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Abstract: Glioblastoma (GBM) is characterized by aggressive growth and high rates of recurrence.
Despite the advancements in conventional therapies, the prognosis for GBM patients remains poor.
Immunotherapy has recently emerged as a potential treatment option. The aim of this systematic
review is to assess the current strategies and future perspectives of the GBM immunotherapy strate-
gies. A systematic search was conducted across major medical databases (PubMed, Embase, and
Cochrane Library) up to 3 September 2023. The search strategy utilized relevant Medical Subject
Heading (MeSH) terms and keywords related to “glioblastomas,” “immunotherapies,” and “treat-
ment.” The studies included in this review consist of randomized controlled trials, non-randomized
controlled trials, and cohort studies reporting on the use of immunotherapies for the treatment of
gliomas in human subjects. A total of 1588 papers are initially identified. Eligibility is confirmed
for 752 articles, while 655 are excluded for various reasons, including irrelevance to the research
topic (627), insufficient method and results details (12), and being case-series or cohort studies (22),
systematic literature reviews, or meta-analyses (3). All the studies within the systematic review were
clinical trials spanning from 1995 to 2023, involving 6383 patients. Neuro-oncology published the
most glioma immunotherapy-related clinical trials (15/97, 16%). Most studies were released between
2018 and 2022, averaging nine publications annually during this period. Adoptive cellular transfer
chimeric antigen receptor (CAR) T cells were the primary focus in 11% of the studies, with immune
checkpoint inhibitors (ICIs), oncolytic viruses (OVs), and cancer vaccines (CVs) comprising 26%,
12%, and 51%, respectively. Phase-I trials constituted the majority at 51%, while phase-III trials were
only 7% of the total. Among these trials, 60% were single arm, 39% double arm, and one multi-arm.
Immunotherapies were predominantly employed for recurrent GBM (55%). The review also revealed
ongoing clinical trials, including 9 on ICIs, 7 on CVs, 10 on OVs, and 8 on CAR T cells, totaling
34 trials, with phase-I trials representing the majority at 53%, and only one in phase III. Overcoming
immunotolerance, stimulating robust tumor antigen responses, and countering immunosuppressive
microenvironment mechanisms are critical for curative GBM immunotherapy. Immune checkpoint
inhibitors, such as PD-1 and CTLA-4 inhibitors, show promise, with the ongoing research aiming
to enhance their effectiveness. Personalized cancer vaccines, especially targeting neoantigens, offer
substantial potential. Oncolytic viruses exhibited dual mechanisms and a breakthrough status in
the clinical trials. CAR T-cell therapy, engineered for specific antigen targeting, yields encouraging
results, particularly against IL13 Rα2 and EGFRvIII. The development of second-generation CAR T
cells with improved specificity exemplifies their adaptability.
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1. Introduction

Glioblastoma (GBM) retains its status as the foremost prevalent and most malignant
glial tumor. It accounts for over 50% of all primary brain tumors in the United States,
presenting an annual incidence rate of approximately 3 cases per 100,000 individuals [1].
To date, GBM remains characterized by its high aggressiveness and unresponsiveness to
nearly all current standard-of-care interventions, which encompass the combined use of
chemotherapy and radiation post-surgical resection. Indeed, in spite of these aggressive
treatment regimens, the median overall survival (OS) of afflicted patients extends no more
than 15 months from their initial enrollment, just preceding the commencement of radiation
therapy (RT) and concurrent chemotherapy (CT) involving temozolomide. This outcome is
accompanied by a disheartening 5-year OS rate of less than 10%.

The difficulty of GBM treatment is primarily attributed to the limited population of
therapy-resistant glioblastoma stem cells (GSCs) and the intricate tapestry of inter- and
intra-tumor heterogeneity, which comprises various GBMs subtypes and stromal cells
within the tumor microenvironment (TME) [2]. The GSCs bear significant responsibility
for the recurrence of glioblastoma and its resistance to therapy, owing to their robust DNA
repair mechanisms, [2] multi-drug-resistance traits, [3] and adept immune evasion tactics.
The GBM TME plays a pivotal role in governing cellular behavior, driving GSC adaptability,
and ultimately fostering therapeutic resistance [2,4,5]. Furthermore, GBM cells attract and
modify immune cells distinct from microglia, reinforcing tumor growth and cultivating an
immunosuppressive TME through the secretion of cytokines, extracellular vesicles, and the
formation of connecting nanotubes [5].

The effectiveness of immunotherapy has already been firmly established across various
solid tumor types, including melanoma, prostate cancer, non-small-cell lung cancer, and
renal cell carcinoma. This success marks a notable advancement in the burgeoning field of
immunotherapy, which hinges on the concept of re-educating and harnessing the patient’s
immune response to combat tumors. These methods have progressively found their place
in the treatment of a variety of cancers, including those afflicting the brain. Contemporary
strategies for immunotherapy in cancer treatment primarily revolve around immune
checkpoint blockade (ICB) agents. Furthermore, therapeutic vaccines, adoptive cell therapy,
monoclonal antibodies (mAbs), and oncolytic viruses also constitute essential components
of current immunotherapeutic approaches [1,4,6–12].

Numerous clinical trials have explored the application of immunotherapy in the con-
text of GBMs. Nevertheless, due to the wide array of immunotherapy approaches employed,
the varying selection of molecular targets, and the diversity of combination therapy strate-
gies, questions persist concerning the effectiveness and safety of immunotherapies for GBM.
Additionally, there is a noticeable absence of a recent comprehensive systematic review
addressing the current strategies and future prospects of GBM immunotherapy [1,6,7].

This systematic literature review comprehensively examines a range of prominent im-
munotherapeutic strategies aimed at combating GBMs, including adoptive cellular transfer
chimeric antigen receptor (CAR) T and NK cells, oncolytic viruses (OVs), cancer vaccines
(CVs), immune checkpoint inhibitors (ICIs), and multifaceted combination therapies. Ad-
ditionally, we provide a brief discussion on the rationale underpinning these approaches,
while shedding light on their inherent limitations and the unique challenges that arise
during the treatment of GBMs.

2. Methods
2.1. Literature Review

The systematic review was performed following the Preferred Reporting Items for
Systematic Reviews and Meta-Analysis (PRISMA) guidelines [12]. Two authors performed
a systematically comprehensive literature search of the PubMed, Ovid MEDLINE, and
Ovid EMBASE databases. The first literature search was performed on 10 August 2023,
and the search was updated on 3 September 2023. A combination of keyword searches
was performed to generate a search strategy. The search keywords, including “glioblas-
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toma”, “immunotherapy”, “target therapy”, “vaccines”, “monoclonal antibodies”, “overall
survival”, and “progression free survival”, were used in both AND and OR combinations.
Studies were retrieved using the following Medical Subject Heading (MeSH) terms and
Boolean operators: (“glioma” OR “glioblastoma” OR “GBM”) AND (“immunotherapy”
OR “target therapy”) AND (“outcomes” OR “prognosis” OR “progression free survival”
OR “overall survival”). Other pertinent articles were identified through reference analysis
of selected papers. A search filter was set to show only publications over the designated
period: 1990–2023.

All studies were selected based on the following inclusion criteria: (1) English lan-
guage; (2) clinical trials, including: single-arm or double-arm studies, and among them ran-
domized controlled or non-randomized controlled trials; (3) studies on GBM immunother-
apy strategies, both as stand-alone and combined therapies with CT and/or RT; and
(4) studies including at least OS and progression free survival (PFS) among the outcomes
analyzed. The following exclusion criteria were employed: (1) editorials, case reports, case
series, cohort studies, literature reviews, and meta-analyses; (2) studies that did not clearly
define the methods and/or results; and (3) studies that did not report data on PFS or OS.

The list of identified studies was imported into Endnote X9 and duplicates were
removed. Two independent researchers (E.A. and P.P.P.) checked the results according to
the inclusion and exclusion criteria. A third reviewer (M.Z.) resolved all disagreements.
Then, the eligible articles were subject to full-text screening.

2.2. Data Extraction

For each study, we abstracted the following information: authors, year and journal
of publication, title, name and phase of the clinical trial, number of patients, diagnosis,
follow-up length, immunotherapy treatment, and outcomes.

2.3. Outcomes

Our primary outcomes were OS and PFS related to GBM immunotherapy.

2.4. Risk of Bias Assessment

The Newcastle–Ottawa scale (NOS) [13] was used to assess the quality of the included
studies. A quality assessment was performed by assessing the selection criteria, compara-
bility of the study, and outcome assessment. The ideal score was 9. Higher scores indicated
a better quality of studies. Studies receiving 7 or more points were considered high-quality
studies. Two authors (E.A. and P.P.P.) performed the quality assessment independently.
When discrepancies arose, the papers were re-examined by the third author (Figure 1).

2.5. Statistical Analysis

Descriptive statistics were reported, including ranges and percentages. All statistical
analyses were performed using the R statistical package v3.4.1 http://www.r-project.org
(accessed on 6 September 2023).

http://www.r-project.org
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Figure 1. Modified Newcastle–Ottawa scale.

3. Results and Discussion
3.1. Literature Review Results

A total of 1588 papers were identified after duplicate removal. After title and abstract
analyses, 763 articles were identified for a full-text analysis. Eligibility was ascertained for
752 articles. The remaining 655 articles were excluded for the following reasons: (1) not
relevant to the research topic (627 articles), (2) lack of method and/or results details
(12 articles), case series and cohort studies (22 articles), and systematic literature review
or meta-analysis (3 articles). All studies included in the analysis had at least one or more
outcome measures available for one or more of the patient groups analyzed. Figure 2 shows
the flowchart according to the PRISMA statement.
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Figure 2. PRISMA flowchart.

