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Abstract: Following viral infection, T-cells are crucial for an effective immune response to intra-
cellular pathogens, including respiratory viruses. During the COVID-19 pandemic, diverse assays
were required in pre-clinical trials to evaluate the immune response following vaccination against
SARS-CoV-2 and assess the response following exposure to the virus. To assess the nature and
potency of the cellular response to infection or vaccination, a reliable and specific activity assay was
needed. A cellular activity assay based on the presentation of short peptides (epitopes) allows the
identification of T cell epitopes displayed on different alleles of the MHC, shedding light on the
strength of the immune response towards antigens and aiding in antigen design for vaccination. In
this report, we describe two approaches for scanning T cell epitopes on the surface glycoprotein
of the SARS-CoV-2 (spike), which is utilized for attachment and entry and serves as an antigen in
many vaccine candidates. We demonstrate that epitope scanning is feasible using peptide libraries
or computational scanning combined with a cellular activity assay. Our scans identified four CD8
T cell epitopes, including one novel undescribed epitope. These epitopes enabled us to establish a
reliable T-cell response assay, which was examined and used in various experimental mouse models
for SARS-CoV-2 infection and vaccination. These approaches could potentially aid in future antigen
design for vaccination and establish cellular activity assays against uncharacterized antigens of
emerging pathogens.
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1. Introduction

T-cell activity is crucial in clearing viruses from infected tissues and establishing immu-
nity against infections caused by various viral families [1–3]. While the humoral response
involving antibodies can be significant during primary viral infections, T-cell responses play
important roles in the resolution of viral infection, including modulating disease severity
in humans and reducing viral loads [4]. Additionally, virus-specific memory T-cells can
persist in the body for many years after exposure [5].

The COVID-19 pandemic, caused by SARS-CoV-2, required the rapid development of
effective interventions and vaccines. Consequently, understanding the immune response to
SARS-CoV-2 infection and vaccination became critical. To evaluate the immune response to
SARS-CoV-2 infection or vaccination, it is essential to use tools that efficiently assess the
cellular response to the surface glycoprotein Spike (S), which the virus utilizes to bind to
target cells through protein trimers [6]. Therefore, the development of vaccines against
SARS-CoV-2 is centered around the expression and presentation of S to the immune system.
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To evaluate the efficacy and strength of the immune response post-vaccination or after
exposure to the virus, effective tools and assays are required.

Various methods are available for characterizing the humoral antibody response iden-
tifying the type and titers of binding antibodies in human or animal serum. Additionally,
virus or pseudoviruses neutralization assays can determine the potential of immune serum
to neutralize SARS-CoV-2 [7]. However, these assays alone cannot gauge the magnitude of
the cellular response. To address this limitation, our study aimed to develop an assay to
quantify the magnitude of the cellular response in mice following SARS-CoV-2 infection or
vaccination with SARS-CoV-2.

T-cell activity can be tested ex-vivo using a peripheral blood sample or tissue from
humans or animals. In the case of research animals, a cellular assay can also be performed
in-vivo. T-cell activity assays are based on the cellular responses resulting from recognising
an epitope—a peptide with a specific sequence of amino acids (AA). While the presen-
tation of epitope utilizes major histocompatibility complexes (MHC) class I and class II,
recognition is made by the T-cell receptor (TCR). This recognition by the T-cell leads to
cytokine secretion, increased division rate, and specific cytotoxic activity [8]. The presence
of an antigen is crucial in these assays, which may involve using whole proteins, protein
fragments or peptides for stimulation. The peptide length is a significant consideration, as
it affects the affinity of epitopes to their receptors and cellular activity [9].

Cytotoxic cellular activity can be assessed by exposing target cells presenting an epi-
tope to T-cells. Various approaches, using different reporter reagents, allow measurement
of killing activity either inside the animal (in-vivo cytotoxicity) or ex-vivo after isolating
T-cells from the animal and incubating them with target cells [10]. While helpful in as-
sessing T-cell properties, cytotoxic and proliferation assays are less suitable for epitope
screening due to the number of animals, the labor involved, and the time required for such
a task. Monitoring cytokine production and secretion provides a simple method to evaluate
T-cell activation. Activated T-cells produce various cytokines such as the Tumor Necro-
sis Factor α (TNFα), Interferon-gamma (IFNγ), Interleukin 2 (IL-2), Interleukin 4 (IL-4),
Interleukin 10 (IL-10), Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF),
and Macrophage Inflammatory Protein 1-alpha (MIP1α, also known as CCL-3). Quan-
tifying cytokine-producing cells can be achieved through intracellular staining (ICS) or
Enzyme-Linked Immunosorbent Spot (ELISpot) assays. Both methods are based on the
same principle, but ELISpot is simpler and more efficient [11–14].

