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Abstract: Despite advances in surgery and radiotherapy, the overall prognosis of sinonasal intestinal-
type adenocarcinoma (ITAC) is poor, and new treatment options are needed. Recent studies have
indicated alterations in cellular signaling pathways that may serve as targets for modern inhibitors.
Our aim was to evaluate the frequency of mTOR and ERK pathway upregulation in a retrospective
series of 139 ITAC and to test the efficacy and mechanism of action of candidate targeted inhibitors in
cell line ITAC-3. An immunohistochemical analysis on p-AKT, p-mTOR, p-S6, p-4E-BP1, and p-ERK
indicated, respectively, a 68% and 57% mTOR and ERK pathway activation. In vitro studies using
low doses of mTOR inhibitor everolimus and ERK inhibitor selumetinib showed significant growth
inhibition as monotherapy and especially as combined therapy. This effect was accompanied by
the downregulation of mTOR and ERK protein expression. Our data open a new and promising
possibility for personalized treatment of ITAC patients.

Keywords: sinonasal cancer; intestinal-type adenocarcinoma; mTOR; ERK; preclinical model; per-
sonalized therapy

1. Introduction

Intestinal-type sinonasal adenocarcinoma (ITAC) is a rare tumor predominantly occur-
ring in men with an occupational exposure to wood and leather dust [1–5]. The incidence
is variable between different countries, being significantly higher in Europe with 0.3/
100,000 inhabitants compared to North America with 0.092/100,000 inhabitants [1,5–8].
Unfortunately, there is a lack of published reports on ITAC in other parts of the world. ITAC
is histologically similar to colorectal adenocarcinoma [2,6,9], but it arises in the respiratory
and olfactory mucosa in the ethmoid sinus through a process of transdifferentiation [10,11].
As in colorectal adenocarcinoma, different histological subtypes of ITAC exist, with solid
and mucinous types having a worse clinical course than papillary and colonic types [6,7].
The standard of treatment of ITAC is surgery followed by radiotherapy and sometimes
chemotherapy [1,3,12,13]. Despite advances in these approaches, such as transnasal endo-
scopic surgery, intensity-modulated radiation therapy, volumetric modulated arc therapy,
and heavy-particle therapy [14–17], the overall prognosis is poor. Five-year overall sur-
vival ranges from 80% in stage I tumors to 30% in stage IV tumors, and the main cause of
mortality is local recurrence, occurring in 40–50% of all cases [1,3,18,19]. Therefore, there
is a great need for new treatment options. Recent studies have indicated a number of
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genetic alterations in cellular signaling pathways that may serve as targets for modern
inhibitors [20–26].

One of the most studied therapeutic targets in cancer is mTOR signaling, which plays a
role in various cellular processes, including proliferation, differentiation, metabolism, genomic
instability, and angiogenesis [27]. Genetic alterations in this molecular pathway occur in head
and neck cancers [28,29] and have recently also been shown in ITAC [20–22]. In addition, an
immunohistochemical analysis revealed increased levels of mTOR activation and downstream
effectors EIF2S1 and EIF6 in a majority of cases [21,22]. In addition to mTOR, the ERK
(or MAPK) pathway is also involved in cell proliferation and survival (Figure 1), and the
inhibition of mTOR may cause induction of ERK leading to drug resistance [30,31]. For this
reason, both pathways must be studied together. Previous studies have also shown ERK
pathway gene mutations and overexpression in a substantial percentage of ITAC [20,21].
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Figure 1. Map of mTOR and ERK signalling pathways showing genes and proteins investigated in
this study. Selumetinib and everolimus inhibitors inactivate by acting on targets ERK and mTOR,
respectively. Figure created with BioRender.com.

We hypothesized that the mTOR and ERK pathways could be used as therapeutic
targets for the treatment of a subset of ITAC patients. Here, we evaluated a large series of
139 ITAC and confirmed that both mTOR and ERK pathways are frequently activated. In
addition, we used tumor cell line ITAC-3 to study the growth inhibition effects of mTOR
and ERK inhibitors in vitro. To our knowledge, this is the first study focusing on these
pathways to test novel therapeutic options for ITAC patients.

