Skip to main content
. 2023 Oct 18;11(20):2760. doi: 10.3390/healthcare11202760

Table 2.

The application of AI in skeletal maturation assessment using lateral cephalograms.

Author (Year) Data Type Dataset Size
(Training/Test)
Algorithm Performance
Kök et al. (2019) [99] Lateral cephalograms 240/60 k-NN, NB, DT, ANN, SVM, RF, LR Mean rank of accuracy:
k-NN: 4.67, NB: 4.50, DT: 3.67, ANN: 2.17, SVM: 2.50, RF: 4.33, LR: 5.83.
Makaremi et al. (2019) [100] Lateral cephalograms Training: 360/600/900/1870
Evaluation: 300
Testing: 300
CNN Performance varied depending on image numbers and pre-processing method.
Amasya et al. (2020) [101] Lateral cephalograms 498/149 LR, SVM, RF, ANN, DT Accuracy:
LR: 78.69%, SVM: 81.08%, RF: 82.38%, ANN: 86.93%, DT: 85.89%.
Amasya et al. (2020) [102] Lateral cephalograms -/72 ANN Average of 58.3% agreement with four human observers.
Kök et al. (2021) [91] Lateral cephalograms A total of 419 Total of 24 different ANN models The highest accuracy was 0.9427.
Seo et al.
(2021) [103]
Lateral cephalograms A total of 600 ResNet-18, MobileNet-v2, ResNet-50, ResNet-101, Inception-v3, Inception-ResNet-v2 Accuracy/Precision/Recall/F1 score:
ResNet-18: 0.927 ± 0.025/0.808 ± 0.094/0.808 ± 0.065/0.807 ± 0.074.
MobileNet-v2: 0.912 ± 0.022/0.775 ± 0.111/0.773 ± 0.040/0.772 ± 0.070.
ResNet-50: 0.927 ± 0.025/0.807 ± 0.096/0.808 ± 0.068/0.806 ± 0.075.
ResNet-101: 0.934 ± 0.020/0.823 ± 0.113/0.837 ± 0.096/0.822 ± 0.054.
Inception-v3: 0.933 ± 0.027/0.822 ± 0.119/0.833 ± 0.100/0.821 ± 0.082.
Inception-ResNet-v2: 0.941 ± 0.018/0.840 ± 0.064/0.843 ± 0.061/0.840 ± 0.051.
Zhou et al.
(2021) [104]
Lateral cephalograms 980/100 CNN Mean labeling error: 0.36 ± 0.09 mm.
Accuracy: 71%.
Kim et al.
(2021) [105]
Lateral cephalograms 480/120 CNN Three-step model obtained the highest accuracy at 62.5%.
Rahimi et al.
(2022) [106]
Lateral cephalograms 692/99
(additional 99 images than validation set).
ResNet-18, ResNet-50, ResNet-101, ResNet-152, VGG19, DenseNet, ResNeXt-50, ResNeXt-101, MobileNetV2, InceptionV3. ResNeXt-101 showed the best test accuracy:
Six-class: 61.62%, three-class: 82.83%.
Radwan et al. (2023) [107] lateral cephalograms 1201/150
(additional 150 images than validation set).
U-Net, Alex-Net Segmentation network:
Global accuracy: 0.99.
Average dice score: 0.93.
Classification network:
Accuracy: 0.802.
Sensitivity (pre-pubertal/pubertal/post-pubertal): 0.78/0.45/0.98. Specificity (pre-pubertal/pubertal/post-pubertal): 0.94/0.94/0.75.
F1 score (pre-pubertal/pubertal/post-pubertal): 0.76/0.57/0.90.
Akay et al.
(2023) [98]
lateral cephalograms 352/141
(additional 94 images than validation set).
CNN Classification accuracy: 58.66%.
Precision (stage 1/2/3/4/5/6): 0.82/0.47/0.64/0.52/0.55/0.52.
Recall (stage 1/2/3/4/5/6): 0.70/0.74/0.58/0.54/0.37/0.60.
F1 score (stage 1/2/3/4/5/6): 0.76/0.57/0.61/0.53/0.44/0.56.

k-NN, k-nearest neighbors; NB, Naive Bayes; LR, logistic regression; CNN, convolutional neural network; SVM, support vector machine; RF, random forest; ANN, artificial neural network; DT, decision tree.