To assess the cellular response to S protein following SARS-CoV-2 immunization or
exposure, we aimed to develop a specific and sensitive assay that accommodates various
scenarios and routes of exposure. Therefore, characterizing the antigen used to stimulate
T-cells, focusing on identifying dominant epitopes in the amino acids (AA) sequence of S,
was a crucial step.

In this report, we describe two different and complementary approaches for identifying
epitopes and determining their hierarchy. One method involves scanning a library of over-
lapping peptides representing the AA sequence of the protein. The second method relies
on computational (in-silico) screening to predict the affinity of epitopes to specific MHC-I
molecule alleles. The identification of these epitopes allowed us to develop ELISpot and ICS
assays to evaluate the cellular immune response to SARS-CoV-2 S protein. This combined
approach is relatively simple, cost-effective, and can be implemented in a short period.

2. Materials and Methods
2.1. Animals

All animals in this study were maintained according to the guidelines and regulations
for animal experiments at the Israel Institute for Biological Research (IIBR). All animal
experiments were approved by the IIBR Institutional Animal Care and Use Committee
(IACUC) (protocol numbers M-02-21, M-30-21). C57BL/6J (JAX 00064) and K18-hACE2
(JAX 034860) were purchased from The Jackson Laboratory (Bar Harbor, ME, USA). For in-
fection, virus stocks were diluted in phosphate-buffered saline (PBS) supplemented with 2%
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FBS (Sartorius Biological Industries, Beit Haemek Ltd., Israel). Animals were anesthetized
by intraperitoneal (i.p.) injection of Ketamin and Xylazine (Ketamine 75 mg/kg, Xylazine
7.5 mg/kg in PBS). They were infected by 20 µL intranasal (i.n.) instillation of 50 pfu
(SARS-CoV-2) or 104 pfu (Mouse Adapted SARS-CoV-2). Vaccination with VSV-∆G-spike
was performed under anesthesia by intramuscular (i.m.) injection of the described dose in
a volume of 50 µL. Animal experiments involving SARS-CoV-2 infection were conducted
in a biosafety level 3 (BSL3) facility.

2.2. Cells and Viruses

Vero E6 (ATCC® CRL-1586), Calu-3 (ATCC HTB-55), HEK293T (ATCC CRL-11268) and
HEK293-hACE2 (GenScript M00770) cells were maintained in Dulbecco’s Modified Eagle’s
Medium (DMEM) supplemented with 10% fetal bovine serum (FBS), MEM non-essential
amino acids, 2 nM L-Glutamine, 100 Units/mL Penicillin, 0.1 mg/mL streptomycin and
12.5 Units/mL Nystatin (Sartorius Biological Industries, Beit Haemek Ltd., Israel). Cells
were cultured at 37 ◦C, 5% CO2 and 95% humidity air atmosphere. SARS-CoV-2 (GI-
SAID accession EPI_ISL_406862) was kindly provided by the Bundeswehr Institute of
Microbiology (Munich, Germany) and propagated in Vero E6 cells. Mouse Adapted SARS-
CoV-2 (MA10 variant, NR-55329) was described previously [15,16], obtained through BEI
Resources, NIAID, NIH and propagated in Calu-3 Cells. VSV-∆G-spike was described
previously [7,17]. All viruses were tittered by plaque assay on Vero E6 cells as described
previously [18], aliquoted and stored at −80 ◦C until use.

2.3. Reagents

Preparation of stabilized soluble SARS-CoV-2 Spike protein was described else-
where [19]. Peptide synthesis was ordered from Sigma Aldrich (Rehovot, Israel). Spike
protein overlapping–peptide library, made of 316 peptides with a length of 15 amino acids
and an overlap of 11 amino acids, was ordered from sb-PEPTIDE (Saint Egrève, France),
dissolved in DMSO, and used at a final concentration of 2 µg/mL.