The PRISMA checklist is available as Appendix A (Figure A1).

3.2. Data Analysis

A summary of the included studies is presented in Table 1.
All the studies included in our systematic review were clinical trials, with study

periods ranging from 1995 to 2023. In total, 6383 patients were enrolled in these trials.
Neuro-oncology is the scientific journal that has published the highest number of clinical trials
related to glioma immunotherapy (15/97, 16%), followed by Clinical Cancer Research (9/97,
9%), and Cancer Immunology Immunotherapy (6/97, 6%). The majority of these studies were
published between 2018 and 2022, with 9 studies published each year during this period.

In terms of the classes of immunotherapeutic agents studied, least of the research
focused on CAR T cells, accounting for 11/97 (11%) of the studies. Other significant
categories included ICIs at 25/97 (26%), OVs at 12/97 (12%), and CVs at 49/97 (51%).
Among these studies, phase-I trials were the most numerous, comprising 51% (49”97),
while only 7% (7/97) were phase-III trials. Of the clinical trials, 60% (60/97) were single-
arm studies, 39% (38/97) were double-arm studies, and only 1 was a multi-arm study.
Among the double-arm and multi-arm trials, 85% (33/39) were randomized controlled
trials. Among these, 61% (20/33) demonstrated improved OS and/or PFS compared to
conventional treatment.

Immunotherapies were predominantly used for recurrent GBM in 55% of cases (53/97),
while in the remaining cases, they were used as the initial treatment. In 25% of the latter
cases (11/44), immunotherapies were used as the sole therapy without the addition of
other adjuvant therapies, such as RT and/or CT.
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Table 1. Summary of the studies included in the systematic literature review.

Author Year Trial Name Phase Patients (N) Diagnosis
(Target Glioma)

Follow Up (Months,
Median Value) Treatment

Endpoints

OS PFS

Riva et al. [14] 1994 N/A I 24 Recurrent HGG N/A

Adjuvant RIT: murine monoclonal
anti-Tenascin Ab (BC-2 and BC-4) labeled
with 131I injected directly into the tumor
through a catheter

mOS: 16 mo N/A

Riva et al. [15] 1995 N/A I 50 GBM N/A

Adjuvant RIT: murine monoclonal
anti-Tenascin Ab (BC-2 and BC-4) labeled
with 131I locally infused in the site of
neoplastic disease through a catheter + RT
and CHT

mOS: 20 mo N/A

Pöpperl et al. [16] 2002 N/A I 12 GBM N/A

Adjuvant RIT: murine monoclonal
anti-Tenascin Ab (BC-2 and BC-4) labeled
with 131I locally infused in the surgical
cavity (compared with an historical
control group (n = 85) treated with
standard therapy)

mOS: 18.5, mOS in
historical control group:
9.7 mo

N/A

Fukushima et al. [17] 2003 N/A I 26 GBM N/A

RT + MCNU (ranimustine) + TNF-SAM2
(recombinant human mutant TNF-α)
(compared with an historical control
group (n = 26) treated with
standard therapy)

mOS: 330 wk N/A

Yu et al. [18] 2004 N/A I 14 GBM N/A Autologous tumor lysate-pulsed DCV mOS: 133 wk N/A

Steiner et al. [19] 2004 N/A II 10 GBM 49
(1) ATV-NDV (NDV-modified autologous
tumor vaccine) + SOC
(2) Standard therapy

(1) mOS: 100 wk, OS-1 y/
2 y/3 y: 91%/39%/4%
(2) mOS: 49 wk, OS-1 y/
2 y/3 y: 45%/11%/0%

(1) mPFS: 40 wk, PFS-1 y/
2 y: 21%/4%
(2) mPFS: 26 wk, PFS-1 y/
2 y: 8%/1%

Yamanaka et al. [20] 2005 N/A I/II 35 Recurrent GBM 24
(1) Autologous tumor lysate-pulsed
DCV + KLH or KLH/OK-432
(2) EBRT + nitrosourea-based CHT

(1) OS-2 y: 23.5%
(2) OS-2 y: 3.7% N/A

Vleeschouwer et al.
[21] 2008 N/A I 56 Recurrent GBM 16 Adjuvant autologous resected GBM

lysate-pulsed (mature) DCV

mOS: 9.6 mo
OS-12 mo/24 mo/36 mo:
37.4%/14.8%/11.1%

mPFS: 3 mo,
PFS-12 mo: 10.7%

Izumoto et al. [22] 2008 N/A II 21 Recurrent GBM N/A WT1-235 peptide vaccination N/A mPFS: 20 wk,
PFS-6 mo: 33.3%

Ardon et al. [23] 2010 N/A N/A 8 GBM N/A SOC + autologous GBM
lysate-loaded DCV N/A PFS-6 mo: 75%, mOS: 24 mo

Sampson et al. [24] 2010 NCT00643097 II 35 GBM N/A
(1) Newly diagnosed GBM
EGFRvIII + PEPvIII-KLH
(2) TMZ

N/A

(1) mPFS: 14.2 mo,
mOS: 26 mo
(2) mPFS: 6.3 mo,
mOS: 15 mo

Okada et al. [25] 2011 N/A I/II 22 Recurrent GBM N/A
Vaccination with α-type 1 polarized DCs
(αDC1) loaded with GAAs +
immunoadjuvant poly-ICLC

N/A PFS-12 mo: 41%
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Table 1. Cont.

Author Year Trial Name Phase Patients (N) Diagnosis
(Target Glioma)

Follow Up (Months,
Median Value) Treatment

Endpoints

OS PFS

Prins et al. [26] 2011 NCT00068510 I 23 GBM N/A Autologous tumor lysate-pulsed DCV +
Imiquimod or Poly-ICLC adjuvant

mOS: 31.4 mo, OS-1 y/
2 y/3 y: 91%/55%/47% N/A

Akiyama et al. [27] 2012 UMIN000000914 I 9 GBM N/A
5 synthetic peptides-pulsed DCV + KLH
(compared with an historical control
group treated with standard therapy)

mOS 19 mo, mOS 16 mo of
the historical control group N/A

Valle et al. [28] 2012 N/A I 5 GBM N/A Autologous tumor lysate-pulsed DCV mOS: 27 mo, 2 y-OS: 80% mPFS: 16.1 mo

Cho et al. [29] 2012 N/A II 34 Newly
diagnosed GBM 33

(1) SOC + adjuvant autologous tumor
lysate-pulsed DCV
(2) SOC (surgery + RT + CHT)

(1) mOS: 31.9 mo OS-1 y/
2 y/3 y: 88.8%/44.4%/16.7%
(2) mOS: 15 mo, OS-1 y/
2 y/3 y: 75%/18.8%/0%

(1) mPFS: 8.5 mo
(2) mPFS: 8 mo

Crane et al. [30] 2013 NCT00293423 I 12 Recurrent GBM N/A Adjuvant autologous HSPPC-96 vaccine
mOS in responder: 47 wk,
mOS in non-responder:
16 wk

N/A

Phuphanich et al.
[31] 2013 N/A I 21 GBM 40 Autologous tumor lysate-pulsed DCV

mOS: 38.4 moOS-6 mo/
12 mo/24 mo/36 mo:
100%/100%/93.7%/
55.6%/38.4%

PFS-6 mo/12 mo/18 mo/
24 mo: 100%/62.5%/
43.8%/43.8%

Tanaka et al. [32] 2013 N/A I 17 Recurrent GBM N/A Glutaraldehyde-fixed HUVEC vaccine
(human umbilical vein endothelial cell)

OS-6 mo/1 y/5 y:
88.2%/47.1%/17.6% mPFS: 5.5 mo

Pellegatta et al. [33] 2013 N/A N/A 15 Recurrent GBM N/A Autologous tumor lysate-pulsed DCV mOS: 8 mo mPFS: 4.4 mo

Vik-Mo et al. [2] 2013 NCT00846456 I/II 17 GBM N/A (1) DCV with mRNA from GSC
(2) without DCV N/A (1) mPFS: 694 d, mOS: 759 d

(2) mPFS: 236 d, mOS: 585 d

Pollack et al. [34] 2014 NCT01130077 I 26 Pediatric BSG N/A Autologous tumor lysate-pulsed DCV
mOS in BSG patients: 12.7
mo; median OS in HGG
patients: 25.1 mo

N/A

Schuessler et al. [35] 2014 ACTRN1260
9000338268 I 11 Recurrent GBM N/A ACT with CMV-specific autologous

cytotoxic T cells mOS: 403 d mPFS: 246 d

Bloch et al. [36] 2014 NCT00293423 II 41 Recurrent GBM N/A
Adjuvant autologous HSPPC-96 vaccine
(peptide complexes bound to chaperon
HSP-96, overexpressed in HGG)

OS-6 mo/12 mo:
90.2%/29.3%, mOS: 42.6 wk N/A

Ishikawa et al. [37] 2014 UMIN000001426 I/II 24 Newly
diagnosed GBM 30 Autologous formalin-fixed GBM tumor

vaccine (AFTV) + FRT and TMZ
OS-2 y/3 y: 47%/38%,
mOS: 22.2 mo PFS-2 y: 33%, mPFS: 8.2 mo

Hashimoto et al. [38] 2015 N/A I 7 GBM N/A WT1-peptide vaccination + TMZ N/A PFS: range 5.2–49-1 mo

Schijns et al. [39] 2015 N/A I 48 Recurrent GBM 10 (1) Gliovac (or ERC 1671) vaccine
(2) SOC

(1) OS-6 mo: 100%,
OS-40 wk: 77%
(2) OS-6 mo: 33%,
OS-40 wk: 10%

N/A

Sakai et al. [40] 2015 N/A I 10 Recurrent GBM 21 Autologous tumor lysate-pulsed DCV mOS: 26 mo,
OS-21 mo: 50% N/A



Int. J. Mol. Sci. 2023, 24, 15037 8 of 29

Table 1. Cont.

