Skip to main content
. 2023 Oct 18;11(20):2760. doi: 10.3390/healthcare11202760

Table 3.

The application of AI in upper-airway obstruction assessment.

Author (Year) Data Type Dataset Size
(Training/Test)
Algorithm Purpose Performance
Shen et al. (2020) [109] Lateral cephalograms 488/116
(additional 64 images than validation set)
CNN Adenoid hypertrophy detection Classification accuracy: 95.6%.
Average AN ratio error: 0.026.
Macro F1 score: 0.957.
Zhao et al. (2021) [110] Lateral cephalograms 581/160 CNN Adenoid hypertrophy detection Accuracy: 0.919.
Sensitivity: 0.906.
Specificity: 0.938.
ROC: 0.987.
Liu et al. (2021) [111] Lateral cephalograms 923/100 VGG-Lite Adenoid hypertrophy detection Sensitivity: 0.898.
Specificity: 0.882.
Positive predictive value: 0.880.
Negative predictive value: 0.900.
F1 score: 0.889.
Sin et al. (2021) [112] CBCT 214/46
(additional 46 images than validation set)
CNN Pharyngeal airway segmentation Dice ratio: 0.919.
Weighted IoU: 0.993.
Leonardi et al. (2021) [113] CBCT 20/20 CNN Sinonasal cavity and pharyngeal airway segmentation Mean matching percentage (tolerance 0.5 mm/1.0 mm): 85.35 ± 2.59/93.44 ± 2.54
Shujaat et al. (2021) [114] CBCT 48/25 (additional 30 images than validation set) 3D U-Net Pharyngeal airway segmentation Accuracy: 100%.
Dice score:0.97 ± 0.02.
IoU: 0.93 ± 0.03.
Jeong et al. (2023) [115] Lateral cephalograms 1099/120 CNN Upper-airway obstruction evaluation Sensitivity: 0.86.
Specificity: 0.89.
Positive predictive value: 0.90.
Negative predictive value: 0.85,
F1 score: 0.88.
Dong et al. (2023) [116] CBCT A total of 87 HMSAU-Net and 3D-ResNet Upper-airway segmentation and adenoid hypertrophy detection Segmentation: Dice value: 0.96.
Diagnosis: accuracy: 0.912.
Sensitivity: 0.976.
Specificity: 0.867.
Positive predictive value: 0.837.
Negative predictive value: 0.981.
F1 score: 0.901.
Jin et al. (2023) [117] CBCT A total of 50 Transformer and U-Net Nasal and pharyngeal airway segmentation Precision: 85.88~94.25%.
Recall: 93.74~98.44%.
Dice similarity coefficient: 90.95~96.29%.
IoU: 83.68~92.85%.

ROC, receiver operating characteristic; CBCT, cone-beam computed tomography; CNN, convolutional Neural Network; AN, adenoid–nasopharynx; IoU, Intersection over Union; HMSAU-Net, hierarchical masks self-attention U-net; 3D, three-dimensional.