2.4. ELISpot Assay

Spleens were harvested and processed using a Gentle MACS (Miltenyi, Bergisch
Glabach, North Rhine-Westphalia, Germany) according to the manufacturer protocol, fil-
tered, separated on 1.084 gr/mL Ficoll Paque premium (GE17-5446-02, purchased via
Sigma Aldrich, Rehovot, Israel), washed in PBS and resuspended in medium. Detec-
tion of IFNγ-secreting cells was performed using a Mouse IFNγ single-Color ELISpot
kit (Cellular Technology Limited, Biotec, Bonn, Germany). In short, 4 × 105 spleno-
cytes were plated into 96-well ELISpot plates (provided in the kit) in duplicate and
incubated for 24 h at 37 ◦C in the presence of the designated peptides at a final con-
centration of 2 µg/mL. Visualization of IFNγ-secreting cells was performed according
to the manufacturer’s instructions. Quantification of cytokine-secreting cells was deter-
mined with an ImmunoSpot S6 Ultimate reader and analyzed with ImmunoSpot software
(https://immunospot.com/biospot-software.html (accessed on 20 August 2023) Cellular
Technology Limited, Bonn, Germany). Antigen-free cells supplemented with the medium
were used as a negative control.

2.5. Flow Cytometry

Spleens were harvested and processed using a Gentle MACS (Miltenyi, Bergisch
Glabach, North Rhine-Westphalia, Germany) according to the manufacturer protocol,
filtered, separated on 1.084 gr/mL Ficoll Paque premium, washed in PBS, and resuspended
in medium. For intracellular cytokine staining (ICS), cells were incubated for 5 h with
the designated peptides at a final concentration of 2 µg/mL in the presence of a protein
transport inhibitor cocktail (eBioscience 00-4980-93, ThermoFisher, Waltham, MA, USA) as
directed. Staining for extracellular markers was done using the antibodies listed below for
20 min at 4 ◦C, washed and surface stained. The cells were then fixed and permeabilized
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using a Cytofix/Cytoperm kit (554714, BD Biosciences, Moscow, Russia) according to
the manufacturer’s instructions before intracellular staining. Samples were collected on
an LSR-Fortessa flow cytometer (BD BioSciences), and data were analyzed using FlowJo
software v10 (Tristar, Ashland, OR, USA).

The following mAb clones were used for staining: anti-CD3-APC-Cy7 (145-2C11),
anti -CD8-Alexa-Fluor-700 (53–6.7), anti-IFNγ-PE (XMG1.2). Aqua or violet Live/Dead
cell stain (ThermoFisher) was used for the exclusion of dead cells. All antibodies were
purchased from Thermo Fisher (San Diego, CA, USA).

2.6. T-Cell Epitope Prediction

Binding prediction of CD8 T-cell epitopes was performed using the Immune Epitope
Database (IEDB) (http://tools.iedb.org/mhci/ (accessed on 15 September 2021)) supported
by the National Institute of Allergy and Infectious Diseases (NIAID). We used the prediction
method NetMHCpan EL4.1 tool [20] for the screening, which focused on H-2-Db and H-2-
Kb alleles, characteristic of the C57BL/6 strain and its derivatives

3. Results

To establish a cellular activity assay, we initially assessed whether an enzyme-linked
immunosorbent spot (ELISpot) assay would be suitable. This assay is known for its sensitiv-
ity and reproducibility in reporting the activation of individual cells among many cells in a
test well [11]. We immunized C57BL/6J mice with VSV-∆G-spike by intramuscular injection
to do this. Vaccination with this vaccine was described by us previously and demonstrated
robust humoral response as depicted by ELISA and neutralization assays [7,17]. After
one week, we sacrificed the mice and extracted splenocytes from the vaccinated and control
naive groups. ELISpot assay was performed using the stabilized S protein as the antigen
for stimulation. Negative control wells without stimulation antigen and positive control
wells with a mixture of PMA and ionomycin for cell viability were also included. In wells
where we used stabilized S protein as the antigen for stimulation, a non-specific IFNγ

secretion response was observed for antigen concentrations ranging from 1 µg/mL to
10 µg/mL (Supplementary Figure S1). This response was observed irrespective of whether
the cells were derived from vaccinated or control naive animals. The characteristic spots,
indicative of T-cell secretion, were not observed in these wells. The robust, unspecific
response possibly originated from other cell types, such as macrophages or dendritic cells,
which absorbed the foreign antigen and exhibited increased cytokine secretion.