2. Results
2.1. mTOR and ERK Pathways Are Frequently Activated in ITAC

The expression of several proteins involved in mTOR signalling was evaluated by
immunohistochemistry. p-AKT staining was observed in 70% (47/67) of the cases, of which
48% had low, 25% had medium, and 27% had high scores. p-mTOR expression occurred in
90% (125/139) of cases, with 32% with low, 32% with medium, and 36% with high positivity.

BioRender.com
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All except 1 of 118 cases were positive for p-S6: 29% scored low, 28% scored medium, and
47% scored high. In addition, p-4E-BP1 was found expressed in a majority of cases (111/118,
94%), with 26% of cases presenting low, 35% presenting medium, and 39% presenting high
scores. The activity of ERK pathway signalling was evaluated with p-ERK only, which
showed positivity in 82% (113/138) of cases: 44% scored low, 28% scored medium, and 28%
scored high. Representative examples of each staining are given in Figure 2.
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    All Tumor Stage Histological Type Recurrence Metastasis Patient Status 
      I II III IVa IVb pap col sol muc No Yes No Yes Alive DOD DOC 

All   139 134 139 134 134 139 

p-AKT 

Low 32/67 
5/17 

(29%) 
2/4 

(50%) 
14/28 
(50%) 

3/6 
(50%) 

8/12 
(67%) 

5/5   
(100%) 

16/44  
(36%) 

1/5   
(20%) 

10/13  
(77%) 

18/34  
(53%) 

14/33  
(43%) 

24/58  
(41%) 

8/9   
(89%) 

10/24  
(42%) 

17/33  
(52%) 

5/10  
(50%) 

Medium 17/67 5/17 
(29%) 

1/4 
(25%) 

8/28 
(29%) 

1/6 
(17%) 

2/12 
(17%) 

0/5   
(0%) 

14/44  
(32%) 

1/5   
(20%) 

2/13  
(15%) 

8/34  
(23%) 

9/33  
(27%) 

16/58  
(28%) 

1/9   
(11%) 

6/24  
(25%) 

7/33  
(21%) 

4/10  
(40%) 

High 18/67 
7/17 

(41%) 
1/4 

(25%) 
6/28 

(21%) 
2/6 

(33%) 
2/12 

(17%) 
0/5   

(0%) 
14/44  
(32%) 

3/5   
(60%) 

1/13  
(8%) 

8/34  
(24%) 

10/33  
(30%) 

18/58  
(31%) 

0/9   
(0%) 

8/24  
(33%) 

9/33  
(27%) 

1/10  
(10%) 

p   0.751 0.018 * 0.682 0.026 * 0.592 

p-mTOR 

Low 
45/13

9 
6/31 

(19%) 
4/17  

(24%) 
14/45  
(31%) 

9/16  
(56%) 

8/25  
(32%) 

4/12  
(33%) 

28/85  
(33%) 

3/10  
(30%) 

10/32  
(32%) 

24/74  
(33%) 

17/60  
(28%) 

32/121 
(26%) 

9/13  
(69%) 

11/59  
(19%) 

21/54  
(39%) 

9/21  
(43%) 

Medium 
44/13

9 
13/31 
(42%) 

6/17  
(35%) 

15/45  
(33%) 

2/16  
(13%) 

8/25  
(32%) 

3/12  
(25%) 

27/85  
(32%) 

3/10  
(30%) 

11/32  
(34%) 

20/74  
(27%) 

24/60  
(40%) 

40/121 
(33%) 

4/13  
(31%) 

21/59  
(36%) 

16/54  
(30%) 

7/21  
(33%) 

High 
50/13

9 
12/31 
(39%) 

7/17  
(41%) 

16/45  
(36%) 

5/16  
(31%) 

9/25  
(36%) 

5/12  
(42%) 

30/85  
(35%) 

4/10  
(40%) 

11/32  
(34%) 

30/74  
(40%) 

19/60  
(32%) 

49/121 
(41%) 

0/13  
(0%) 

27/59  
(45%) 

17/54  
(31%) 

5/21  
(24%) 

p   0.421 0.998 0.273 0.002 * 0.092 
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Figure 2. Representative immunohistochemical staining of p-AKT, p-mTOR, p-S6, p-4E-BP1, and
p-ERK. Magnification 20×.

