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Abstract

Gene expression differences between distinct cell types are orchestrated by specific sets of 

transcription factors and epigenetic regulators acting upon the genome. In plants, the mechanisms 

underlying tissue-specific gene activity remain largely unexplored. Although transcriptional and 

epigenetic profiling of individual organs, tissues, and more recently, of single cells can easily 

detect the molecular signatures of different biological samples, how these unique cell identities are 

established at the mechanistic level is only beginning to be decoded. Computational methods, 

including machine learning, used in combination with experimental approaches enable the 

identification and validation of candidate cis-regulatory elements driving cell-specific expression. 

Synthetic biology shows great promise not only as a means of testing candidate DNA motifs, but 

also for establishing the general rules of nature driving promoter architecture and for the rational 

design of genetic circuits in research and agriculture to confer tissue-specific expression to genes 

or molecular pathways of interest.

Introduction

In plants and other eukaryotes, gene activity is regulated at multiple levels, with 

transcriptional control being the primary and most studied mode of gene expression 

regulation [1]. Whether a given gene is transcribed in a particular cell type, developmental 

stage, or growth condition is dictated by: (1) the presence and chromatin accessibility 

of cis-regulatory elements (CREs) in the gene’s promoter and distal regulatory regions, 

(2) the availability of corresponding trans-acting transcription factors (TFs) that recognize 

these CREs, and (3) the physical interactions between these TFs, the basal transcriptional 

machinery (RNA polymerase II, the Mediator complex, and general TFs), and epigenetic 
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regulators (such as chromatin remodelers or histone modifiers) [1]. Epigenetic factors, 

some positive and some negative, directly or indirectly alter chromatin structure and make 

CREs either accessible or inaccessible for binding by TFs and the basal transcriptional 

apparatus, ultimately regulating the frequency of transcription initiation and elongation [2]. 

Noteworthy, many of the TFs and epigenetic regulators are themselves expressed in a 

developmental stage-, tissue-, or condition-dependent manner, thus orchestrating what target 

genes are, versus are not, expressed in a given cell [3].

In the past 20 years, genome-wide transcriptome and epigenome profiling have become 

increasingly technically accessible, leading to ample quantitative data having been collected 

by the scientific community on a variety of species, tissues, and growth conditions. 

Nonetheless, in plants and other eukaryotes, little is known about how tissue-specific 

expression is established. Hypothetically, to generate a narrow pattern of gene expression 

that is restricted to only some tissues, developmental stages, or growth conditions by a 

combination of positive and negative TFs (Figure 1a), two general mechanistic scenarios 

are possible. A limited set of narrowly expressed transcriptional activators and positive 

chromatin remodelers can work together to turn the gene “on” in only some cell types, 

conditions, or growth stages (Figure 1b). Alternatively, a combination of broadly expressed 

transcriptional activators and remodelers can turn the gene “on” ubiquitously/constitutively, 

but another set of more narrowly expressed transcriptional repressors and epigenetic 

regulators then turn the gene “off” in most tissues/stages/conditions, leaving the gene of 

interest “on” only in some spatiotemporal domains that lack these negative regulators 

(Figure 1c). Presumably, in native promoters, a combination of CREs bound by positive 

and negative, broadly expressed and spatio-temporally restricted regulators is at play in the 

regulation of a majority of genes in plants and other multicellular organisms (Figure 1d). 

Hence, for many promoters, the identification of individual CREs conferring tissue-specific 

expression may not be trivial or at all possible when using classical transgene promoter 

bashing [4] or the latest CRISPR version of this top-down strategy with the targeted 

elimination of candidate DNA elements directly in the genome [5]. Demonstrating that a 

CRE is overrepresented in genes expressed in a particular tissue, stage, or condition (by 

using computational methods) and is required for that pattern of expression (by showing that 

mutating the element abolishes the expression enrichment) does not necessarily mean that 

the CRE is capable of and sufficient for conferring the tissue- or stage-specific expression. 

The latter needs to be experimentally demonstrated and this is where synthetic biology 

methods can help.

In a bottom-up approach, synthetic distal and proximal promoters or enhancers are 

constructed from tandems of individual CREs and placed upstream of a well-characterized 

natural or synthetic core promoter driving a gene of interest, usually a fluorescent or 

luminescent reporter, or a histochemical marker, thus allowing for convenient visualization 

of promoter activity patterns (Figure 1e). This approach makes the assumption that the CRE 

of interest can recruit a tissue- or stage-specific transcriptional activator that interacts with 

positive epigenetic regulators and general TFs bound at the core promoter to help bring 

RNA polymerase II and trigger transcription (Figure 1a). Indeed, such an experimental 

strategy has proven to be successful at conferring hormone-, stress- and pathogen-inducible 

behavior to synthetic promoters made out of homo- and heteromeric repeat tandems of the 
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TF binding site [6]. In contrast, stacking candidate CREs enriched in specific cell types 

does not always produce narrowly expressed synthetic tissue-specific promoters [7], with 

gene activity detected in several cell types (e.g., most green tissues, or most of the root) and 

leaking to non-target organs. Perhaps, this is not surprising since many CREs are recognized 

by several sequence-related TFs that are members of a gene family with overlapping 

domains of expression and similar DNA binding preferences [8]. Furthermore, even the best 

promoters or tissue-specific cis-elements identified computationally and/or experimentally 

do not always translate well to other plant species. For example, the ATATT CRE from 

the Agrobacterium rhizogenes rolD gene initially described as a root-specific DNA motif in 

plants [9] and employed in the generation of synthetic root-expressed promoters in tobacco 

[10] was later shown to function as a green tissue element in rice [11]. In addition, since 

most classical studies that explore the cell specificity of a CRE typically test a limited 

number of tissues and growth conditions in a single model species, the specificity and 

orthologous function of the sequence cannot be reliably inferred beyond pointing to possible 

expression enrichment relative to other tested tissues in one or a handful of plant species.

In this review, we describe how the tissue specificity of gene expression and the role of 

epigenetic regulators have been approached historically, what state-of-the-art experimental 

technologies and computational methods are available currently, and the first strides 

synthetic biology has made to move this field of plant molecular genetics forward.