Since using stabilized S as a stimulating antigen for ELISpot assay was not informa-
tive, we sought to identify T-cell epitopes that would be used for stimulation as antigen
peptides. In-silico epitope screening of the AA sequence of S was performed using the
prediction method NetMHCpan EL4.1 tool [20], for the H-2-Db and H-2-Kb alleles which
are characteristic of the C57BL/6J strain and its derivatives. The screening was performed
for 8 AA long epitopes, and the results produced a list of 2533 peptides arranged according
to their expected binding scores to MHC class I molecules. Higher scores indicated stronger
expected binding to MHC class I. We selected the top 10 epitopes from this list with binding
scores above 0.5 (Table 1). Of note, some of the epitopes identified in the screening were
also found to be dominant in the S protein of SARS-CoV, likely due to the high homology
between the AA sequences of S proteins of both viruses. Notably, all ten epitopes we
selected and the first 22 sequences on the list were epitopes that bind to the H-2-Kb allele.

To investigate the epitopes identified in the computational screen, we synthesized
the ten corresponding peptides for further functional biological activity assays. C57BL/6J
mice were vaccinated i.m. with VSV-∆G-spike at doses of 106 pfu or 107 pfu. After
seven days, splenocytes were isolated from the spleens of vaccinated and control naive
animals, and cellular activity was evaluated using an ELISpot assay with the various
synthesized peptides as antigens for stimulation. Positive control with a mixture of PMA
and ionomycin was used to assess cellular viability, and wells containing splenocytes from
naïve, unvaccinated animals were used as a negative control. Four of the ten peptides tested

http://tools.iedb.org/mhci/


Curr. Issues Mol. Biol. 2023, 45 7948

induced a substantial cellular response, as evaluated by IFNγ secretion in the ELISpot
assay. Peptides at positions S539 and S915 elicited strong responses depicted by hundreds
of spots observed (Figure 1). Peptides at positions S263 and S449 elicited a weaker but
substantial response compared to the negative control. The remaining peptides did not
induce a substantial response.

Table 1. Hierarchy of top 10 predicted CD8 T-cell epitopes.

SARS-CoV-2 Position SARS-CoV Position MHC Allele Sequence Score

263 250 H-2-Kb AAYYVGYL 0.71

325 H-2-Kb SIVRFPNI 0.86

434 H-2-Kb IAWNSNNL 0.54

449 436 H-2-Kb YNYLYRLF 0.73

503 H-2-Kb VGYQPYRV 0.71

511 497 H-2-Kb VVLSFELL 0.89

539 525 H-2-Kb VNFNFNGL 0.97

902 884 H-2-Kb MAYRFNGI 0.83

915 H-2-Kb VLYENQKL 0.57

1005 987 H-2-Kb QTYVTQQL 0.61
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Figure 1. Testing immunodominance of epitopes from in-silico screen following VSV-∆G-spike
vaccination. C57BL/6 mice were vaccinated i.m. with either 106 pfu (n = 3) or 107 pfu (n = 3) VSV-∆G-
spike and sacrificed after seven days. The pool of splenocytes from each vaccinated group was used
to evaluate IFNγ secreting T-cells by ELISpot assay in response to each peptide at a concentration
of 2 µg/mL. Numbers at the upper left of each well represent the number of counted spots. In the
positive control column (PMA + Ionomycin (PMA+I)), asterisk near the numbers represents wells in
which some part was saturated; TNTC—too numerous to count.

When we used a mixture of all ten peptides for stimulation at a concentration of
1 µg/mL for each peptide, a significant response was induced. Surprisingly, this response
was not stronger than that obtained with either epitope S539 or S915 alone. Quantification
of the results revealed that the hierarchy of epitopes was maintained following vaccination
with either 106 pfu (Figure 2A) or 107 pfu (Figure 2B). Yet, an increase in the number of
spots was observed following vaccination with the higher dose.
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Figure 2. Quantification of T-cell response to different spike epitopes. C57BL/6 mice were vaccinated
i.m. with either 106 pfu (A) or 107 pfu (B) VSV-∆G-spike and sacrificed after seven days. T-cell
response to the different epitopes was evaluated by IFNγ ELISpot assay. For each vaccination dose,
groups of three animals were used. Bars indicate means ± SEM. Values are normalized to spots per
106 seeded cells.