Expression scores of p-mTOR, p-S6, p-4E-BP1, and p-ERK were interrelated so that
cases with a high score for one of these proteins also had a high expression of the others. In
contrast, the expression levels of p-AKT did not correlate with those of the other proteins.

All results were studied for possible correlation to clinico-pathological characteristics,
including tumor stage, histological subtype, recurrence, metastasis, and patient status
(Table 1). ITAC colonic and solid subtypes showed significantly more p-AKT expression
that papillary and mucinous tumors (Pearson Chi2 p = 0.018). High expression scores of all
evaluated proteins correlated with an absence of metastasis during follow-up. However,
none of the staining was associated with tumor stage, recurrence, or patient status.

Table 1. Clinical and follow-up data of 139 ITAC in relation to mTOR and ERK pathway protein
expression.

All Tumor Stage Histological Type Recurrence Metastasis Patient Status

I II III IVa IVb pap col sol muc No Yes No Yes Alive DOD DOC

All 139 134 139 134 134 139

p-
AKT

Low 32/67 5/17
(29%)

2/4
(50%)

14/28
(50%)

3/6
(50%)

8/12
(67%)

5/5
(100%)

16/44
(36%)

1/5
(20%)

10/13
(77%)

18/34
(53%)

14/33
(43%)

24/58
(41%)

8/9
(89%)

10/24
(42%)

17/33
(52%)

5/10
(50%)

Medium 17/67 5/17
(29%)

1/4
(25%)

8/28
(29%)

1/6
(17%)

2/12
(17%)

0/5
(0%)

14/44
(32%)

1/5
(20%)

2/13
(15%)

8/34
(23%)

9/33
(27%)

16/58
(28%)

1/9
(11%)

6/24
(25%)

7/33
(21%)

4/10
(40%)

High 18/67 7/17
(41%)

1/4
(25%)

6/28
(21%)

2/6
(33%)

2/12
(17%)

0/5
(0%)

14/44
(32%)

3/5
(60%)

1/13
(8%)

8/34
(24%)

10/33
(30%)

18/58
(31%)

0/9
(0%)

8/24
(33%)

9/33
(27%)

1/10
(10%)

p 0.751 0.018 * 0.682 0.026 * 0.592

p-
mTOR

Low 45/139 6/31
(19%)

4/17
(24%)

14/45
(31%)

9/16
(56%)

8/25
(32%)

4/12
(33%)

28/85
(33%)

3/10
(30%)

10/32
(32%)

24/74
(33%)

17/60
(28%)

32/121
(26%)

9/13
(69%)

11/59
(19%)

21/54
(39%)

9/21
(43%)

Medium 44/139 13/31
(42%)

6/17
(35%)

15/45
(33%)

2/16
(13%)

8/25
(32%)

3/12
(25%)

27/85
(32%)

3/10
(30%)

11/32
(34%)

20/74
(27%)

24/60
(40%)

40/121
(33%)

4/13
(31%)

21/59
(36%)

16/54
(30%)

7/21
(33%)

High 50/139 12/31
(39%)

7/17
(41%)

16/45
(36%)

5/16
(31%)

9/25
(36%)

5/12
(42%)

30/85
(35%)

4/10
(40%)

11/32
(34%)

30/74
(40%)

19/60
(32%)

49/121
(41%)

0/13
(0%)

27/59
(45%)

17/54
(31%)