Molecular genetics approaches

Tissue-specific gene expression differences between plant organs have been traditionally 

studied by classical molecular techniques such as northern blots, RT-PCRs, microarrays or 

RNA-seq. These methods were typically performed on whole organs and thus lacked the 

resolution needed to distinguish between the different cell types that make up an organ 

or a tissue. To hone in on specific cell types of interest, laser capture microdissection 

(LCM) was developed, where a tissue fragment of interest is physically excised from a 

larger frozen or fixed tissue section using a laser [12], and then RNA is extracted and 

one of the aforementioned transcriptomic methods is applied (Figure 2a). Although mRNA 

expression analysis on LCM samples provides more refined tissue-specific gene expression 

information than whole-tissue samples [12,13], the relatively limited spatial resolution, high 

labor, technological demands, and sample size limitations prompted the development of 

alternative approaches [14]. Thus, for example, to collect cell-type-specific information, 

organs could be protoplasted and the cells sorted by fluorescence activated cell sorting 

(FACS, Figure 2b) based on the expression of tissue-specific fluorescent marker genes [15–

17]. This approach led to the generation of tissue-specific gene expression maps and the 

association of gene expression patterns with cell fate [18].

The tissue-specific transcriptomes obtained from the aforementioned studies were, indeed, 

average transcriptomes from pools of cells. However, no two cells are identical. Therefore, 

a new technology with the ability to map the transcriptomes of individual single cells 

was pursued. In 2009, Tang and collaborators developed single cell mRNA sequencing, 

scRNA-seq (Figure 2c) [19]. This new method uncovered the complexity of individual 

cell transcriptomes within the same tissue showing, for example, that different transcript 
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isoforms could be expressed in the same cell. The throughput of these initial scRNA-seq 

experiments was, however, relatively low. Further improvements in cell isolation and sorting 

by assigning unique DNA barcodes to each cell, along with the encapsulation of a single 

cell in a nanoliter droplet where genome-wide mRNA sequencing takes place, gave rise to 

a high-throughput version of scRNA-seq we know today [20,21]. The advent of scRNA-seq 

and subsequent modifications of this technology [22] allowed the unraveling of the average 

transcriptome of a highly complex tissue into clusters of single-cell gene expression profiles, 

which led to the identification of new cell subtypes and the association of transcriptional 

programs with developmental stages and cell fates in species such as Arabidopsis [23,24], 

maize [25,26], and rice [27–29].

Cell-specific gene expression patterns and, therefore, cell identities and their differentiation 

trajectories unveiled by scRNA-seq are programmed by both DNA sequence and chromatin 

modifications (see below). These DNA-based programs consist of combinations of CREs 

capable of recruiting suites of TFs and epigenetic regulators, both positive and negative, 

that cumulatively dictate the dynamics of an individual gene’s activity (Figure 1a,d, 

[30]). Thus, identifying CREs and deciphering the syntax rules that govern their function 

are central to understanding gene regulation. Experimentally, the identification of CREs 

targeted by TFs or epigenetic effectors of interest in vivo is usually carried out by 

chromatin immunoprecipitation (ChIP)-seq [31,32,33] or DNA affinity purification (DAP)-

seq [34]). Furthermore, enzyme- and immuno-tethering methods, such as DNA adenine 

methyltransferase identification (DamID; [35,36]), chromatin immunocleavage (ChIC), 

chromatin endogenous cleavage (ChEC; [37])), cleavage under targets and release using 

nuclease (CUT&RUN; [38]), and cleavage under targets and tagmentation (CUT&Tag; 

[39]), have been developed to map TF binding sites at a whole-genome level [40]. On 

the other hand, classical studies aiming to determine the role of putative CREs in the 

regulation of a specific gene of interest have typically leveraged promoter bashing, i.e., 

the systematic analysis of a series of truncated promoters driving a reporter gene. By 

monitoring the effect of the presence/absence of candidate CREs on reporter activity, the 

function of CREs as enhancers (increased activity) or silencers (decreased activity) of gene 

expression can be deduced [4]. More recently, CRISPR/Cas9-mediated deletions of CREs 

in the native genomic context in vivo have been carried out, resulting in the generation of a 

series of promoter alleles in genes of interest via genome editing [41]. This new approach 

can mimic an accelerated process of domestication in crops such as tomato [5,42,43], 

maize, barley, rice [44] or the orphan Solanaceae crop, groundcherry [45]. Despite these 

practical advances, the complexity of the interactions between different CREs, TFs and 

epigenetic environments makes the dissection of complex promoters a formidable challenge, 

and the prediction of the effects of specific allelic variants difficult. Nonetheless, better 

understanding of these CRE networks would be helpful for the generation of more targeted 

promoter edits. Overlaying cistrome and epicistrome maps with cell-specific distribution 

patterns of DNA methylation, histone modifications, and chromatin accessibility (see 

below), the availability of CREs for TF and epigenetic regulator binding can start to 

be inferred. This information is fundamental to our understanding of how transcriptional 

programs are associated with cell identity and fate and, therefore, how CREs could be 

leveraged by synthetic biology to reprogram crops of interest.
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Epigenetic approaches

Cell and tissue identity is determined not only by the genes that are expressed, but also 

by the genes that are transcriptionally inactive. The transcriptional status of much of the 

genome is established and maintained via epigenetic mechanisms including maintenance 

and de novo DNA methylation (Figure 2d), RNA-directed DNA methylation (RdDM), 

changes in chromatin composition, and histone modifications (Figure 2e) [46]. The 

three-dimensional (3-D) organization of chromatin also plays a part in determining 

the accessibility of genes by placing genes in proximity to their regulatory elements, 

and patterns of 3-D topology can be reflective of the transcriptional status. Recent 

methodological advances, such as Hi-C, make this a growing area of research [47]. The 

ability to engineer epigenetic changes and control chromatin structure and 3-D organization 

in plants has the potential to answer interesting scientific questions and to provide new tools 

and strategies for crop improvement [48].