To further determine the dominance or hierarchy of the epitopes from the computa-
tional screen, we employed intracellular cytokine staining (ICS). Splenocytes from vac-
cinated and naïve animals were stimulated with the various peptides inducing T-cell-
dependent cytokine production. Using a Golgi inhibitor, cytokines accumulated within the
cells, and cytokine-positive cells were identified through ICS followed by flow cytometry
analysis. Like the ELISpot assay, ICS results showed that the two epitopes, S539 and S915,
induced the most robust response, while S449 induced a weaker response (Figure 3). Other
epitopes, including S263, which showed a significant response in the ELISpot assay, did
not induce a significant cellular response. It appears that, at least for splenocytes, the ICS
results did not offer any added value to the ELISpot assay described above. However,
it’s worth noting that for technical considerations, ICS may be more informative when
performed on cells isolated from other tissues, such as the lungs. It can also detect multiple
cytokines in each sample using several antibodies.

The AA sequence in the envelope protein of our VSV-∆G-spike vaccine virus is based
on the sequence of the original SARS-CoV-2 virus [17]. However, the vector used for infec-
tion and expression of a viral antigen is an important factor affecting protein expression,
processing, and presentation of epitopes [21,22]. To test the potential of the described
epitopes to induce T-cell response, we used SARS-CoV-2 infection to determine whether
the hierarchy of epitopes is maintained or changed following infection with the pathogen
itself. C57BL/6J mice were infected with the MA10 SARS-CoV-2 virus, carrying mutations
in the S protein that allow recognition and binding to the murine ACE2 receptor [15].
The infection was carried out at a sublethal dose of 104 pfu, and spleens were removed
for ELISpot assay three weeks after infection, using the synthesized peptides as epitopes
for stimulation (Figure 4A). The hierarchy of epitopes remained the same as established
following vaccination with VSV-∆G-spike. Epitopes S539 and S915 elicited a strong spe-
cific response (Figure 4), approximately 40-fold and 30-fold higher than the background
response, respectively, while S263 and S449 induced a specific and significant cellular
response, around 15-fold higher than the background response without antigen (Figure 4B).
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As mentioned in the introduction, scanning an overlapping peptide library as an
antigen for stimulation offers a fast epitope screening method without prior assumptions.
This method was described and successfully used in the past to identify SARS-CoV T-cell
epitopes [2,23]. MHC molecules can anchor linear peptides longer than the optimal length,
leading to T-cell response even if it may be less optimal. Additionally, this library ap-
proach can reveal the activation of both CD8 and CD4 T-cells. To assess cellular activity
in response to epitopes in the S protein of SARS-CoV-2, we utilized a peptide library con-
taining 316 overlapping peptides. Each peptide was 15 AA long with an 11 AA overlap.
C57BL/6 mice, immunized with VSV-∆G-spike, were sacrificed, and their splenocytes
were used for ELISpot activity assay with the different peptides from the peptide library
as stimulating antigens. Out of the 316 peptides, only four elicited a strong response
above the background: two wells in plate #1 (A10 and B10) and two wells in plate #2 (F7
and G7) (See Supplementary Figure S2). Peptide GWTAGAAAYYVGYLQ and peptide
GAAAYYVGYLQPRTF (well A10 and B10, respectively) induced response 3- fold higher
than the background of control unstimulated wells. The two peptides that induced the
weaker response contained the sequence AAYYVGYL, which corresponds with epitope
S263–270. Peptide LVKNKCVNFNFNGLT and peptide KCVNFNFNGLTGTGV (well F7
and G7, respectively) induced a substantial response, approximately 10-fold higher than
the background response (Table 2 and Supplementary Figure S2) and contained the immun-
odominant epitope S539–546. These two epitopes (namely S263 and S539, underlined in
Table 2) also emerged in the in-silico epitope screen, and the activation assay derived from
it. Peptides containing the AA sequence of S449, which induced a weak response following
the computational scan (Figures 1 and 2), did not induce any IFNγ response in the peptide
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library screen. Furthermore, the immunodominant S915 epitope, which elicited a strong
response equal to the S539 peptide (Figures 1 and 2), also did not induce a substantial IFNγ

response, as depicted by the peptide library-based ELISpot assay.
Curr. Issues Mol. Biol. 2023, 3, FOR PEER REVIEW 8 
 