Author Year Trial Name Phase Patients (N) Diagnosis
(Target Glioma)

Follow Up (Months,
Median Value) Treatment

Endpoints

OS PFS

Kalkanis et al. [41] 2015 NCT01156584 I 54 Recurrent HGG N/A (1) Toca 511 + Toca FC
(2) External control

(1) mOS: 13.6 mo
(2) mOS: 7.1 mo N/A

Westphal et al. [42] 2015 N/A III 142 Newly
diagnosed GBM N/A (1) Nimotuzumab + SOC

(2) SOC

(1) mOS: 19.5 mo (residual
tumor) and 23.3 mo (no
residual tumor)
(2) mOS: 16,7 mo (residual
tumor) and 21 mo (no
residual tumor)

(1) PFS-12 mo: 25.6%, mPFS:
5.6 mo (residual tumor) and
10.6 mo (no residual tumor)
(2) PFS-12 mo: 20.3% mPFS:
4 mo (residual tumor) and
9.9 mo (no residual tumor)

Akasaki et al. [43] 2016 N/A I/II 32
Recurrent and
newly
diagnosed GBM

N/A

TMZ + immunotherapy with fusion cell
(FC): autologous cultured GBM cell were
fused with autologous DC using
polyethylene glycol

Recurrent GBM: mOS: 18
mo; newly diagnosed GBM:
mOS: 30.5 mo

Recurrent GBM:
PFS: 10.3 mo; newly
diagnosed GBM: mPFS:
18.3 mo

Brown et al. [44] 2016 NCT02208362 I 92 Recurrent GBM N/A IL13 Rα2-specific CAR T cells N/A PFS: 7.5 mo

Cloughesy et al. [45] 2016 NCT01156584 I 54 Recurrent GBM N/A (1) Toca 511 + Toca FC
(2) External control

(1) mOS: 13.6 mo
(2) mOS: 7.1 mo N/A

Fenstermaker et al.
[46] 2016 NCT01250470 I 9 Recurrent

GBM SURVIVIN+ N/A
SVN53-67/M57-KLH (SurVaxM):
conjugated survivin peptide mimic
vaccine with KLH

mOS: 86.6 wk,
OS-1 y: 77.8% mPFS: 17.6 wk

Oji et al. [47] 2016 UMIN000002001 II 50 GBM N/A WT1-235 peptide vaccination OS significantly prolonged
(p = 0.001)

PFS significantly prolonged
(p = 0.028)

Wheeler et al. [48] 2016 NCT00589875 II 182 Newly
diagnosed GBM 36 (1) GMCI + SOC

(2) SOC

(1) OS-1 y/2 y/3 y:
67%/35%/19%
(2) OS-1 y/2 y/3 y:
57%/22%/8%

N/A

Alonso et al. [49] 2017 NCT01956734 I 61 Recurrent GBM N/A DNX-2401 + TMZ OS-9 mo: 100% N/A

O’Rourke et al. [50] 2017 NCT02209376 I 10 Recurrent
GBM EGFRvIII+ N/A CAR T-EGFRvIII+ mOS: 251 d N/A

Kong et al. [51] 2017 NCT00807027 III 180 Newly
diagnosed GBM N/A

(1) ACT w/expansion of autologous CIK
(cytokine-induced killer cells) + SOC
(2) SOC

(1) mOS: 22.5 mo,
OS-12 mo/18 mo/24 mo:
78.2%/57.2%/38.2%
(2) mOS: 16.9 mo,
OS-12 mo/18 mo/24 mo:
75.2%/45.1%/38.5%

(1) mPFS: 8.1 mo,
PFS-12 mo/18 mo/24 mo:
28.3%/25.6%/18.4%
(2) mPFS: 5.4 mo,
PFS-12 mo/18 mo/24 mo:
22.6%/21.2%/13.4%

Ursu et al. [52] 2017 N/A II 81 GBM N/A
(1) CpG-ODN (administrated locally
around the surgical cavity) + SOC
(2) SOC

(1) OS-2 y: 31%
(2) OS-2 y: 26%

(1) mPFS: 9 mo
(2) mPFS: 8.5 mo

Inogés et al. [53] 2017 NCT01006044 II 31 Newly
diagnosed GBM N/A Autologous whole tumor lysate-pulsed

DCV + RT and CHT mOS: 23.4 mo mPFS: 12.7 mo

Geletneky et al. [54] 2017 NCT01301430 I/II 18
Progressive
primary or
recurrent GBM

6 H-1 PV (H-1 parvovirus) mOS: 15.5 mo PFS: 4 mo
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Table 1. Cont.

Author Year Trial Name Phase Patients (N) Diagnosis
(Target Glioma)

Follow Up (Months,
Median Value) Treatment

Endpoints

OS PFS

Weller et al. [55] 2017 NCT01480479 III 745 Newly diagnosed
GBM EGFRvIII+ 12

(1) Rindopepimut (with KLH) + GM-CSF
and TMZ
(2) KLH and TMZ

(1) mOS: 20.1 mo
(2) mOS: 20 mo N/A

Zadeh et al. [56] 2018 NCT02798406 II 49 Recurrent GBM N/A DNX-2401, pembrolizumab OS-9 mo: 100% N/A

Peereboom et al. [57] 2018 NCT02078648 I/II 74 Recurrent
GBM HLA-A2+ N/A SL701/GM-CSF + poly-ICLC

and bevacizumab OS-12: 37%

Cloughesy et al. [58] 2018 NCT01470794 I 56 Recurrent GBM 36 Toca 511 + Toca FC mOS: 11.9 mo (95% CI,
10.7 mo to 15.1 mo) N/A

Fried et al. [59] 2018 N/A I 9 Pediatric DIPG N/A Pidilizumab (MDV9300) + RT mOS: 15.6 mo mPFS: 9.3 mo

Pellegatta et al. [60] 2018 N/A II 24 GBM 17 Autologous tumor lysate-pulsed
DCV + TMZ

mOS: 20.1, OS-1 y/2 y:
75%/37%

mPFS: 10.5 mo, PFS-6 mo:
79%, PFS-12 mo: 37.5%

Yao et al. [61] 2018 N/A II 47 GBM N/A Autologous tumor lysate-pulsed
DCV vs. placebo

OS significantly prolonged
(p < 0.01)

PFS significantly prolonged
(p = 0.03)

Wick et al. [62] 2018 NCT02149225 I 16

Newly diagnosed
GBM
HLA-A*02:01 or
HLA-A*24:02+

N/A APVAC1 or APVAC2 (multi-peptide
vaccines)/GM-CSF + poly-ICLC + TMZ mOS: 29 mo mPFS: 14.2 mo

Desjardins et al. [63] 2018 NCT01491893 I 61 Recurrent supra-
tentorial GBM N/A

PVSRIPO (compared with an historical
control group (n = 104) treated with
standard therapy)

OS-6 mo/12 mo/24 mo/
36 mo/48 mo/60 mo: 90%/
54%/21%/21%/21%/21%

N/A

Buchroithner et al.
[64] 2018 N/A II 76 Newly

diagnosed GBM N/A
(1) Tumor lysate-charged autologous
DCV (Audencel) + SOC
(2) SOC

(1) mOS: 564 d
(2) mOS: 568 d

(1) PFS-12 mo: 28.4%
(2) PFS-12 mo: 24.5%

Bota et al. [65] 2018 N/A II 9 Recurrent GBM N/A
(1) Gliovac (ERC 1671)
vaccine + bevacizumab
(2) Placebo + bevacizumab

(1) mOS: 12.1 mo,
OS-12 mo: 50%
(2) mOS: 7.6 mo,
OS-12 mo: 26%

(1) mPFS: 7.3 mo
(2) mPFS: 5.4 mo

Lang et al. [66] 2018 NCT00805376 I 37 Recurrent HGG N/A
(1) DNX-2401 intratecal injection
(2) DNX-2401 intrathecal
infusion + resection

(1) mOS: 9.5 mo
(2) mOS: 13.0 mo N/A

Kieran et al. [67] 2019 NCT00634231 I 12 GBM N/A AdV-tk plus valacyclovir + RT OS: 24 mo PFS: 37.3 and 47.7 mo

Todo et al. [68] 2019 UMIN000015995 II 30 Recurrent GBM N/A
G47 delta (compared with an historical
control group treated with
standard therapy)

OS-12: 84.4% N/A

Wen et al. [69] 2019 NCT01280552 II 124 Newly
diagnosed GBM 40 (1) ICT-107 (peptide-pulsed DC vaccine)

(2) Un-pulsed DCs

(1) mOS: 17.0 mo
(2) mOS: 15.0 mo
(HR = 0.87, p = 0.58)

N/A
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Table 1. Cont.