5/21
(24%)

p 0.421 0.998 0.273 0.002 * 0.092

p-S6

Low 29/118 5/25
(20%)

4/13
(31%)

8/39
(20%)

5/15
(33%)

6/23
(26%)

2/10
(20%)

17/74
(23%)

2/9
(22%)

8/25
(32%)

14/60
(23%)

14/55
(26%)

19/105
(18%)

9/10
(90%)

7/48
(15%)

16/51
(31%)

5/16
(31%)

Medium 33/118 8/25
(32%)

3/13
(23%)

12/39
(31%)

5/15
(34%)

5/23
(22%)

2/10
(20%)

20/74
(27%)

3/9
(33%)

8/25
(32%)

18/60
(30%)

15/55
(27%)

32/105
(31%)

1/10
(10%)

12/48
(25%)

15/51
(29%)

6/16
(38%)

High 56/118 12/25
(48%)

6/13
(46%)

19/39
(49%)

5/15
(33%)

12/23
(52%)

6/10
(60%)

37/74
(50%)

4/9
(45%)

9/25
(36%)

28/60
(47%)

26/55
(47%)

54/105
(51%)

0/10
(0%)

29/48
(60%)

20/51
(40%)

5/16
(31%)

p 0.950 0.882 0.937 0.000 * 0.124

p-4E-
BP1

Low 31/118 4/25
(16%)

1/13
(8%)

11/39
(28%)

9/15
(60%)

5/23
(22%)

3/10
(30%)

17/74
(23%)

1/9
(11%)

10/25
(40%)

15/60
(25%)

15/55
(27%)

24/105
(23%)

6/10
(60%)

11/48
(23%)

15/51
(29%)

4/16
(25%)

Medium 41/118 10/25
(40%)

6/13
(46%)

13/39
(33%)

2/15
(13%)

10/23
(43%)

6/10
(60%)

23/74
(31%)

5/9
(56%)

7/25
(28%)

23/60
(38%)

18/55
(33%)

39/105
(37%)

2/10
(20%)

20/48
(42%)

16/51
(31%)

5/16
(31%)

High 46/118 11/25
(44%)

6/13
(46%)

15/39
(39%)

4/15
(27%)

8/23
(35%)

1/10
(10%)

34/74
(46%)

3/9
(33%)

8/25
(32%)

22/60
(37%)

22/55
(40%)

42/105
(40%)

2/10
(20%)

17/48
(35%)

20/51
(40%)

7/16
(44%)

p 0.092 0.126 0.822 0.038 * 0.829

p-
ERK

Low 60/138 9/31
(29%)

5/17
(29%)

22/45
(49%)

10/16
(63%)

12/24
(50%)

4/12
(33%)

35/84
(42%)

4/10
(40%)

17/32
(53%)

27/73
(37%)

31/60
(52%)

48/121
(40%)

10/12
(84%)

21/59
(36%)

27/53
(51%)

10/21
(48%)

Medium 39/138 12/31
(39%)

5/17
(29%)

13/45
(29%)

5/16
(31%)

3/24
(12%)

5/12
(42%)

24/84
(28%)

3/10
(30%)

7/32
(22%)

24/73
(33%)

14/60
(23%)

37/121
(30%)

1/12
(8%)

21/59
(36%)

11/53
(21%)

6/21
(29%)

High 39/138 10/31
(32%)

7/17
(42%)

10/45
(22%)

1/16
(6%)

9/24
(38%)

3/12
(25%)

25/84
(30%)

3/10
(30%)

8/32
(25%)

22/73
(30%)

15/60
(25%)

36/121
(30%)

1/12
(8%)

17/59
(28%)

15/53
(28%)

5/21
(23%)

p 0.121 0.864 0.224 0.015 * 0.420

Legend. pap: papillary; col: colonic; sol: solid; muc: mucinous; DOD: died of disease; DOC: died of other causes;
All statistical analyses by Pearson Chi2, *: significant.
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2.2. Both mTOR and ERK Pathways Are Activated in Cell Line ITAC-3