 

 
Figure 4. Evaluation of Spike epitopes from in-silico screen following SARS-CoV-2 infection.
C57BL/6 mice were infected i.n. with 104 pfu MA10 SARS-CoV-2 and sacrificed after 21 days.
T-cell response to different Spike epitopes was evaluated on a pool of splenocytes from infected
animals (n = 5) by ELISpot assay (A) and quantified (B). Bars indicate means ± SEM of 3 replicates.
Values were normalized to spots per 106 seeded cells.



Curr. Issues Mol. Biol. 2023, 45 7952

Table 2. Peptides from library screen which induced T-cell activation.

Peptide Sequence Spots/Well Spots/106 Cells

GWTAGAAAYYVGYLQ 59 147

GAAAYYVGYLQPRTF 68 170

LVKNKCVNFNFNGLT 230 575

KCVNFNFNGLTGTGV 125 312

Control—no antigen 8.4 ± 5.9 * 20
* average of 32 wells ± stdev.

To demonstrate the applicability of our approach for epitope screening in the eval-
uation of the cellular response following SARS-CoV-2 infection, we used the two most
dominant epitopes, namely S539 and S915, identified in our screen. For that purpose, we
exposed K18-hACE2 mice to a low-dose (2 pfu) of SARS-CoV-2 virus by i.n. instillation,
or immunized animals by i.m. injection (106 pfu). Although high, this immunization
method was safe, causing only sporadic morbidity [18]. After seven days, the animals were
sacrificed, and their spleens were removed and processed. Enumeration of T-cells, specific
for the SARS-CoV-2 dominant epitopes, was performed by ELISpot assay using epitopes
S539 or S915. Intranasal instillation, even at a very low dose of virus (2 pfu), induced a
cellular response, depicted by hundreds of foci per million cells. Immunization by i.m.
injection induced a 10-fold increase in cellular response (Figure 5). It should be noted
that similar response values were obtained using the S539 epitope (Figure 5A) or the S915
epitope (Figure 5B).
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Figure 5. T-cell activation following SARS-CoV-2 infection. K18-hACE2 mice were exposed to SARS-
CoV-2 by i.n instillation (2 pfu) or i.m. immunization (106 pfu). T-cell activation was evaluated at
day seven by ELISpot assay using peptide S539 (A) or S915 (B) at a concentration of 2 µg/mL. Bars
indicate means ± SEM from 3 animals per group.

4. Discussion

T-cells play a crucial role in the clearance of various viruses, including respiratory
viruses such as influenza, Respiratory Syncytial Virus (RSV), SARS-CoV, and MERS [2,24].
Developing assays to evaluate the cellular response following exposure to a pathogen
is essential for understanding its immunopathology and developing vaccines against it.
Initially, we attempted to develop a cellular activity assay based on ELISpot using the
whole stabilized S protein as an antigen for stimulation. However, this approach induced a
non-specific reaction with increased IFNγ secretion without characteristic individual spots
(Supplementary Figure S1). To overcome this obstacle, we focused on finding specific T-cell
epitopes within the S protein.

In this study, we used two different and complementary approaches to screen T-cell
epitopes of the SARS-CoV-2 surface glycoprotein (S). One approach involved peptide
library screening, which allows a relatively quick and simple screening of many peptides to
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identify potential epitopes presented by MHC-I and MHC-II molecules. The disadvantages
of this method include its relatively high cost and potential availability issues, especially
during local or global crises like the COVID-19 pandemic. Additionally, the affinity of
MHC-I molecules for peptides depends on their length, with a preference for peptides of
8–9 AAs in the case of mouse MHC-I [25]. The second approach utilized in-silico epitope
screening, which predicts the binding strength of a peptide to a specific MHC-I molecule
based on its AA sequence and length. This method reduces the number of peptides in the
screen and correlates well with in-vitro results [26].