Author Year Trial Name Phase Patients (N) Diagnosis
(Target Glioma)

Follow Up (Months,
Median Value) Treatment

Endpoints

OS PFS

Chiocca et al. [70] 2019 NCT02026271 I 31 Recurrent HGG 13
hIL-12 vector (Ad–RTS–hIL–12) injected
in resection cavity + Veledimex (VDX,
oral activator for hIL-12)

mOS in VDX 20 mg cohort:
12.7 mo, OS-12 mo/18 mo/
24 mo in VDX 20 mg cohort:
60%/26.7%/13.3%,
OS-12 mo in 10 mg/20 mg/
30 mg/40 mg cohorts:
0%/60%/0%/30%

N/A

Cloughesy et al. [71] 2019 NCT02414165 II/III 403 Recurrent GBM 23 Toca 511 + Toca FC mOS: 11.1 mo N/A

Migliorini et al. [72] 2019 NCT01920191 I/II 19 Newly
diagnosed GBM N/A RCHT + IMA950 multipeptide vaccine

(w/ adjuvant poly-ICLC)
mOS: 10 mo (all patients)
and 9.5 mo (GBM patients)

mPFS: 10 mo (all pt.) and
9.5 (GBM patients),
PFS-6 mo/9 mo: 84% (all
patients) and 63%
(GBM patients)

Eoli et al. [73] 2019 NCT04002804 I/II 20 Recurrent GBM 9

(1) Autologous tumor lysate-pulsed
DCV + TMZ
(2) Autologous tumor lysate-pulsed
DCV + TT preconditioning of the
vaccine site

(1) OS-9: 33%
(2) OS-9: 62.5% N/A

Goff et al. [74] 2019 NCT01454596 I 18 Recurrent
GBM EGFRvIII+ N/A Autologous EGFRvIII-specific CAR

T cells mOS: 6.9 mo mPFS: 1.3 mo

Cloughesy et al. [75] 2019 N/A I 32 Recurrent GBM 16
(1) Neoadjuvant pembrolizumab +
adjuvant pembrolizumab
(2) Adjuvant pembrolizumab

N/A (1) mPFS: 99.5 d
(2) mPFS: 72.5 d

Cloughesy et al. [76] 2020 NCT02511405 III 256 Recurrent GBM N/A (1) VB-111, bevacizumab
(2) Bevacizumab

(1) mOS: 6.8 mo
(2) mOS: 7.9 mo N/A

Mueller et al. [77] 2020 NCT02960230 I 29
New GBM
with H3.3
K27M mutation

18
(1) H3.3 K27M peptide vaccine
(2) H3.3 K27M peptide
vaccine + Nivolumab

(1) mOS: 16.1 mo
(2) mOS: 9.8 mo N/A

Mishinov et al. [78] 2020 N/A I 58 GBM N/A

(1) Autologous tumor lysate-pulsed
DCV + standard treatment
(2) Allogeneic pooled lysates from more
tumors—pulsed
DCV + standard treatment
(3) Maximum safe tumor
resection + RT + CHT

(1) mOS: 16 mo
(2) mOS: 15 mo
(3) mOS: 14.5 mo

N/A

Awada et al. [79] 2020 NCT03291314 II 54 Recurrent GBM 25 (1) Axitinib + avelumab
(2) Axitinib

(1) mOS: 26.6 wk
(2) mOS: 18 wk

(1) PFS-6 mo: 22.2%
(2) PFS-6 mo: 18.5%

Smith et al. [80] 2020 ACTRN126
15000656538 I 25 Newly

diagnosed GBM 12 ACT with CMV-specific autologous
cytotoxic T cells

mOS: 21 mo, OS-6 mo/
1 y/2 y: 92%/84%/36%

mPFS: 10 mo, PFS-6 mo/
1 y/2 y: 72%/28%/16%
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Table 1. Cont.

Author Year Trial Name Phase Patients (N) Diagnosis
(Target Glioma)

Follow Up (Months,
Median Value) Treatment

Endpoints

OS PFS

Reardon et al. [81] 2020 NCT02017717 III 369 Recurrent GBM 10 (1) Nivolumab
(2) Bevacizumab

(1) mOS: 9.8 mo
OS-6 mo/12 mo/18 mo:
72.3%/42%/21%
(2) mOS: 10 mo,
OS-6 mo/12 mo/18 mo:
78.2%/42%/21%

(1) mPFS: 1.5 mo,
PFS-6 mo/12 mo/18 mo:
15.7%/10.5%/5.8%
(2) PFS-6 mo/12 mo/18 mo:
29.6%/17.4%/8.9%

Reardon et al. [82] 2020 NCT01498328 II 73 Recurrent
GBM EGFRvIII+ N/A

(1) Rindopepimut (with KLH) + GM-CSF
and bevacizumab
(2) KLH and bevacizumab

(1) PFS-6 mo: 28%,
OS-24 mo: 20%
(2) PFS-6 mo: 16%,
OS-24 mo: 3%

(1) OS-24 mo: 20%
(2) OS-24 mo: 3%

Mitsuya et al. [83] 2020 NTC0190103 II 16 Newly
diagnosed GBM 72 5 synthetic peptides-pulsed DCV mOS: 19 mo N/A

Weathers et al. [84] 2020 NCT02661282 I/II 20 GBM 12 ACT with CMV-specific autologous
cytotoxic T cells OS-1 y: 50%, mOS: 12 mo PFS-6 mo: 19%,

mPFS: 1.3 mo

Yuce Sari et al. [85] 2021 N/A I 8 Recurrent GBM 21 FSRT + neoadjuvant, concomitant,
adjuvant nivolumab

mOS: 21.3 mo (from
diagnosis) and 12.6 mo
(from progression),
OS-1 y/2 y: 88%/33% (from
diagnosis) and 73%/0%
(from progression)

mPFS: 2.3 mo

Duerinck et al. [86] 2021 NCT03233152 I 27 Recurrent GBM 22

IC (in the brain tissue lining the resection
cavity) nivolumab and ipilimumab +
intravenous nivolumab (compared with
an historical control group (n = 469)
treated with standard therapy)

mOS: 38 wk, OS-6 mo/
1 y/2 y: 74.1%/40.7%/27% N/A

Lim et al. [87] 2021 KCT0003815 I/II 14 Recurrent GBM 24
ACT (adoptive immune cell therapy) with
activated NK cells and T lymphocytes
from PBMC

mOS: 22. mo, OS-2 y: 35.7% mPF6: 10 mo

Jacques et al. [88] 2021 NCT03047473 II 30 Newly
diagnosed GBM 42 Avelumab (ICI) + SOC mOS: 15.3 mo mPFS: 9.7 mo

Jiang et al. [89] 2021 NCT03392545 I 30
Recurrent GBM
and DMG
(H3K27M-mutant)

23

Cyclophosphamide (Treg depletion) IC,
immunoadjuvant Poly I:C + systemic
immunoadjuvant Poly I:C and GM-CSF,
low-dose re-irradiation

mOS: 362 d mPFS: 88 d

Werlenius et al. [90] 2021 NCT02799238 II 62 Newly
diagnosed GBM N/A (1) ALECSAT + SOC

(2) SOC
(1) mOS: 19.2 mo
(2) mOS: 18.3 mo

(1) mPFS: 7.8 mo
(2) mPFS: 7.9 mo

Reardon et al. [91] 2021 NCT02054806 I 26 Recurrent
GBM PD-L1+ 14 Pembrolizumab mOS: 13.1 mo, OS-6 mo/

1 y/2 y: 75.8%/58%/31%
mPFS: 2.8 mo, PFS-6 mo/
1 y/2 y: 37.7%/16.8%/8.4%
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Table 1. Cont.

Author Year Trial Name Phase Patients (N) Diagnosis
(Target Glioma)

Follow Up (Months,
Median Value) Treatment

Endpoints

OS PFS

Nayak et al. [92] 2021 NCT02337491 II 80 Recurrent GBM 49 (1) Pembrolizumab + bevacizumab
(2) Pembrolizumab

(1) mOS: 8.8 mo,
OS-6 mo/12 mo/18 mo:
79.7%/44.3%/16.9%
(2) mOS: 10.3 mo,
OS-6 mo/12 mo/18 mo:
70%/30%/23.3%

(1) mPFS: 4.1 mo,
PFS-6 mo/12 mo/18 mo:
26%/14%/10%
(2) mPFS: 1.4 mo,
PFS-6 mo/12 mo/18 mo:
6.7%/6.7%/3.3%

Sahebjam et al. [93] 2021 NCT02313272 I 32 Recurrent GBM 3 Pembrolizumab + RT + bevacizumab

(1) Bevacizumab-naïve:
mOS: 13.4 mo, OS-6 mo/
1 y/2 y: 91.7%/58.3%/16.7%
(2) Bevacizumab-resistant:
mOS: 9.3 mo, OS-6 mo/1 y:
87.5%/25%

(1) Bevacizumab-naïve:
mPFS: 7.9 mo, PFS-6 mo/
1 y: 66.7%/29.2%
(2) Bevacizumab-resistant:
mPFS: 6,5 mo, mOS: 9.3 mo,
PFS-6 mo/1 y: 87.5%/25%

Bota et al. [94] 2022 N/A N/A 21 Recurrent GBM N/A Bevacizumab + pembrolizumab or
nivolumab + ERC 1671 vaccine

mOS: 19.63 mo,
mOS-6 mo/1 y/2 y:
90.5%/61.1%/45.3%

mPFS: 9.14 mo,
PFS-6 mo/1 y/2 y:
76.2%/47.62%/21.4%

Bota et al. [95] 2022 NCT03400917 II 57 GBM N/A Autologous tumor lysate-pulsed
DCV + GM-CSF

mOS: 14 mo, OS-6 mo/
12 mo/18 mo/24 mo:
87.5%/55.4%/38.5%/25.2%

mPFS: 8.5 mo, PFS-6 mo/
12 mo/18 mo/24 mo:
69.7%/26.8%/16.1%/10%

Hu et al. [96] 2022 NCT02010606 I 36 GBM N/A Autologous tumor lysate-pulsed
DCV + SOC mOS: 20.36 mo mPFS: 8.75 mo