Methylation of the fifth position of the cytosine ring (5mC) is a common epigenetic 

mark and can occur in several sequence contexts: CG, CHG, or CHH (where H refers 

to A, T or C) [46]. CG methylation in the gene body is generally associated with active 

expression, while CG methylation of the promoter and transcription start site (TSS), as 

well as CGH, and CHH methylation, are all generally associated with transcriptionally 

inactive DNA (Figure 2d) [46]. DNA can also be methylated at adenine (6mA), although 

the role of 6mA in the regulation of gene expression in plants is still largely unclear [49]. 

Experimentally, methylated DNA sites are typically detected with the help of methylation-

sensitive restriction enzymes, anti-5mC or anti-6mA antibodies, bisulfite conversion of 

unmethylated cytosines, or nanopore sequencing [50,51]. Bisulfite sequencing (BS-seq or 

MethylC-seq) has been initially applied at the single-cell level in mammalian systems [52]. 

Li et al. [53] developed a single-cell approach to measure methylation in plants called 

bisulfite-converted randomly integrated fragments sequencing (BRIF-seq). BRIF-seq was 

used to measure methylation in the microspores from four maize tetrads, and while the 

microspores within a tetrad were highly similar, the methylation patterns between tetrads 

showed a level of heterogeneity that suggests tetrads undergo differential methylation 

reprogramming [53].

The methylation pattern of DNA has been shown to help define the transcriptional profile 

and, therefore, the identity of a cell. Kawakatsu et al. [54] used FACS to isolate six different 

cell types from the Arabidopsis root meristem. These different cell types were then subjected 

to BS-seq and RNA-seq to compare the methylation and gene expression patterns, revealing 

cell-type specific methylation patterns [54]. Recently, the CLASSY (CLSY) family of 

putative chromatin remodeling factors was found to regulate tissue-specific methylation 

in Arabidopsis [55]. Data from CLSY reporters, MethylC-seq, and small-RNA seq in 

Arabidopsis flower buds, ovules, mature leaves, and young rosettes revealed that different 

tissues display unique patterns of DNA methylation, small RNAs, and CLSY expression. 

Using combinations of CLSY and RdDM mutants, it was found that specific CLSY 
expression profiles define tissue-specific epigenomes, primarily via the RdDM pathway 

[55], providing a mechanism whereby the expression of specific chromatin remodelers or 

combinations of proteins establishes tissue identity through epigenetic marks.
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The mechanisms of DNA methylation establishment and maintenance have been 

manipulated to achieve targeted epigenetic modifications in plants. Targeted demethylation 

of 5mC in Arabidopsis has been demonstrated using zinc finger and CRISPR technologies 

[56]. Likewise, heritable gene-specific CHH [57] and CG [58] methylation has also been 

achieved in Arabidopsis using CRISPR. For example, using dCas9 fused to a bacteria-

derived methyltransferase led to de novo methylation of both CG and CHH sites in the 

FLOWERING WAGENINGEN (FWA) promoter and was able to rescue the associated 

late-flowering mutant phenotype [58]. In combination with cell- or tissue-specific Cas9 

proteins or gRNAs, this kind of engineering would allow for the epigenetic modification of a 

gene of interest with cellular or tissue-type resolution [59–61].

DNA methylation is not the only epigenetic parameter that controls gene expression. While 

5mC methylation can directly prevent some TFs from accessing their respective CREs, 

it also recruits chromatin remodeling complexes that bring about changes in chromatin 

structure and, ultimately, compactness that affects the physical accessibility of DNA to 

the transcriptional machinery. Chromatin accessibility can be experimentally assessed at 

a whole-genome level using high-throughput methods such as the assay for transposase 

accessible chromatin (ATAC)-seq (Figure 2f), micrococcal nuclease (MNase)-seq, DNase-

seq, and formaldehyde-assisted isolation of regulatory elements (FAIRE)-seq [62]. ATAC-

seq [63] can also be employed at the single-cell (sc) level, revealing cell-specific chromatin 

accessibility differences. ATAC-seq experiments using single nuclei from Arabidopsis roots 

found that the chromatin accessibility patterns of cell type-specific marker genes mirror 

transcription levels, suggesting that cell identity is regulated at the level of chromatin 

accessibility [24]. ATAC-seq of single nuclei has also been experimentally demonstrated 

in soybean (Glycine max) [64]. Dorrity et al. [65] coupled scATAC-seq of Arabidopsis 

roots with published scRNA-seq data to uncover endodermal cell types that could not be 

resolved by scRNA-seq alone. This combined dataset was also used to identify TFs and 

CREs that may define cell-type specific expression [65]. Marand et al. [66] employed 

scATAC-seq in maize to map CREs on genomic scale. By grouping single cells based 

on chromatin accessibility, these researchers were then able to use chromatin accessibility 

as a surrogate for, or in coordination with, RNA expression data from known cell-type 

or tissue-specific markers. This study revealed that maize domestication has relied on the 

selection of agronomically favorable CRE alleles [66].

The structure of chromatin is cumulatively controlled via multiple post-translational 

modifications of histone proteins. Some of these are associated with repressed (e.g., 

H3K9me2/3, H3K27me3, H2Aub1) and some with transcriptionally active (e.g., H3K4me3, 

H3K36me3, H2Bub1, and histone acetylation) chromatin (Figure 2e) [67]. Commercial 

antibodies are available for many of the modified histones, thus enabling ChIP-based 

detection of most types of histone marks. Besides ChIP-seq, the aforementioned alternative 

approaches such as DamID and CUT&RUN allow for the detection of specific histone 

modifications throughout the genome with almost nucleotide-level resolution [62]. 