A WES analysis of cell line ITAC-3 revealed two alterations in genes involved in the
mTOR pathway; one concerned a frameshift mutation affecting exon 1 of IRS4 (c.2244delC)
(Supplementary Figure S1) and the other TSC1, which suffered a heterozygous deletion.
The Western blot analysis showed strong expression levels of p-mTOR, p-S6, and p-ERK;
low expression of p-4E-BP1; and an almost complete absence of p-AKT (Figure 3). These
results indicate that cell line ITAC-3 is useful as a preclinical model to test mTOR and ERK
pathway inhibitors.
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23/60  
(38%) 

18/55  
(33%) 

39/105 
(37%) 

2/10  
(20%) 

20/48  
(42%) 

16/51  
(31%) 

5/16  
(31%) 

High 
46/11

8 
11/25 
(44%) 

6/13  
(46%) 

15/39  
(39%) 

4/15  
(27%) 

8/23  
(35%) 

1/10  
(10%) 

34/74  
(46%) 

3/9   
(33%) 

8/25  
(32%) 

22/60  
(37%) 

22/55  
(40%) 

42/105 
(40%) 

2/10  
(20%) 

17/48  
(35%) 

20/51  
(40%) 

7/16  
(44%) 

p   0.092 0.126 0.822 0.038 * 0.829 

p-ERK 

Low 
60/13

8 
9/31 

(29%) 
5/17  

(29%) 
22/45  
(49%) 

10/16  
(63%) 

12/24  
(50%) 

4/12  
(33%) 

35/84  
(42%) 

4/10  
(40%) 

17/32  
(53%) 

27/73  
(37%) 

31/60  
(52%) 

48/121 
(40%) 

10/12  
(84%) 

21/59  
(36%) 

27/53  
(51%) 

10/21  
(48%) 

Medium 
39/13

8 
12/31 
(39%) 

5/17  
(29%) 

13/45  
(29%) 

5/16  
(31%) 

3/24  
(12%) 

5/12  
(42%) 

24/84  
(28%) 

3/10  
(30%) 

7/32  
(22%) 

24/73  
(33%) 

14/60  
(23%) 

37/121 
(30%) 

1/12  
(8%) 

21/59  
(36%) 

11/53  
(21%) 

6/21  
(29%) 

High 
39/13

8 
10/31 
(32%) 

7/17  
(42%) 

10/45  
(22%) 

1/16  
(6%) 

9/24  
(38%) 

3/12  
(25%) 

25/84  
(30%) 

3/10  
(30%) 

8/32  
(25%) 

22/73  
(30%) 

15/60  
(25%) 

36/121 
(30%) 

1/12  
(8%) 

17/59  
(28%) 

15/53  
(28%) 

5/21  
(23%) 

p   0.121 0.864 0.224 0.015 * 0.420 
Legend. pap: papillary; col: colonic; sol: solid; muc: mucinous; DOD: died of disease; DOC: died of 
other causes; All statistical analyses by Pearson Chi2, *: significant. 
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Figure 3. Representative immunoblots for p-AKT, AKT, p-mTOR, mTOR, p-S6, S6, p-4E-BP1, 4E-BP1,
p-ERK, and ERK expression in cell line ITAC-3 after 24 h with everolimus and selumetinib treatment
(A). Expression ratios of phosphorylated and unphosphorylated AKT (B), mTOR (C), S6 (D), 4E-BP1
(E), and ERK (F) upon exposure to everolimus, selumetinib, and a combination of everolimus and
selumetinib (all at 50 nM dosis), normalized to unexposed control cells. Experiments carried out
in triplicate; expression ratios are shown as mean values ± standard error of the mean. Legend. C:
unexposed control cells; E: everolimus at 50 nM dosis; S: selumetinib at 50 nM dosis; E + S: everolimus
and selumetinib both at 50 nM dosis; * p = 0.05–0.01; ** p = 0.01–0.001; *** p < 0.001.