Sampson et al. [97] 2022 NCT02858895 II 44 Recurrent GBM N/A
MDNA55 (IL4 R targeting toxin)
administered intratumorally using
convection-enhanced delivery

(1) mOS: 11.6 mo,
OS-1 y: 46%
(2) Subgroup (n = 32) of IL4
R high and low patients
treated with high-dose
MDNA55]: mOS: 15 mo,
OS-1 y: 55%

N/A

Omuro et al. [98] 2022 NCT02017717 I 117 Newly
diagnosed GBM N/A

(1) PART A: COHORT 1 c (n = 31)
nivolumab + RT + TMZ; COHORT 1 d
(n = 30) nivolumab + RT
(2) PART B: COHORT 1 c (n = 28)
nivolumab + RT + TMZ; COHORT 1 d
(n = 28) nivolumab + RT

(1) PART A: COHORT 1 c
mOS: 22 mo, COHORT 1 d
mOS: 14.4 mo
(2) PART B: COHORT 1 c
mOS: 15 mo, COHORT 1 d
mOS: 14 mo

(1) PART A: COHORT 1 c
mPFS: 10 mo, COHORT 1 d
mPFS: 5.6 mo
(2) PART B: COHORT 1 c
mPFS: 6.4 mo, COHORT 1 d
mPFS: 6 mo

Lim et al. [99] 2022 NCT02667587 III 716

Newly diagnosed
GBM with
UNmethylated
MGMT promoter

N/A (1) Nivolumab + SOC
(2) Placebo + SOC

(1) mOS: 28.9 mo
(2) mOS: 32.1 mo

(1) mPFS: 10.6 mo
(2) mPFS: 10.3 mo

Parney et al. [100] 2022 NCT01957956 I 20 Newly
diagnosed GBM 35 Allogenetic GBM lysate-pulsed (mature)

DCV + TMZ
mOS: 19 mo, OS-2 y/4 y:
25%/10% mPFS: 9.7 mo

Chiocca et al. [101] 2022 NCT03636477 I 21 Recurrent GBM N/A Nivolumab + peritumoral injection of
hIL-12 vector (Ad–RTS–hIL–12) + VDX

mOS all patients: 9.8 mo,
mOS in VDX 10 mg:16.9 mo,
mOS in VDX 20 mg: 8.5 mo

N/A
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Table 1. Cont.

Author Year Trial Name Phase Patients (N) Diagnosis
(Target Glioma)

Follow Up (Months,
Median Value) Treatment

Endpoints

OS PFS

Ogino et al. [102] 2022 NCT02549833 I 17 GBM 21

GBM6-AD + Poly-ICLC adjuvant:
(1) neoadjuvant vaccination + surgery +
adjuvant vaccination
(2) surgery + adjuvant vaccination

N/A
No significant differences
between PFS between
two arms

Muragaki et al. [103] 2023 UMIN000010602 II 57
Newly diagnosed
supratentorial
GBM

N/A

(1) Autologous formalin-fixed GBM
tumor vaccine (AFTV) +
immune adjuvants
(2) Identical placebo without fixed
tumor tissue

(1) mOS: 25.6 mo, OS-3 y:
38%, PFS-3 y: 81%,
OS-3 y: 80%
(2) mOS: 31 mo, OS-3 y:
41%, PFS-3 y: 46%,
OS-3 y: 54%

N/A

Mahase et al. [104] 2023 N/A I 21 Recurrent GBM N/A
(1) ICI + SBRT (fractionated
stereotactic radiosurgery)
(2) ICI (Pembrolizumab and Nivolumab)

(1) mOS: 7 mo
(2) mOS: 6 mo

(1) mPFS: 2.8 mo
(2) mPFS: 1 mo

Liu et al. [105] 2023 NCT03170141 I 8 GBM GD2+ 24 Autologous GD2-specific 4SCAR-T cells mOS: 10 mo N/A

Guo et al. [106] 2023 NCT01765088 III 199 Newly
diagnosed HGG 66 (1) IFN-α + TMZ

(2) TMZ

(1) mOS: 26.7 mo and
24.7 mo (subgroup with
UNmet MGMT prom),
OS-2 y/5 y: 57.4%/18.1%
(2) mOS: 18.8 mo and
17.4 mo (subgroup with
UNmet MGMT prom),
OS-2 y/5 y: 37.3%/9.1%

(1) mPFS: 14.8 mo,
PFS-2 y/5 y: 27.9%/9.6%
(2) mPFS: 12.9 mo,
PFS-2 y/5 y: 18.5%/4.8%

Liau et al. [107] 2023 NCT00045968 III 331 GBM N/A Autologous tumor lysate-pulsed
DCV + SOC

mOS: 19.3 mo (nGBM) and
13.2 mo (rGBM),
OS-48 mo/60 mo: 15.7%/
13% (nGBM), OS-24 mo/
30 mo: 20.7%/9.7% (rGBM)

N/A

Burge et al. [108] 2023 NCT03383978 I 9
Recurrent GBM
IDH wild
type HER2 +

N/A

IC injection (into the margin of surgical
cavity) of HER2-targeted CAR-NK cells
NK-92/5.28 z (ACT, adoptive
cell therapy)

mOS: 31 wk mPFS: 7 wk

Lepski et al. [109] 2023 N/A I/II 37 Recurrent GMB N/A Allogenic DC vaccination for GBM
OS: 26.9 mo, OS-6 mo/
12 mo/18 mo/24 mo:
61.3%/46.6%/34.9%/26%

N/A

Abbreviations: Ab = antibody, ACT = adoptive cellular therapy, AFTV = autologous formalin-fixed tumor vaccine, ATV = autologous tumor vaccine, ALECSAT = autologous lymphoid
effector cells specific against tumor, CAR T = chimeric antigen receptor T cell, CHT = chemotherapy, CpG-ODN = oligodeoxynucleotides containing unmethylated cytosine–guanosine
motif, d = day, DC = dendritic cell, DIPG = diffuse intrinsic pontine glioma, DMG = diffuse midline glioma, DCV = dendritic cell vaccine, EBRT = external beam radiotherapy, FC = fusion
cell, FRT = fractionated radiotherapy, FSRT = fractionated stereotactic radiotherapy, GAAs = glioma-associated antigens, GBM = glioblastoma multiforme, GMCI = gene-mediated
cytotoxic immunotherapy, HGG = high-grade glioma, HSPPC-96 = heat-shock protein 96—peptide complex, HUVEC = human umbilical vein endothelial cell, IC = intracranial,
ICIs = immune checkpoint inhibitors, mo = month, nGBM = newly diagnosed glioblastoma multiforme, N/A = not applicable, NDV = Newcastle disease virus, OS = overall survival,
PBMC = peripheral blood mononuclear cell, PD = progressive disease, PFS = progression free survival, rGBM = recurrent glioblastoma multiforme, RCHT = radiochemotherapy,
RIT = radioimmunotherapy, RT = radiotherapy, SOC = standard of care treatment (RT + TMZ), TMZ = temozolomide, TT = tetanus toxoid, VDX = veledimex, wk = week, y = year.
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A summary of the ongoing studies on GBM immunotherapies is presented in Tables 2–5.

Table 2. Summary of the ongoing studies on GBM immunotherapies testing ICIs.

Trial Name Phase Patients (N) Treatment Outcomes

NCT02311920 I 32 Ipilimumab and/or nivolumab in combination
with temozolomide PFS and OS

NCT02336165 II 159 Durvalumab monotherapy, with bevacizumab or
with radiotherapy OS and PFS

NCT02658981 I 63 Anti-LAG3 or urelumab alone in combination
with nivolumab MTD

NCT03673787 I/II 87 Atezolizumab in combination with ipatasertib DLT

NCT03743662 II 94 Nivolumab with radiation therapy and bevacizumab T-lymphocyte density
and safety

NCT03961971 I 15 Anti-Tim-3 in combination with anti-PD-1 and
stereotactic radiosurgery Serious adverse events

NCT04145115 II 37 Ipilimumab and nivolumab DLT

NCT04396860 II/III 485 Ipilimumab and nivolumab plus radiation therapy Efficacy and safety

NCT04606316 I 60 Nivolumab in combination with ipilimumab
and surgery Tumor infiltrating

Abbreviations: DLT = dose-limiting toxicity, MTD = maximum tolerated dose, OS = overall survival,
PFS = progression free survival.

Table 3. Summary of the ongoing studies on GBM immunotherapies testing CVs.

Trial Name Phase Patients (N) Treatment Outcomes

NCT02366728 II 100 CMV pp65 DC vaccine +111In-labeled DC vaccine + Td
Toxoid + basiliximab OS

NCT02465268 II 175 pp65-shLAMP DC dendritic cell vaccine with GM-CSF OS

NCT02924038 I 30
IMA-950 (peptide vaccine comprising multiple GAAs) and
poly-ICLC ± varlilumab (immunostimulatory
antiCD27 antibody)

Safety and T-cell
responses

NCT02960230 I 29 H3.3K27 M peptide vaccine plus Td and poly-ICLC Safety and OS

NCT03018288 II 108 pembrolizumab ± HSPPC-96 vaccine 1-year OS

NCT03400917 II 55
AV-GBM-1 (autologous dendritic cells loaded with tumor
associated antigens from a short-term cell culture of
autologous tumor cells)

OS

NCT04116658 II 52 EO2401 peptide vaccine Safety and tolerability

Abbreviations: GBM = glioblastoma multiforme, OS = overall survival.