Cumulatively, histone tail modifications dictate the transcriptional status of genes to 

determine cell identity [68], define developmental transitions, such as flowering [69,70], 

and establish environmental stress memory, such as to recurrent drought or pathogen attack 

[67].
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Genome-wide mapping of histone modifications enables the comparison of histone profiles 

of different tissues and can pinpoint key differences that distinguish divergent cell types 

[71]. For example, Lee et al. employed FACS in Arabidopsis to isolate normal stomatal 

guard cells and guard cells undergoing dedifferentiation and then compared the histone 

modifications associated with these two cell types [72]. ChIP-seq analysis of H3K4me3- and 

H3K27me3-associated genes identified several peaks of differential methylation between 

these two cell types. The H3K27me3 set of genes was enriched for pathways involved in 

transcription and regulation of postembryonic development. When Polycomb Repressive 

Complex 2 activity (and therefore, H3K27me3) was knocked down using a guard cell-

specific miRNA, a dedifferentiation phenotype was observed in stomata. These results 

suggest that in stomatal guard cells, H3K27me3 distribution determines cell fate by 

regulating progression through the normal guard cell lineage [72]. In animal systems, the 

study of H3K4me3 and H3K27me3 histone marks via ChIP-seq has been implemented at 

single-cell resolution [73], but scChIP-seq has yet to be employed in plants [52].

In theory, native cell identity can be reprogrammed via selective modifications to the 

epigenome [74]. By targeting the promoters of key genes via synthetic epigenetic factors, 

local chromatin structure can be selectively altered to either activate or inactivate gene 

expression. Such regulators can be generated from a customized zinc finger DNA-binding 

domain, transcription activator-like effector (TALE) or dCas9 fused to a well-characterized 

epigenetic factor [74] and expressed in a restricted spatiotemporal pattern from a native or 

synthetic tissue-specific promoter. To develop such technology into a versatile molecular 

tool, a diverse collection of epigenetic regulators that alter DNA methylation, histone tail 

modifications, and/or nucleosome density would be required. Although plants are lagging 

behind in this arena, high-throughput studies in animals and yeast indicate that it is possible 

to identify epigenetic regulators capable of triggering local chromatin remodeling and 

altering gene expression [75,76].

Computational methods

With the advancement of computing power and the development of machine learning (ML) 

tools, CRE identification and syntax underlying tissue-specific gene expression can now be 

examined from another perspective. Furthermore, synthetic biology methods have opened 

up a new path for the modular testing of genetic elements from both a bottom-up and a 

top-down approach, but still face the same design-build-test cycle limitations as traditional 

molecular biology methods. To tackle these issues, databases of ‘-seq’ data and big data 

analysis tools should be utilized to guide experimental approaches.

CRE prediction begins with determining what genes are or are not expressed under certain 

stimuli and/or in a specific tissue using high-throughput methods like RNA-seq. The 

identification of gene expression patterns greatly benefits from a large dataset, which can 

be pulled from general expression data repositories such as NCBI’s Sequence Read Archive 

(SRA) [77] or species-specific repositories such as the Arabidopsis RNA-seq database [78] 

(Table 1). Once those sequences are mapped to a genome, tools like the binding site 

estimation suite of tools (BEST) can be used to identify the promoter region upstream 

of the sequences [89]. Finally, these promoter sequences can be cross-referenced with 
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databases containing CREs, with examples of plant-specific databases like PLACE [79], 

PlantCARE [80], and PlantProm [81], to determine whether known or uncharacterized 

CREs are driving the observed tissue-specific expression pattern (Table 1). More recently 

developed high-throughput sequencing methods such as ChIP-seq, DAP-seq and ATAC-seq 

can greatly increase the accuracy of novel CRE prediction by identifying TF binding sites 

that may themselves either be, or contain, cis-regulatory elements [62]. PlantPAN3.0, an 

analysis navigator tool, provides accessibility to annotated ChIP-seq data in its PCBase 

database with descriptions of the type of regulatory factors involved in the experiment, the 

tissue, and other details about each ChIP-seq experiment [83] (Table 1).

A popular method of predicting tissue-specific gene expression and identifying respective 

CREs is ML, or more specifically, supervised ML. The general pipeline of a supervised ML 

algorithm starts with training a computer to recognize known patterns within a training set 

of data where the DNA features to be predicted (e.g., CREs, chromatin accessibility, DNA or 

histone methylation status) responsible for tissue-specific expression are known, improving 

upon the predictions made by this pattern recognition iteratively (Figure 2g). The ‘rules’ 

learned by the algorithm can then be used to identify CREs, and other features, in novel 

sequences. In recent years, the focus has begun to shift to deep learning, an evolution of 

ML, to identify DNA features through the use of artificial neural networks, i.e., enabling 

the machine to process information similar to a human brain [90]. For CRE prediction, the 

preferred approach tends to employ Convoluted Neural Networks (CNNs) which repeatedly 

apply self-adjusting filters to the sequence data to identify sequence characteristics with 

potential regulatory roles [91]. This means that if the data used to train the model contain 

tissue specificity information, then the algorithm will be able to predict tissue-specific 

CREs, methylation, DNA accessibility, etc., across different tissues. For example, Wang et 

al. developed a deep learning algorithm, Smart Model for Epigenetics in Plants (SMEP), 

which uses a CNN approach to predict multiple types of epigenomic modifications using 

published sequencing data [92]. The data pulled for this study were comprised of BS-seq, 

single-molecule real-time sequencing (SMRT-seq), ChIP-seq, and RNA-seq. The data used 

to train, validate, and test the model came from a number of plants, including Arabidopsis, 

maize, and rice. With the wide variety of plant species data included in this study, this 

algorithm was able to predict six types of modifications with at least 80% accuracy: 5mC, 

6mA, m6a, H3K4me3, H3K27me3, and H3K9ac. SMEP exists online as a web server, 

making it user-friendly and available to the scientific community.

In addition to predicting epigenomic modifications, ML models can also help identify 

methylation features that contribute the most to accurate prediction of differential gene 

expression across tissues. N’Diaye et al. utilized six different ML algorithms along with 

a deep learning neural network to analyze methylation profiles from different tissues with 

a 0.81 prediction accuracy of differentially expressed genes between leaf and root tissues 

in wheat [93]. The algorithm highlighted that DNA methylation of the promoter, the CDS, 

and the exon in the context of CG methylation contribute most to the predictive power of 

these models [93]. In both CRE and DNA accessibility prediction in the context of tissue-

specificity, ML algorithms have proved essential to solving the mystery of tissue-specific 

gene regulation. For additional examples and an ML-focused review on the applications of 

this technology in plant genomics, we refer the reader to this excellent recent review [94].
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Overall, the use of computational modeling and prediction can create a positive 

feedback loop in identifying tissue-specific DNA elements, where experimental data guide 

computational prediction models and these models, in turn, guide experimental studies 

focused on tissue-specific gene expression, as has already been done in mammals [95]. 