2.3. Everolimus and Selumetinib Inhibit mTOR and ERK Signalling and Cell Proliferation of Cell
Line ITAC-3

We tested the growth inhibitory potential of mTOR inhibitor everolimus and ERK
inhibitor selumetinib as monotherapy and as a combination at concentrations of 5 nM
and 50 nM using real-time monitoring up to 190 h. The results showed reduced cell
proliferation for all exposure schemes (Figure 4). Everolimus produced a stronger inhibition
than selumetinib, and the effect was dose-related for both drugs. A combination at 5 nM
doses showed a stronger growth reduction than the mono-exposure of both inhibitors at
50 nM doses while a combinatory exposure to 50 nM doses almost completely stopped cell
proliferation.

Based on these results, we chose 24 and 48 h exposures to everolimus and selumetinib
at 50 nM doses to analyze their effect on protein levels of mTOR and ERK pathways by
Western blot (Figures 3 and S2). We found p-mTOR/mTOR ratios significantly decreased
by 24 h with combined exposure to everolimus and selumetinib, and a similar trend was
observed by treatment with either everolimus or selumetinib. However, after 48 h of
exposure, p-mTOR/mTOR levels were comparable with unexposed control cells. The
downstream factor p-4E-BP1 showed a clear increase in expression both at 24 and 48 h
exposure to everolimus and a very strong increase to combined exposure. The expression
of the other downstream factor, p-S6, did not change in response to any of the treatment
schemes. Upstream factor p-AKT/AKT ratios showed significant increases upon 24 h
exposure to everolimus, selumetinib, and their combination while at 48 h, this effect was
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mostly lost. Finally, none of the treatment schemes produced a decrease in the p-ERK/ERK
expression ratio at 24 h, but at 48 h, there were modest decreases, particularly with mono-
exposure to selumetinib.
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3. Discussion

The mTOR and ERK pathways are potential therapeutic targets for many types of
cancer. Gene mutations have been reported, and signalling is frequently deregulated and
hyperactivated, including in head and neck cancers and ITAC [20–22,27–29]. The ERK
pathway, another frequently altered pathway in cancer, has common inputs with mTOR
and has been shown to produce compensatory effects upon mTOR inhibition [30,31].

In the present study, we demonstrated a high incidence of both mTOR and ERK
pathway activation in a large series of ITAC. The distribution of stage and histological
subtypes as well as the rate of recurrence and metastasis is comparable to other published
series [1,3,7,15,19]. In addition to metabolism and cell cycle regulation, both pathways
have been suggested to also play a role in metastasis [27,32]. Our immunohistochemical
data, however, showed that all four phosporylated mTOR pathway proteins as well as
p-ERK correlate with the absence of distant metastasis (Table 1), so this finding will need
additional studies. Irrespective of the role of mTOR and ERK signalling in metastasis, our
data indicate that both are promising targets for new therapeutic options for ITAC patients.

Aiming to test such therapies in a preclinical setting, we used tumor cell line ITAC-3.
This cell line was established and published by our group in 2011 and, unfortunately,
still remains the only available preclinical model of ITAC to date [33]. A WES analysis
did not reveal a mutation in key players of mTOR or ERK pathways; however, we did
find a mutation in IRS4. This gene is part of the IRS family (IRS1 to IRS6), which are
adaptor proteins involved in insulin receptors and IGF1R. Although one of the least
characterized proteins in this family, IRS4 has been associated with the hyperactivation
of the mTOR and ERK pathways in lung and breast cancer [34,35]. We also found a
heterozygous deletion of TSC1 in ITAC-3 cells. Previous studies on ITAC have reported
TSC2 mutations [20,21], which suggest that ITAC alterations in the TSC complex may be
involved in the upregulation of mTOR (Figure 1). The suitability of cell line ITAC-3 to
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test mTOR and ERK pathway inhibitors was confirmed with a Western blot analysis of
untreated cells showing high expression levels of activated (i.e., phosphorylated) mTOR,
S6, and ERK proteins and a low expression of AKT and 4E-BP1 (Figure 3).