The computational screen identified over 2500 epitopes, with 4 of the top 10 epitopes
inducing cellular activity. Among these, epitopes S263, S449, S539, and S915 were identified
as dominant (Figure 1). Notably, S263, S449 and S539 were previously demonstrated as
epitopes of the S protein of SARS-CoV, while S915 was identified as a unique epitope in this
study. The peptide library screening yielded only two regions with a significant reaction in
the ELISpot assay, both containing the sequences AAYYVGYL and VNFNFNGL located
at positions S263 and S539, respectively. The results from both screening methods were
consistent and identified dominant epitopes for CD8 T-cells.

Our in-silico analysis of CD8 T-cell epitopes identified a set of 10 potential immun-
odominant epitopes, each consisting of 8 amino acids. Subsequent experimental validation
using the ELISpot assay confirmed the authenticity of four of these epitopes, with S539
and S915 ranking highest in the hierarchy. Interestingly, an overlapping peptide library
screening revealed peptides containing the sequence S539–546 while notably lacking the
sequence S915–922. Although we haven’t addressed this discrepancy any further, it is
conceivable that including additional flanking amino acids in the library’s peptides (each
consisting of 15 amino acids) may have impeded the binding affinity of some peptides but
not others.

We also examined the impact of the viral vector used on epitope recognition. In our
study, both SARS-CoV-2 and VSV-∆G-spike expressing the S protein were tested, and the
hierarchy of epitopes remained for both vectors. However, the magnitude of the cellular
response following SARS-CoV-2 infection was higher than after vaccination with VSV-
∆G-spike, although a lower dose was used for MA10 infection (104 pfu) in comparison to
VSV-∆G-spike (107 pfu). The tropism and superior proliferation ability of the virulent virus
may contribute to better activation of the innate immune system and the cellular arm.

Interestingly, a study published previously used an overlapping peptide library for
screening of T-cell epitopes in several SARS-CoV-2 proteins [27]. In that study, the au-
thors used Venezuelan Equine Encephalitis replicon particles (VEE VRPs) expressing
SARS-CoV-2 viral proteins, including the spike protein, to immunize mice. For epitope
scanning, they used an overlapping peptide library to evaluate T-cell response to the differ-
ent epitopes using ICS for IFNγ. Similar to our study, the authors identified S263 and S538
(similar to S539) as immunodominant epitopes in the spike protein. However, they also
identified other epitopes, such as S471, S510 and S820, which were not identified by us.

In contrast, our study identified epitopes S449 (previously identified in SARS-CoV)
and S915 (as a novel epitope), which were not described by Zhuang et al. A few differences
may explain the results obtained in the two studies. The vectors used for vaccination (VEE
VRPs vs. VSV) and the vaccination dose may affect the level of antigen expression and
the consequent epitope dominance and hierarchy. Additionally, while in our study, we
used a mouse-adapted SARS-CoV-2 virus to directly infect C57BL/6 mice, Zhuang et al.
transduced mice by Ad5-ACE2 before infection with SARS-CoV-2.

After identifying the dominant epitopes, we demonstrated the utilization of such
epitopes in T-cell activity assays for various SARS-CoV-2 research studies. In the study
presented here, we demonstrated the use of two dominant epitopes selected by our screen to
evaluate the cellular response following i.n. or i.m. exposure to SARS-CoV-2. This method
also served us in additional studies and proved valuable for evaluating the response in
different mouse models following vaccination or infection [18,28].



Curr. Issues Mol. Biol. 2023, 45 7954

The emergence of SARS-CoV-2 variants of concern (VOC) during the COVID-19
epidemic, raised the troubling notion of compromised immunity in vaccinated populations
or in patients that recovered from previous SARS-CoV-2 infection. Few studies have
shown that while prior humoral immunity against VOC was affected, the potential cellular
immune response remained relatively unaffected by VOC [4,29,30]. In that respect, our
selected epitopes remained intact in most VOC; hence, the robustness of cellular assays
using these epitopes as stimulating antigens is predicted to remain intact.

In conclusion, using the two described approaches efficiently discovers dominant
T-cell epitopes for previously unknown or emerging biological agents. These epitopes
can be integrated into various cellular activity assays to evaluate the immune response or
develop components against the infectious agent.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/cimb45100502/s1, Figure S1: ELISpot assay using stabilized S;
Figure S2: Epitope scanning using SARS-CoV-2 Spike overlapping peptide library.
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