Additional bioinformatics software such as TOMTOM, a motif comparison tool, can 

help compare predicted elements to CRE databases to discriminate between novel and 

known motifs [96]. Synthetic biology methods can then be employed to generate synthetic 

promoters, from the computationally predicted tissue-specific CREs, fused to genes of 

interest in order to create complex genetic circuits with novel expression patterns that can be 

both discrete and tunable (Figure 2g).

Synthetic biology approaches

Beyond the aforementioned candidate DNA element stacking to generate synthetic 

promoters (Figure 1e), plant biologists have not yet fully exploited the power of synthetic 

biology, and little progress has been made to date in understanding plant promoter 

architecture from the perspective of tissue specificity. Most published studies employing 

synthetic promoters to understand the rules of nature utilize constitutively active TF/CRE 

combinations. Nonetheless, some of the findings are relevant, and the technical approaches 

and genetic resources developed are potentially applicable to studying the mechanisms 

behind promoter tissue specificity.

Jores et al. generated a series of synthetic core promoters and tested them in transient 

expression assays in tobacco [97]. The designs of synthetic promoters (Figure 3a) were 

guided by the rules discovered from the self-transcribing active regulatory region sequencing 

(STARR-seq) analysis of thousands of Arabidopsis, maize and sorghum native core 

promoter fusions with barcoded GFP transiently expressed in tobacco epidermis and in 

maize mesophyll protoplasts [97]. Not surprisingly, the inclusion of the consensus TATA-

box (Figure 3a), Initiator and Y-patch elements significantly increased reporter activity 

irrespective of the GC content of the rest of the core promoter sequence, with TATA having 

the most dramatic positive effect. In agroinfiltrated tobacco, the strongest synthetic core 

promoter sequences were comparable in strength to the Cauliflower Mosaic Virus 35S core 

promoter, but in maize protoplasts, the same promoters were much weaker than 35S. As 

expected, adding native CREs for TCP, NAC and/or HSF families of TFs upstream (but not 

downstream) of a 35S core promoter to generate synthetic proximal promoters (Figure 3a) 

further boosted reporter expression, with combinations of multiple CREs resulting in higher 

reporter activity than single or double CRE combinations [97]. Moving the location of a 

CRE within the proximal promoter (up to 156bp upstream of the transcription start site) did 

not change proximal promoter activity. Although no tissue-specific effects were directly 

assessed in this work, tobacco epidermis versus maize protoplast transient expression 

systems had different effects on promoter activities, with species-specific (tobacco versus 

maize), cell-specific (epidermis versus mesophyll) and condition-specific (intact cells versus 

protoplasts) effects potentially being responsible for the observed differences [97].

Cai et al. built dozens of synthetic proximal promoters out of random combinations of 

three to ten CREs naturally found in constitutive plant, plant pathogen, and viral promoters, 
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including AtACT2, AtUBQ10, AtUBC, 35S, A. tumefaciens NOS, and the Mirabilis Mosaic 

Virus MMV promoters [98]. The CREs were subcloned in small tandems upstream of 

the TATA box and sandwiched between a 19bp degenerate sequence upstream and a 

43bp degenerate sequence downstream of the CRE-TATA combination (Figure 3b). The 

strength of a series of these “MynSyn” promoters was evaluated in transiently transformed 

Arabidopsis protoplasts via dual luciferase assays. Different CRE arrangements, spacing, 

and the distance from the TSS were tested [98]. While altering the relative positions and 

spacing between CREs did not have any major effects on reporter gene expression, moving 

CREs to more distal locations away from TATA, i.e. over 50 bp upstream (Figure 3b), 

weakened their effects. Four of the MynSyn promoters were also tested in B. rapa, N. 
benthamiana and H. vulgare protoplasts, with the promoters displaying comparable relative 

activities in all dicots, but little to no expression was detected in the monocot H. vulgare. 

Stably transformed Arabidopsis plants were also generated and MynSyn promoter activity 

was said to have been detected in most tissues, but no detailed tissue distribution analysis 

was reported [98].

Jores et al. [99] utilized STARR-seq to test the effect of the enhancer region from the 

proximal 35S promoter on reporter expression. The enhancers were placed individually in 

different locations with respect to GFP (upstream, within the coding region, or downstream, 

Figure 3c) and the effect of that position on GFP mRNA accumulation was examined 

via RNA-seq of agroinfiltrated tobacco leaves, with upstream enhancer position giving 

the strongest expression and internal position eliminating the effect of the enhancer [99]. 

Mutant versions of the 35S core promoter and 35S enhancer (all of their possible nucleotide 

variants) were also screened for activity via STARR-seq, with mutations in the TATA box 

and in previously defined A, B and C 35S enhancer regions (Figure 3c) that harbor CREs for 

ERF, TCP, NAC, GATA, bHLH and bZIP TF families having the most detrimental effects. 

Reshuffling of the enhancer A, B, and C regions and placing no, one, two or all three 

domains in random positions was also performed [99]. Notably, none of the combinations 

achieved the same level of GFP activation as the natural 35S enhancer, suggesting that 

the intervening sequences and/or the exact spacing between the A, B and C regions are 

important for the enhancer’s maximum activity [99], a key finding that may be of relevance 

to the rational combining of tissue-specific CREs in synthetic promoters.