From the review, it emerged that 9 clinical trials were ongoing on ICIs, 7 on CVs, 10 on
OVs, and 8 on CAR T cells, for a total of 34 clinical trials. Of these, most (18/34, 53%) were
phase-I clinical trials, while only one was phase III.

3.3. Discussion

In this study, we conducted a systematic review of all the clinical trials published
and ongoing between 1995 and 2023. Our findings reveal that the primary classes of
immunotherapeutic agents under investigation include CAR T cells (11%), ICIs (26%),
OVs (12%), and CVs (51%). Phase-I trials constituted the majority, accounting for 51% of
the studies, whereas phase-III trials comprised only 7%. Double-arm studies constituted
only 39%; however, among them, 85% were randomized controlled trials. Among these
trials, 61% demonstrated improved overall survival (OS) and/or progression free survival
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(PFS) rates when utilizing GBM immunotherapy, both as a standalone strategy and in
combination with conventional treatment. A total of 34 clinical trials are ongoing and the
majority of them are phase-I CTs.

Table 4. Summary of the ongoing studies on GBM immunotherapies testing OVs.

Trial Name Phase Patients (N) Treatment Outcomes

NCT01301430 II 18 Human mesenchymal stem cells TG6002 (modified
vaccinia virus) and 5-FC Safety and DLT

NCT01470794 I 58 DNX-2440 conditionally replication-competent
adenovirus with O × 40 ligand (T-cell stimulator) DLT

NCT02062827 I 36 DNX-2401 (Delta-24-RGD adenovirus) ± surgery MTD

NCT02798406 II 48 DNX-2401 (Delta-24-RGD adenovirus) and i.v.
pembrolizumab (anti-PD-1 antibody)

ORR by interval tumor
size change

NCT02986178 II 62 G207 (modified oncolytic strain of HSV-1)
single-dose inoculation OS at 24 months

NCT03152318 I 108 PVSRIPO (genetically recombinant nonpathogenic
poliovirus:rhinovirus chimera) ± lomustine MTD

NCT03294486 II 78 Ad5-DNX-2401 (oncolytic adenovirus) in
bone marrow Progression at 6 months

NCT03714334 I 24 rQNestin 34.5 v.2 (oncolytic
HSV-1) + cyclophosphamide

Treatment-related
adverse events

NCT03896568 I 36 Ad-RTS-hIL-12 + veledimex Safety, DLT, and rate of tumor

NCT00390299 I 40 M032 (modified strain of HSV-1) by
intratumoral infusion Toxicity and MTD

Abbreviations: DLT = dose-limiting toxicity, MTD = maximum tolerated dose, ORR = overall response rate.

Table 5. Summary of the ongoing studies on GBM immunotherapies testing CAR T cells.

Trial Name Phase Patients (N) Treatment Outcomes

NCT01109095 I 16 HER2 CMV-specific CAR T cells DLT

NCT01454596 I/II 18 EGFRvIII-directed CAR T cells with
cyclophosphamide, fludarabine and aldesleukin AEs and PFS

NCT02208362 I 92 IL13 Rα2-targeted CAR T cells AEs and DLT

NCT02209376 I 11 EGFRvIII-directed CAR T cells AEs

NCT04003649 I 60 IL13 Rα2-targeted CAR T cells with or without
nivolumab and ipilimumab AEs, DLT, feasibility, and OS

NCT04077866 I/II 40 B7-H3-targeted CAR T cells with or
without temozolomide OS and PFS

NCT04385173 I 12 B7-H3-targeted CAR T cells with temozolomide AEs, MTD, OS, and PFS

NCT04661384 I 30 IL13 Rα2-targeted CAR T cells AEs and OS

Abbreviations: AEs = adverse events, CAR T = chimeric antigen receptor T cell, DLT = dose-limiting toxicity,
MTD = maximum tolerated dose, OS = overall survival, PFS = progression free survival.

3.3.1. Immunosuppressive Mechanisms Employed by GBM

Glioblastoma, recognized as the most aggressive primary brain tumor, poses sig-
nificant challenges due to its rapid growth, capacity to infiltrate brain tissue, molecular
diversity, and resistance to treatment [110]. While immunotherapy holds promise in com-
bating GBM, it encounters formidable obstacles related to the immunological environment
of the central nervous system (CNS). Glioblastoma exhibits traits typical of immunotherapy-
responsive tumors but deploys extensive immunosuppressive mechanisms, leveraging its
CNS location. Overcoming intrinsic resistance, countering systemic immunosuppression,



Int. J. Mol. Sci. 2023, 24, 15037 16 of 29

addressing adaptive resistance, and adapting to acquired resistance are crucial to dismantle
GBM’s immunosuppressive machinery [3,111–115].

Intrinsic resistance in GBM is influenced by its molecular and clinical characteristics.
Studies have revealed intratumor heterogeneity, where different subtypes coexist within
the same tumor, complicating selective eradication of treatment-susceptible clones and
paving the way for resistant ones. To navigate this complexity, immunotherapy aims to
target multiple neoantigens derived from autologous tumor cells, minimizing the risk of
antigenic overlap with normal tissue [113].

Immunotherapy’s success hinges on targeting neoantigens essential for tumor survival
across GBM subtypes while sparing healthy tissue. Various approaches, such as OVs, CVs,
and ICIs, address neoantigens effectively. However, CAR T- and NK-cell therapies require
alternative strategies. The GBM microenvironment significantly contributes to immune
evasion through immunosuppression. Microglia, the primary antigen-presenting cells
in the CNS, promote tumor infiltration, progression, and invasiveness. Inflammatory
cytokines secreted by microglia amplify GBM expansion. Moreover, the blood–brain barrier
(BBB) typically prevents immune cell entry; however, GBM cells release chemotactic signals,
such as CCL2, CCL5, CXCL, and SDF-1, to actively recruit tumor-associated macrophages
(TAMs) across the BBB. TAMs in GBM are known to enhance immune checkpoints and
support cancer stem cells. Inhibiting the activity of CCL2 and CCL5 has shown promise in
reducing tumor migration and invasion [116,117].

3.3.2. Immunotherapeutic Strategies

In pursuit of eradicating GBM cells, particularly the therapy-resistant subset, im-
munotherapy aims to activate the patient’s antitumor immune response. Our review
reveals a variety of immunotherapeutic strategies, such as CVs, OVs, ICIs, and CAR T cells,
which are evaluated in clinical studies either individually or in conjunction with standard
GBM treatments.

Immune Checkpoint Inhibitors

Immune checkpoint inhibitors are monoclonal antibodies designed to counteract neg-
ative regulatory pathways that impede T-cell activation. These antibodies target surface
receptors known as immune checkpoints. Under normal circumstances, immune check-
point molecules can dampen cytotoxic T-cell function. However, when ICIs are employed,
they disrupt this normal activation of immune checkpoints, restoring T-cell function and en-
hancing the immunotherapeutic effect. Presently, the primary focus of immune checkpoint
inhibition revolves around two key receptors: programmed cell death protein 1 (PD-1) and
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). Notable advancements have been
made in treating challenging cancers, such as melanoma, lung cancer, and renal cancer,
using anti-PD-1 and anti-PD-L1 antibodies [75,93,118–122].

The NCT02017717 trial, a pioneering randomized phase-I clinical study for recurrent
GBM, assessed the efficacy and tolerability of nivolumab (a PD-1 inhibitor) as monotherapy
or in combination with ipilimumab (a CTLA-4 inhibitor). All patients underwent surgical
resections, RT, and TMZ treatments before being allocated to three different treatment
arms. Intriguingly, nivolumab monotherapy demonstrated a superior median overall
survival (10.4 months) compared to the NIVO1 + IPI3 or NIVO3 + IPI1 combinations
(9.2 and 7.3 months, respectively). Phase III of this trial involved 369 recurrent GBM
patients randomized to receive either nivolumab or bevacizumab. While mOS and toxicity
were comparable, bevacizumab-treated patients exhibited a shorter duration of radiologic
responses [118].

A phase-II clinical trial assessed bevacizumab alone or combined with notecan for
efficacy in recurrent GBM patients, with both treatment arms showing tolerable side effects
and median overall survival rates of 9.2 and 8.7 months, respectively.

At present, two ongoing phase-III trials, NCT02667587 and NCT02617589, are investi-
gating nivolumab’s potential as a treatment for MGMT-unmethylated glioblastoma. The
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NCT02667587 clinical trial compares SOC with nivolumab or placebo, while NCT02617589
compares nivolumab versus TMZ, each in combination with RT.

Pembrolizumab, another anti-PD1 checkpoint inhibitor, is being investigated as a
glioma treatment. A phase-II trial involving neoadjuvant pembrolizumab administration
before surgery, followed by post-surgery adjuvant treatment, demonstrated increased
survival in recurrent GBM patients.

CTLA-4, an immune checkpoint that competes with CD80 and CD86 for binding,
thereby suppressing T-cell function, is under evaluation in clinical trials (NCT02311920,
NCT02829931) using ipilimumab therapies.