We chose to test the efficacy to reduce cell proliferation of everolimus and selumetinib
as inhibitors of mTOR and ERK pathways, respectively. These drugs suppress two different
but interconnected signalling pathways. Everolimus acts directly on mTOR and is approved
for lung, gastrointestinal, neuroendocrine tumors, and advanced renal carcinoma while
selumetinib directly inhibits ERK, and its application is approved for neurofibromas [36,37].
In addition, both compounds are being tested in various clinical trials on non-small cell
lung, thyroid, and colorectal cancer, among others [38]. Our results on ITAC-3 cells showed
a clear inhibitory effect with everolimus, even as a monotherapy at lower concentrations
than described in similar studies on colon and breast cancer cell lines [39,40]. Exposure
to selumetinib also caused an inhibition of cell growth as has been shown in cell lines of
other cancer types [41,42]. However, a combination of both inhibitors showed the strongest
growth reduction and was clearly superior to monotherapy, as has been shown for other
cancer types [31].

The Western blot expression analysis of mTOR pathway proteins demonstrated the
expected decrease in p-mTOR and increase in p-4E-BP1 at 24 h exposure to everolimus.
These effects were mostly lost at 48 h; therefore, we speculate that the observed p-AKT
upregulation may be responsible for the reduced mTOR signalling seen at 48 h and could
indicate a mechanism of resistance to therapy [43]. The Western blot data also confirmed
that exposure to selumetinib causes the expected decrease in p-ERK ratio levels and, similar
to everolimus treatment, leads to an upregulation of p-AKT. Surprisingly, everolimus
treatment also resulted in decreased ERK levels at 48 h while 24 h of exposure selumetinib
led to reduced p-mTOR expression. This underlines the complex interconnection between
both pathways. Compared to these monotherapy analyses, the strongest downregulation of
p-mTOR and upregulation of p-4E-BP1 and p-AKT was observed with combined exposure
to everolimus and selumetinib, which concurred with the strongest inhibition of cell
proliferation.

In conclusion, there is an unmet clinical need for alternative therapies for ITAC patients,
particularly for those with recurrent and metastatic diseases. We found that mTOR and
ERK pathways are activated in a large proportion of cases and may serve as targets for
personalized therapy. Using cell line ITAC-3 as a preclinical model for growth inhibition
studies, we showed that inhibitors of these two pathways indeed have a cytostatic effect,
which is accompanied by the downregulation of mTOR and ERK signalling, particularly
with the combination treatment. Our data may open a new and promising possibility for
personalized treatment of ITAC patients.

4. Materials and Methods
4.1. Primary Tumor Samples and Cell Line

Tissue microarrays (TMAs) were created of 139 primary ITAC samples and 6 normal
mucosa controls [23]. The mean age was 65 years (range 28–92), 136 were male, and 3
were female. An amount of 31 cases were stage I, 17 stage II, 45 stage III, 16 stage Iva, and
25 stage IVb. An amount of 12 cases presented a papillary subtype, 85 colonic, 10 solid, and
32 mucinous subtypes. During follow-up, 60 patients developed local recurrence, 13 devel-
oped distant metastasis, and 54 died of the disease. The mean disease-free survival was
35 months (range 0–264); the mean overall survival was 55 months (range 0–460). Informed
consent was obtained from the patients. All experimental protocols were approved by and
carried out according to the Institutional Ethics Committee of the Hospital Universitario
Central de Asturias and by the Regional CEIC from Principado de Asturias (approval
number 2020.048).

Cell line ITAC-3 was established in 2011 from a previously untreated, colonic type
T4N0 stage tumor [33] and was maintained in HuMEC serum-free culture medium (Gibco/
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Thermo Fisher Scientific Inc., Waltham, MA, USA). DNA and protein extraction and in vitro
studies were carried out on passages 35–40.