Several exciting studies have implemented orthogonal transcription regulation systems in 

plants using synthetic activators and repressors acting upon synthetic proximal promoters 

harboring combinations of respective CREs. Although some of these studies did not 

involve tissue-specific regulation of synthetic promoters, they either illuminated critical 

limitations of the designs and experimental systems or shed light on the basic structural 

rules of promoter activity, thus providing a roadmap for constructing and testing different 

types of synthetic regulators and promoters in the future. Schaumburg et al. [100] 

employed chemically inducible synthetic TFs comprised of yeast or bacterial DNA-binding 

domains (DBDs) and Arabidopsis transcriptional repression domains to tune down natural 

constitutive promoters (35S, figwort mosaic virus (FMV) and nopaline synthase (NOS)) 

retrofitted with tandems of 2 to 8 copies of GAL4- and LexA-targeted CREs positioned 

upstream of the proximal promoter, upstream of TATA-box-containing core promoter, or 

downstream of the TSS (Figure 3d). Using dual Firefly and Renilla Luciferase as the 
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readouts of input repressor levels and output target promoter activities, inferences about 

circuit functionality could be made for only 42 out of 128 genetic circuits tested in 

Arabidopsis protoplasts, indicating that many of the designs did not work as intended 

and suggesting that, going forward, multiple versions of each circuit component need to 

be tested to identify those that meet the designer’s needs [100]. For example, only some 

DBD-repression domain combinations were functional, and those that worked were effective 

with only some native promoter scaffolds. Importantly, the variability between different 

batches of protoplasts was often greater than the differences between different constructs. 

Although statistical data normalization could correct for some of the variability in the data, 

and TATA-proximal location for CREs (Figure 3d) was found to be the most effective 

for constitutive promoter repression, solid conclusions could not be drawn for many of 

the circuit designs, including inferring the optimal CRE spacing or the most effective 

TF-promoter combinations. Similar variability issues were encountered with sorghum 

protoplasts, highlighting the limitations of protoplast transient expression systems for these 

types of quantitative analyses [100].

Belcher et al. [101] chose to exploit transient assays in tobacco to test several synthetic TFs 

made from yeast DNA binding domains fused to viral or plant transcription activation or 

repression domains. These TFs targeted synthetic promoters composed of native yeast CRE 

variants stacked in sets of five upstream of one of 29 native plant minimal promoters driving 

fluorescent reporters or histochemical marker genes (Figure 3e). Importantly, tissue-specific 

or stimulus-regulated behavior of synthetic reporters was achieved in stable Arabidopsis 

transformants upon placing the artificial TFs under the control of native seed-specific 

(At2S3) or phosphorus-deficiency-triggered (AtPht1.1) plant promoters [101]. Furthermore, 

by expressing the reporters from synthetic hybrid promoters assembled from combinations 

of CREs recognized by multiple synthetic TFs, simple Boolean logic circuits were 

successfully generated [101]. These genetic devices can perform basic logical operations 

by integrating the input signals from several TFs to regulate the expression of the output 

gene of interest in a pre-defined manner, turning the target gene “on” or “off” dependent on 

the presence or absence of CREs and their cognate TFs. Belcher et al. built the OR (with 

CREs for two positive TFs) and NOR (with CREs for two negative TFs) logic gates, as 

well as a killer switch (with CREs for both a positive and a negative synthetic TF) [101], 

thus providing a clear path toward the future design of complex promoters where tissue 

and stimulus specificity could be combined to create novel expression patterns with the 

complexity typically seen in native promoters.

Brophy et al. in their groundbreaking work went one step further and successfully conferred 

refined patterns of gene expression to synthetic promoters in plants by placing simple 

genetic circuits that recapitulate basic YES, NOT, OR, NOR, AND, NAND, IMPLY and 

NIMPLY logic under the control of synthetic TFs driven by native promoters [102]. First, 

a series of ten synthetic TFs was built from each of ten different bacterial DBDs fused 

to a viral transcription activation domain and a nuclear localization signal (NLS). These 

TFs were then tested in transient assays in tobacco co-infiltrated with respective synthetic 

promoter constructs that stack six identical CREs for one of these synthetic transcription 

factors upstream of a 35S minimal promoter driving GFP (Figure 3f). A 3- to 45-fold GFP 
reporter activation was observed for nine out of ten synthetic TFs, with most constructs 
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showing no cross-reactivity against non-cognate CREs [102]. The same ten bacterial DBDs 

were also turned into transcriptional repressors by fusion to the NLS tag alone and used 

in combination with a constitutively expressed 35S:GFP reporter harboring a single CRE 

downstream of the TSS (Figure 3g), presumably, to interfere with transcription elongation. 

Five out of ten of these constructs led to the reporter downregulation, with up to 13-fold 

repression achieved. With activator constructs, reducing the number of CREs in the target 

promoter lowered the GFP induction (Figure 3h). With repressor constructs, placing the 

CRE upstream rather than downstream of the TSS further increased the level of constitutive 

promoter repression achieved, and stacking of two CREs upstream of the TSS made the 

promoter downregulation even stronger, reaching 64-fold (as compared to just 1.5-fold 

repression with a single downstream CRE) (Figure 3i) [102].

Once the optimal components were determined, Brophy et al. successfully implemented 

the aforementioned Boolean logic circuits in tobacco transient assays [102]. Importantly, 

several of the designs, including the AND gate (Figure 3j), contain synthetic promoters 

composed of CREs for both positive and negative TFs, more closely mimicking the structure 

of native promoters. A set of nine logic devices was also built for stable Arabidopsis 

transformants, with two tissue-specific promoters, root-cap specific SOMBRERO and 

columella- and stele-expressed PIN4, employed to drive synthetic TFs. Finally, several 

versions of a simple BUFFER gate were implemented in Arabidopsis, where a lateral 

root cell-specific GATA23 promoter drives the expression of a synthetic positive TF that 

activates the stabilized dominant version of an Aux/IAA gene SLR1 via one to six CREs 

in its proximal promoter region. Both the control GATA23p:slr1 fusion and all buffer gates 

resulted in the dominant suppression of lateral root development. To tune the expression of 

slr1 down, point mutations were introduced into the CREs, with resulting transgenic plants 

showing partial lateral root suppression [102]. Thus, the strength of the output gene in logic 

devices can be not only turned up by stacking multiple copies of CREs, but also down by 

mutating CREs and thus reducing their ability to recruit their respective TFs.