Another immune checkpoint receptor, LAG-3, inhibits T-cell activity while enhanc-
ing the suppressive function of Tregs. A phase-I trial (NCT02658981) is currently as-
sessing BMS-986,016, a LAG-3 inhibitor, alone and in combination with nivolumab in
recurrent GBM patients. TIM-3, an additional lymphocyte-expressed receptor capable of
inducing T-cell exhaustion and immune response suppression, can lead to unfavorable
outcomes [4,92,118–122].

Cancer Vaccines

Vaccines hold promise as tumor treatment, leveraging tumor antigens. They activate
immune surveillance against GBM, fortifying the adaptive immune system. GBM vaccines
fall into four categories: peptides, DNA, cells, and mRNA. Peptide and DNA vaccines
administer tumor-specific antigens or DNA to provoke an adaptive immune response. Cell
vaccines, specifically DC vaccines derived from PBMCs, prime with tumor antigens. mRNA
vaccines employ viral vectors loaded with mRNA, generating potent immune responses.
Despite years of development, vaccines remain under investigation. Of these, only three
have advanced to phase-III clinical trials: Rindopepimut, DCvax, and PPV.

Rindopepimut, a peptide-based vaccine, targets EGFRvIII mutation exclusively in
GBM, minimizing off-tumor toxicity risk. However, GBM’s tumor heterogeneity poses
challenges, as EGFRvIII expression varies. Phase-II trials demonstrated improved pro-
gression free survival (PFS) and median survival, compared to historical controls. ACT
IV, a double-blind phase-III trial, examined Rindopepimut’s effect on GBM patients with
minimal residual disease (MRD). MRD was defined as <2 cm2 of enhancing tumor tissue
post-surgery and chemoradiotherapy. The trial showed no significant difference in overall
survival for MRD patients. IDH1 peptide vaccines, targeting the IDH1R132 H mutation, are
in phase-I trials following promising preclinical results. Survivin, highly expressed in GBM,
led to the development of SurVaxM, a peptide vaccine. Early results from a phase-II study
combining SurVaxM with TMZ show improved PFS and OS. An antisense oligodeoxynu-
cleotide against the IGF type-I receptor (IMV-001) demonstrated improved PFS in phase-I
trials. PPV immunotherapy displayed safety and efficacy in a phase-I trial for recurrent
GBM patients. However, a phase-III trial comparing PPV to best supportive care yielded
unfavorable results. Neoantigens, identified through DNA and RNA sequencing, offer a
personalized approach to GBM treatment. Two clinical trials demonstrated the potential of
personalized GBM vaccination.

In the GAPVAC study, 16 newly diagnosed GBM patients received two synthe-
sized vaccines: one targeting unmutated peptides (APVAC1) and the other neoantigens
(APVAC2). Both vaccines elicited CD4+ and CD8+ T-cell responses, with varying immuno-
genicity. APVAC1 induced 50% immunogenicity, while APVAC2 achieved 84.7%. APVAC1
primarily stimulated CD8+ T-cell responses, while APVAC2 focused on CD4+ T-cell re-
sponses. Median PFS and OS were encouraging.

Another study administered a neoantigen vaccine (NeoVax) to newly diagnosed and
MGMT unmethylated GBM patients. Two patients displayed immunogenicity and both
CD4+ and CD8+ T-cell responses. Median PFS reached 7.6 months, with a median OS of
16.8 months. DCVax-L, a personalized peptide vaccination, demonstrated potential in a
phase-III trial when combined with standard GBM therapy. mRNA-transfected DC vaccines
were well-tolerated and significantly extended PFS compared to controls in a phase-II
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trial. Autologous DCs, pulsed with autologous whole tumor lysate and combined with
standard chemoradiotherapy, proved feasible and safe in newly diagnosed GBM patients.
In contrast, a multicentric phase-II study involving tumor lysate-charged autologous DCs
(Audencel) failed to improve clinical outcomes for newly diagnosed GBM patients. AV-
GBM-1, autologous DCs loaded with tumor-associated antigens from short-term autologous
tumor cell cultures, is being evaluated in an ongoing phase-II clinical trial.

Dendritic cells (DCs), capable of promoting adaptive antitumor immune responses,
are ideal for cellular vaccination. DC vaccines demonstrated effectiveness in preclinical and
early stage clinical trials, showing significantly longer overall survival in GBM patients.
Intratumoral and intradermal administrations yielded better results than intradermal alone.
ICT-107, a DC-based vaccine designed for newly diagnosed GBM patients, proved safe
with encouraging median PFS and OS in phase-I trials. A phase-III trial comparing ICT-107
to standard care was suspended due to funding issues.

The landscape of GBM treatment is evolving, with vaccines offering a promising
avenue for intervention. While many vaccine candidates are in development, only a select
few have progressed to phase-III trials. The complex nature of GBM, including its hetero-
geneity, presents both challenges and opportunities in vaccine development. Neoantigens,
identified through advanced sequencing techniques, offer a personalized approach that
shows significant potential. Additionally, DC-based vaccines have demonstrated effective-
ness in the preclinical models and early stage clinical trials, with some promising results
for patients. The ongoing quest for effective GBM vaccines continues, with researchers
exploring various strategies to harness the power of the immune system in the fight against
this devastating disease [24,46,53,55,56,64,123–133].

Oncolytic Viruses

In recent years, OVs have emerged as a novel therapeutic approach in treating var-
ious solid tumors, including GBM. OVs offer a dual mechanism of antitumor action,
involving the direct killing of tumor-specific cells and the induction of systemic antitumor
immunity, encompassing both innate and adaptive responses. OVs trigger immunogenic
cell death in tumor cells, leading to the release of tumor-associated antigens (TAAs),
damage-associated molecular patterns (DAMPs), and pathogen-associated molecular pat-
terns (PAMPs). DAMPs and PAMPs serve as potent stimulators of innate immunity by
activating pattern recognition receptors, such as Toll-like receptors. Furthermore, these
molecules enhance antigen cross-presentation and adaptive immune responses.

OVs also elicit a proinflammatory immune response, increasing the production of
CXCL9, CXCL10, and CXCL11, which promote the trafficking and infiltration of T cells
into tumors. Various OVs, including adenovirus, herpes simplex virus, measles virus,
parvovirus, poliovirus, and zika virus, have demonstrated efficacy against GBM in pre-
clinical studies. Encouraging data from clinical trials have shown OVs to have a favorable
safety profile and promising efficacy, with evidence of intratumoral viral replication and
lymphocyte infiltration. For instance, a phase-I clinical trial (NCT01470794) demonstrated
the safety and efficacy of Toca 511 in treating 56 recurrent high-grade glioma patients. In a
follow-up phase-III study involving 23 eligible patients, the median overall survival (OS)
reached 14.4 months, with one- and two-year survival rates of 65.2% and 34.8%, respectively.
Notably, five patients achieved complete responses and survived for extended periods after
Toca 511 treatment.

DNX-2401, a tumor-selective oncolytic adenovirus, exhibited antiglioma efficacy in
preclinical studies. In a phase-I dose-escalation trial involving 37 patients with recur-
rent malignant gliomas, DNX-2401 demonstrated both safety and promising responses
across different dose levels. Approximately 20% of patients survived beyond three years
post-treatment, and some patients experienced over a 95% reduction in tumor size with a
progression free survival exceeding three years. Analyses of post-treatment tumor speci-
mens revealed viral replication and spread within the tumor, along with the induction of
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intratumoral CD8+ and T-bet+ T-cell infiltration and a reduced expression of transmem-
brane immunoglobulin mucin-3.

Both Toca 511 and DNX-2401 trials reported that approximately 20% of GBM patients
exhibited complete responses after intratumoral OV administration, with rare virotherapy-
associated severe adverse events. Oncolytic H-1 parvovirus, although showing only a
slight improvement in the median OS when administered intratumorally to GBM patients,
displayed an increase in infiltrating lymphocytes and IFN-γ levels.

PVSRIPO, a live attenuated poliovirus type-1 vaccine with a modified internal ribo-
some entry site, received a breakthrough therapy designation from the FDA based on a
phase-I study in recurrent GBM patients. PVSRIPO recognizes the poliovirus receptor
CD155, which is upregulated on malignant and antigen-presenting cells within the tumor
microenvironment. The phase-I study demonstrated safety and sustained survival rates,
with about 20% of patients remaining alive for 57–70 months after PVSRIPO injection. A
phase-II randomized trial of PVSRIPO alone or in combination with lomustine in patients
with recurrent grade-IV malignant glioma (NCT02986178) is ongoing.

Herpes simplex virus-1 (HSV-1), a double-stranded DNA virus, has been extensively
explored as a treatment for various solid tumors, including GBM. Genetically engineered
variants, such as G207 and G47 delta, have shown promise. In a phase-I clinical trial
involving children and adolescents with recurrent or progressive high-grade gliomas, G207
demonstrated safety and enhance the immunological response.

G47 delta (DELYTACT), another oncolytic HSV-1 variant, was evaluated in adult
patients with residual or recurrent GBM in a single-arm phase-II clinical trial in Japan. Min-
imal side effects were observed, and the survival rate after one year reached an impressive
84.4%. G47 delta (Delytact/Teserpaturev) received conditional approval from the Japan
Ministry of Health, Labor and Welfare (MHLW) for the treatment of malignant gliomas in
Japan [49,54–56,66,68,134,135].

Several ongoing clinical trials are exploring the use of OVs as therapeutic agents for
recurrent high-grade gliomas. While these results are promising, further clinical trials are
needed to establish the safety and efficacy of OVs as a therapy for GBM.

