to
replacing dead cells, SC-derived RGCs also improve endogenous RGC survival [119,120].
A study in non-human primates showed that axons from donor RGCs were observed in
the brain [121], suggesting that SC-derived RGC transplantation may restore the axon loss
in the optic nerve with OPG. Whether the microenvironment of OPG in the optic nerve
would affect donor RGC survival and their axon growth would be an interesting direction
for future study.

Radiation therapy is one of the most common treatments against tumors. Due to the
location of the OPG, radiation therapy seems to be a better approach than the surgical
procedure to eliminate a tumor in the optic nerve. However, several radiation-induced
side effects are detrimental (especially for patients with NF1), including visual distur-
bance (7–17% of patients who received radiation therapy), vasculopathy (higher incidence
of vasculopathy in patients <5 years than those >5 years after radiation therapy, 12.5%
vs. 3.8%), endocrine deficiency (growth hormone deficiency is the most frequent, 59%),
neurocognitive impairment, and secondary malignancy [122].

Bevacizumab (Avastin), which inhibits vascular endothelial growth factor (VEGF)
from binding to its receptors, is an anti-cancer drug considered for treating glioblastoma
(high-grade glioma) [123] and ovarian cancer [124]. A study showed that bevacizumab
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may improve vision in OPG patients [125]; yet the role of VEGF in OPG progression and
OPG-induced visual impairment remains to be determined.

5. Conclusions

Combinatory therapies of chemotherapy, gene therapy, and stem cell replacement
therapy may be required to reduce tumor size and rescue vision. Given that RGC rescue
strategies may increase the optic nerve neuronal activity that induces OPG growth [88,89]
and that some of the gene therapies are based on the deletion of an anti-tumor gene (e.g.,
PTEN) [126,127], the careful optimization of the treatment regimen (e.g., dose, sequence,
cell-specificity, and timing) will be required for the translational study. Although curing
OPG is full of challenges, several groups in the fields of visual sciences, stem cell biology,
and brain tumor biology are taking on bold research initiatives to develop collaborative
approaches for treating and/or slowing down the progression of OPG. Any successful
preclinical and/or clinical studies will help move the field of pediatric oncology forward
and give hope to patients who suffer from vision impairment caused by OPG.
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