The aforementioned proof-of-concept plant studies shed light on some of the foundational 

rules of core and proximal promoter structure and explore different ways to harness native 

promoters to express synthetic TFs to in turn control synthetic promoter activity. However, 

none of these reports leverages native tissue-specific TFs to directly control custom-built 

synthetic promoters made of cognate CREs in order to achieve desired patterns of activity. 

No systematic high-throughput efforts to build such tissue-specific promoters from scratch 

have been reported for plants. However, this has been done in some animal systems. In 

one noteworthy zebrafish study, Smith et al. compacted a library of all possible 6bp DNA 

sequences (4096 in total) into 184 unique synthetic 15-mer elements and cloned them 

upstream of a 42bp viral TATA-box-containing E1b minimal promoter driving GFP (Figure 

3g) [103]. The 184 constructs were then individually tested in vivo for their ability to 

support GFP expression in zebrafish embryos. Interestingly, 11 of these constructs were 

expressed in only one of the 15 zebrafish tissues evaluated in the study [103], with four of 

them investigated in more detail. Three of the four 15-mers maintained their very specific 

expression pattern even after their minimal promoter was swapped, or when the sequences 

were trimmed to 9bp. Not surprisingly, concatenation of five identical copies of the 15-mer 

elements into tandems (Figure 3g) enhanced expression levels and maintained the original 
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tissue-specific GFP expression patterns [103]. Likewise, concomitant expression of two 

constructs with different tandems resulted in additive patterns of expression. Unexpectedly, 

when two or three different tandems were combined into a single promoter, the tissue-

specific expression of the reporters was largely abolished, highlighting the importance 

of relative positions (e.g., distance from the minimal promoter) and/or local sequence 

environment surrounding the putative regulatory elements for their proper activity [103]. 

Although this finding implies the possible difficulty of generating promoters with desired 

patterns of expression when combining individually characterized DNA elements, it also 

suggests that the entire 6bp-long CRE diversity can be screened via a manageable number 

of constructs. In plants, working with 184 constructs stably transformed into Arabidopsis 

may be very laborious given the need to analyze several transgenic lines for each construct. 

Transient expression in protoplasts, tobacco leaf epidermis, or Arabidopsis seedlings is 

limited to only some tissues and is impractical for the types of work aiming to identify 

cell-specific elements. On the other hand, multi-cellular transient transformation systems 

such as hairy roots [104] may be more appropriate.

The obvious limitation of the zebrafish study by Smith et al. [103] is that the 6bp 

putative CREs are likely to harbor only half-sites for a majority of dimeric TFs, so the 

184-construct design is probably limiting. The 15-mers used for sequence compaction likely 

favored heterodimeric TF binding but excluded homodimer recruitment. On the other hand, 

increasing the size of putative CREs to accommodate possible dimers increases the number 

of constructs that need to be generated and screened. For example, in one animal study that 

aimed to test a library of all possible 10-mer DNA sequences, 52,429 100bp-long 10-copy 

homomeric tandems had to be evaluated [105]. These were placed upstream of a viral 

minimal promoter driving GFP (Figure 3h) and tested for activity in HeLa and five other 

types of mammalian cell lines using FACS. Although the goal of that study was to identify 

strong constitutive promoters, it became clear that no sequence tandem worked equivalently 

well in all cell types, suggesting some level of tissue specificity of all expressed synthetic 

promoter tandems [105]. In plants, given the scarcity of stable cell lines, such a design 

would probably not be practical, especially for the systematic evaluation of cell-specific 

expression.

Concluding remarks

The molecular underpinnings of tissue specificity in plants remain largely unexplored. 

Deciphering the rules of nature and key transcriptional and epigenetics mechanisms will 

be critical to our understanding of the fundamentals of plant biology and to our ability 

to harness the power of plants for developing new, more resilient, higher-yielding crop 

varieties. Early efforts in the area of plant synthetic biology show promise for both the 

discovery of the basic principles and for developing practical applications. High-throughput 

assays capable of linking candidate CREs with expression levels and patterns will be critical 

for training predictive ML models that could in turn be used to inform and accelerate the 

design-build-test cycle characteristic of synthetic biology approaches. Future investments in 

these areas are expected to provide the much-needed insights into the molecular mechanisms 

underlying tissue-specific gene activity.
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Figure 1. 
Transcriptional regulation underlying tissue specificity of gene expression. (a) Native 

promoters harbor multiple cis-regulatory elements (CREs) that bind a combination of 

positive (red) and negative (cyan) regulators (transcription factors, co-factors, and epigenetic 

effectors) that, respectively, assist and interfere with the RNA polymerase II (RNAPII) and 

general TF (GTF) (gray) recruitment to the core promoter. Arrow marks the transcription 

start site (TSS). (b, c, d) Different expression patterns of positive (red) and negative (cyan) 

regulators can result in restricted domains of target gene expression (green) if negative 
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regulators negate the effects of positive regulators. (e) Typical synthetic reporter constructs 

harboring tandems of identical or divergent CREs placed upstream of a well-characterized 

core promoter, such as (−46)35S, driving a reporter gene, such as GFP, Luciferase, or GUS.
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Figure 2. 
Technical approaches conferring spatial resolution to cell/tissue-specific transcriptome 

profiling. (a) In LCM, a target cell or group of cells is isolated from a tissue section using a 

UV laser beam. (b) FACS enables single cell (protoplast) or cell lineage isolation, typically 

based on the expression of a fluorescent marker, but depends upon the availability of 

fluorescent cell lines or a cell-type specific fluorescent signal. (c) Single cell transcriptome 

profiling encapsulates single cells or nuclei into uniquely barcoded nanodroplets that 

are subjected to next-generation sequencing. (a-c) Gene expression profiling is achieved 

via one of several techniques. RT-qPCR, RNA-seq and scRNA-seq are currently some 

of the most relevant transcriptomic methods. RT-qPCR measures the expression of a 

limited number of genes of interest. Expression values represent an average of a whole 

sample, potentially masking variability between cell subpopulations or individual cell types. 