CAR T Cell

CAR T-cell therapy presents a promising strategy for overcoming the formidable
challenges posed by the BBB and the intricate tumor microenvironment (TME) within the
context of adoptive cell T-cell therapy (ACT). ACT involves the reintroduction of autolo-
gous or allogenic anti-tumor T cells engineered to target tumor-specific antigens highly
expressed on tumor cells while sparing normal cells. In a meticulously orchestrated pro-
cess, these T cells are meticulously engineered in vitro using a lentiviral vector, thereby
expressing a high-affinity single-chain fragment variable (scFv) tailored to the target anti-
gen. This scFv is intricately fused with transmembrane regions, co-stimulatory domains,
and an intracellular signaling domain derived from the CD3 molecule of the T-cell receptor
(TCR). This engineering empowers autologous T cells to keenly recognize antigens upon
scFv binding, initiating CAR molecule clustering and ensuing activation. This activation,
in turn, triggers a cascade of events, including cytokine release, proliferation, cytotoxic-
ity, and metabolic shifts, thereby enabling CAR T cells to chiefly exert their anti-tumor
functions through cytokine release and the involvement of the granzyme and perforin
axis, as well as the Fas and Fas ligand axis, thus equipping them to effectively surmount
TME-related immunosuppression.

Notably, CAR T cells meticulously engineered to target IL13 Rα2 have demonstrated
a heightened degree of selectivity for this receptor over IL13Ra1/IL4Ra. Intracranial
injections of these IL13-zetakine CAR T cells, executed within a glioma xenograft model,
have yielded auspicious improvements in median overall survival. A groundbreaking
first-in-human pilot safety and feasibility trial conducted in 2015 evaluated the application
of IL13-zetakine CAR T cells in three patients with recurrent GBM. These CAR T cells
were methodically delivered via an implanted reservoir/catheter system, directly into
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the resection cavity, thereby resulting in a precisely controlled, transient bout of brain
inflammation. Although the CAR T cells were met with overall favorable tolerability,
certain adverse events, including grade-3 headaches and transient grade-3 neurologic
events, were observed. A subsequent analysis of tumor tissue indicated a tangible reduction
in IL13 Rα2 expression, while an MRI analysis suggested an increase in tumor necrotic
volume, thereby potentially extending overall survival. Following this pioneering trial,
a second-generation IL13-zetakine CAR T cell was painstakingly developed, featuring
a 4-1BB costimulatory domain and an ingeniously mutated IgG4-Fc linker, all designed
to amplify antitumor potential while curbing off-target interactions. A patient afflicted
with recurrent GBM subsequently received intracavitary infusions of these CAR T cells,
resulting in a pronounced inhibition of local tumor progression. However, the emergence
of novel intracranial tumors and spinal lesions was noted, with the fifth intraventricular
infusion precipitating a substantial reduction in tumor size. Regrettably, this regression
proved transient, lasting merely 7.5 months, and recurrence subsequently manifested at
new locations, characterized by diminished IL13 Rα2 expression, thereby underscoring the
indispensable need for combinatory therapeutic modalities aimed at addressing antigen-
loss relapse.

EGFRvIII, a frequently encountered GBM mutation, was initially associated with
abbreviated survival periods. In a phase-I clinical trial, 18 patients afflicted with recurrent
GBM received third-generation EGFRvIII-directed CAR T cells, endowed with CD28 and
4-1BB costimulatory domains. Patients, upon infusion of these CAR T cells, expeditiously
developed respiratory symptoms, particularly evident at higher dose levels, a phenomenon
indicative of dose-limiting toxicity, despite the absence of discernible clinical benefits. The
median overall survival rate reached 6.9 months, with select patients achieving survival
exceeding a year. To effectively address instances of EGFRvIII-negative yet EGFR-positive
glioblastomas, a novel approach surfaced, involving the fusion of EGFRvIII scFv with
a bispecific T-cell engager (BiTE). These BiTEs, as synthetic bispecific antibodies, serve
to heighten immune interactions while simultaneously augmenting antibody specificity.
Recent investigations have explored SynNotch-CAR T cells, meticulously designed to
target multiple antigens, thus yielding improvements in specificity, comprehensiveness,
and longevity in comparison to conventional T-cell therapy, as employed in the context
of glioblastoma.

B7-H3, alternatively known as CD276, plays a pivotal role in regulating T-cell functions
and, notably, is found to be overexpressed across a diverse array of human cancer cells, a
correlation that frequently coincides with negative clinical outcomes. This distinct profile
renders it an enticing target for immunotherapeutic interventions. Nevertheless, significant
challenges persist, not the least of which is the full elucidation of its receptor and the
intricacies of immune regulation associated therewith.

HER2, conspicuously expressed in various CNS tumors, including GBM, yet conspic-
uously absent in normal CNS tissue, emerges as an attractive and distinctively selective
target. Clinical trials employing HER2-specific CAR T cells have borne witness to well-
tolerated treatments, despite the lack of substantial and tangible survival benefits. Recent
preclinical inquiries have embarked upon the exploration of trivalent CAR T-cell therapy,
an innovative approach that targets HER2, IL13 Rα2, and ephrin-A2, demonstrating en-
couraging improvements in terms of cytokine release and cytotoxicity when contrasted
with the outcomes achieved using monospecific or bispecific CAR T cells, thereby strongly
hinting at the potential utility of this multifaceted therapeutic approach within the context
of glioblastoma therapy.

CAR T-cell therapy, undoubtedly, occupies a paramount and promising position in
the realm of glioblastoma immunotherapy. Recent strides and advancements, such as the
development of second-generation CAR T cells with heightened specificity and reduced
off-target effects, serve as a testament to the adaptability and burgeoning potential of this
therapeutic modality. Strikingly promising results have emerged from studies targeting
antigens, such as IL13 Rα2 and EGFRvIII, as reflected in the significant tumor regression
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and improved patient survival rates. Moreover, the visionary concept of trivalent CAR T
cells augurs a future where combination therapies that adeptly target multiple antigens
may yield even more favorable treatment outcomes. Though formidable challenges persist,
encompassing the phenomena of antigen loss and the imperative [74,136–149].

4. Conclusions

Our comprehensive analysis of the immunotherapy strategies for GBM treatment
highlights the evolving landscape of therapeutic interventions for this challenging disease.
A diverse range of approaches, including CAR T cells, ICIs, OVs, and CVs, are being
explored to address the unique challenges presented by GBM. To develop a curative
immunotherapy for GBM, it is crucial to overcome immunotolerance, stimulate robust
responses to tumor antigens, and effectively counter the evolving escape mechanisms
within the immunosuppressive microenvironment.

Immune checkpoint inhibitors, such as PD-1 and CTLA-4 inhibitors, have demon-
strated promise in the clinical trials, and the ongoing research continues to seek ways to
enhance their effectiveness. Cancer vaccines, particularly those targeting neoantigens, offer
a personalized approach with significant potential. Oncolytic viruses have shown dual
mechanisms of action and have displayed promise in clinical trials, with some achieving
breakthrough status. CAR T-cell therapy shines as a beacon of hope. These cells, intricately
engineered to target specific antigens, have produced encouraging results, especially when
targeting IL13 Rα2 and EGFRvIII. The development of second-generation CAR T cells
with improved specificity and reduced off-target effects exemplifies the adaptability and
potential of this approach.

Despite this promising data from published and ongoing studies on GBM immunother-
apies, the considerable variability in these results and the multitude of therapeutic targets
make it challenging to reach consensus. Therefore, translating these results into clinical
success for GBM patients remains a formidable task. Nevertheless, ongoing studies are
actively exploring combination approaches and enhancing existing immunotherapeutic
strategies, offering hope for a revolutionary breakthrough in cancer care.
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Abbreviations

AA = anaplastic astrocytoma, Ab = antibody, ACT = adoptive cellular therapy, AE = ad-
verse event, AFTV = autologous formalin-fixed tumor vaccine, ATV = autologous tumor vaccine,
ALECSAT = autologous lymphoid effector cells specific against tumor, CAR T = chimeric antigen
receptor T cell, CHT = chemotherapy, CpG-ODN = oligodeoxynucleotide containing unmethylated
cytosine-guanosine motif, CSC = cancer stem cell, CV = cancer vaccine, d = day, DC = dendritic
cell, DIPG = diffuse intrinsic pontine glioma, DLT = dose-limiting toxicity, DMG = diffuse mid-
line glioma, DCV = dendritic cell vaccine, EBRT = external beam radiotherapy, FC = fusion cell,
FRT = fractionated radiotherapy, FSRT = fractionated stereotactic radiotherapy, GAAs = glioma-
associated antigens, GBM = glioblastoma multiforme, GMCI = gene-mediated cytotoxic immunother-
apy, GSC = glioma stem cell, HGG = high-grade glioma, HSPPC-96 = heat-shock protein 96—peptide
complex, HUVEC = human umbilical vein endothelial cell, IC = intracranial, ICI = immune checkpoint
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inhibitors, mo = month, MTD = maximum tolerated dose, nGBM = newly diagnosed glioblastoma
multiforme, N/A = not applicable, NDV = Newcastle disease virus, ORR = overall response rate,
OS = overall survival, OV= oncolytic virus, PBMC = peripheral blood mononuclear cell,
PD = progressive disease, PFS = progression free survival, rGBM = recurrent glioblastoma multiforme,
RCHT = radiochemotherapy, RIT = radioimmunotherapy, RT = radiotherapy, SOC = standard of care
treatment (RT + TMZ), TMZ = temozolomide, TT = tetanus toxoid, VDX = Veledimex, wk = week,
y = year.
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