RNA-seq provides a more detailed view of the tissue-specific transcriptome as it collects 

expression information for all genes in the genome in parallel. The number and quality of 

the data points are limited by the same constraints as RT-qPCR, with cell dissection/sorting 

providing only bulk tissue-level resolution. scRNA-seq enables the identification of tissue-

specific gene expression profiles at a whole-genome level, but with single-cell resolution, 
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allowing for clustering of groups of cells based on their common expression characteristics. 

(d) CG cytosine methylation in the promoter region is associated with transcriptionally 

repressed genes, as are CHG and CHH methylation (not shown). CG cytosine methylation 

in the gene body is associated with transcriptionally active genes. (e) H2Aub1, H3K9me2/3, 

and H3K27me3 histone modifications are associated with transcriptionally repressed genes, 

while H2Bub1, H3K44me3, and H3K36me3, and histone acetylation modifications are 

associated with transcriptionally active genes. (f) scATAC-seq identifies the genomic 

locations of accessible chromatin, which correlates with transcriptional activity, with single-

cell resolution. Open chromatin is readily accessed by a transposase that cuts and inserts 

adapters into the genomic DNA, creating adapter-flanked fragments. Single cells or nuclei 

are then encapsulated in individual droplets where the genomic fragments of each cell are 

amplified and barcoded prior to sequencing. (g) ML integrates the data from one or many 

methods of analyzing tissue-specific expression to make predictions about tissue-specific 

expression, regulation by CREs, or CRE accessibility, and to identify novel CREs. These 

data can then be used to leverage synthetic biology approaches for testing ML models, 

furthering the discovery of the regulatory framework of tissue-specific expression, and 

engineering novel regulatory circuits.
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Figure 3. 
Schematic representation of genetic constructs that harbor synthetic promoters employed 

in the study of optimal promoter architectures. TSS – transcription start site. LexA, Gal4 

– bacterial and yeast DNA binding domains, respectively. AD – transcription activation 

domain. RD – transcription repression domain.
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Table 1.

List of relevant databases that may be useful when analyzing the link between tissue-specific gene expression 

and CREs in plants.

Database Scope Type of data Description Established Last 
Updated

Size

NCBI Sequence 
Read Archive 
(SRA) [70]

Non-specific NGS reads Repository of raw, 
high-throughput “next 
generation” sequencing 
(NGS) data with minimal 
processing. Includes data 
related to both DNA and 
RNA.

2007 2022 62+ petabases

Arabidopsis 
RNA-seq 
database [71]

Species-specific:
• Arabidopsis 
thaliana

RNA reads Archive that contains 
Arabidopsis thaliana 
RNA-seq libraries 
integrated from multiple 
databases and reprocessed 
with a standardized 
pipeline.

2019 2019 20,000+ 
RNA-seq 
libraries

PLACE [73] Plant-specific CREs Database containing the 
nucleotide sequences of 
plant cis-acting regulatory 
DNA elements derived 
from published reports.

1999 2007 469 entries 
(motifs)

PlantCARE [74] Plant-specific CREs Database that contains 
plant specific cis-acting 
regulatory elements, 
enhancers, and silencers.

1999 2000 417 CREs

PlantProm [75] Plant-specific CREs Collection of RNA 
polymerase II proximal 
promoter sequences.

2002 2009 576 annotated 
promoters

PCBase [76] Species-specific:
• Arabidopsis 
thaliana
• Oryza sativa
• Zea mays
• Solanum 
lycopersicum
• Glycine max
• Arabidopsis 
lyrata
• Gossypium 
hirsutum

ChIP-seq data Database that utilizes plant 
ChIP-seq experimental 
data to identify TF 
binding sites for 7 
model plants. Part of 
the PlantPAN3.0 navigator 
tool that contains 17,230 
TFs and 4,703 TF binding 
site matrices across 78 
plant species.

2018 2018 421 processed 
ChIP-seq 
datasets

RegSite [77] Plant-specific CREs Database of annotated 
plant regulatory elements.

2014 2016 3032 motifs

PlantDHS [78] Species-specific:
• Arabidopsis 
thaliana
• Brachypodium 
distachyon
• Oryza sativa

CREs and 
DNAse I 

hypersensitive 
sites

Utilizes histone 
modification, RNA-seq 
data, nucleosome 
occupancy, TF binding 
sites, and DNA sequencing 
to create a collection of 
DNase I hypersensitive 
sites for specific plant 
species. Data for cotton 
have also been collected 
and will be integrated 
into the database in the 
upcoming future.

2015 2016 14.8G of 
processed data
Coming soon: 
73.9G of 
cotton data

AGRIS [79] Species-specific:
• Arabidopsis 
thaliana

CREs and TFs Information resource for 
promoter CREs , TFs and 
target genes. Contains 
three databases, AtTFDB 
(TFs) and AtcisDB 

2003 2019 • 1,400 TFs
• 29,388 
annotated 
genes
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Database Scope Type of data Description Established Last 
Updated

Size

(CREs), and AtRegNet 
(TF-gene interactions).

plantpromoterdb 
[80]

Species-specific:
• Arabidopsis 
thaliana
• Oryza sativa
• Physcomitrium 
patens
• Poplar

CREs Database that provides 
promoter annotations 
for specific plant 
species. Annotations 
include TSS, core 
promoter elements, and 
transcriptional regulatory 
elements.

2007 2020 • 308 genes 
for 
Arabidopsis
• 242 genes 
for rice

JASPAR CORE 
[81]

Eukaryote-specific TF binding 
sites

Database of curated 
TF binding profiles for 
multiple species. Contains 
position frequency 
matrices (PFMs) to 
describe TF-DNA 
interactions. PFMs can be 
interpreted as motifs or TF 
binding profiles.

2004 2022 1955 PFMs

RGPDB [82] Root-specific:
• Zea mays
• Glycine max
• Sorghum 
bicolor

Genes and 
promoters

Database containing root-
specific genes and 
promoters for a limited set 
of plant species.

2020 2020 > 1200 genes
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