4.2. Mutation Analysis

DNA from ITAC-3 cells and peripheral blood lymphocytes from the same patient
were extracted with the Roche High Pure Template Preparation Kit (Roche Diagnostics
GmbH, Mannheim, Germany). Whole exome sequencing (WES) and bioinformatic analysis
were performed as described by Hieggelke et al. [24], and the mutation in gene IRS4 exon
1 was confirmed with PCR using primers FW 5’-CCAATGGCTCCTCAAAATGT-3’ and
RV 5’-AAGAGCCACCCTGAGGATTT-3’ run on a Simpliamp Thermal Cycler VXA24811
(Applied Biosystems/ Thermo Fisher Scientific, Inc., Waltham, MA, USA). The conditions
were as follows: [95 ◦C for 5 min + (95 ◦C for 15 s, 58 ◦C for 1 min, 72 ◦C for 1 min)
× 32 cycles + 72 ◦C for 7 min + 4 ◦C]. The PCR products were purified with Exo-BAP Mix
(EURx Ltd., Gdansk, Poland) and sequenced with the ABI PRISM 3100 and 3730 Genetic
Analyzers (Applied Biosystems/ Thermo Fisher Scientific, Inc., Waltham, MA, USA). Sense
and antisense sequencing were performed for confirmation.

4.3. Immunohistochemistry

Three µm tissue sections from the TMAs and from a paraffin block containing cells
from the ITAC-3 cell line were pre-treated in PT Link (Dako/Agilent Technologies Inc.,
Santa Clara, CA, USA) for 20–30 min at 95 ◦C, according to antibody and using epitope un-
masking solution at pH 9 (EnVision FLEX Target Retrieval Solution High pH, Dako/Agilent
Technologies Inc., Santa Clara, CA, USA). Then, samples were incubated with peroxidase
(Dako/Agilent Technologies Inc., Santa Clara, CA, USA) for 5 min and subsequently
30 min with their corresponding antibody, then dissolved in Envision FLEX antibody
diluent (Dako/Agilent Technologies Inc., Santa Clara, CA, USA).

The following antibodies were used: anti-p-AKT (Ser473, clone D9E; Dako/Agilent
Technologies Inc., Santa Clara, CA, USA), anti-p-mTOR (Ser2448, clone 49F9; Cell Signaling,
Danvers, MA, USA), anti-p-S6 (Ser235/236; Cell Signaling, Danvers, MA, USA), anti-p-
4E-BP1 (Thr37/46, clone 236B4; Cell Signaling, Danvers, MA, USA), and anti-p-MAPK
(Thr202/Tyr204; Cell Signaling, Danvers, MA, USA). Next, samples were incubated with
EnVision FLEX/HRP (Dako/Agilent Technologies Inc., Santa Clara, CA, USA) for 30 min
and stained with liquid DAB (Dako/Agilent Technologies Inc., Santa Clara, CA, USA) for
10 min. Finally, hematoxylin (Dako/Agilent Technologies Inc., Santa Clara, CA, USA) was
used to stain cell nuclei for 8 min, and the samples were mounted with Entellan® new for
cover slipper (Millipore Corporation; Burlington, MA, USA).

Nuclear and/or cytoplasmic immunostaining was scored on a four-tiered scale for
intensity (0 absent, 1 weak, 2 moderate, 3 strong) and percentage of positive tumor cells
(1–25%, 26–50%, 51–75% and 76–100%), creating a final 3 level score by multiplying intensity
and percentage scores: low (score 0–3), moderate (score 4–7), and high (score 8–12). In
50 of the 139 cases of ITAC, p-mTOR and p-ERK protein expression had been analyzed
in a previous study [21]. The slides were evaluated in a double-blind manner by three
observers, and discrepancies between the observers were resolved with a consensus review
after simultaneous re-evaluation.

4.4. Cell Proliferation and Inhibitor Sensitivity Assay

Cell proliferation was evaluated using the RTCA iCELLigence System with E-Plates
L8 (ACEA Biosciences, Inc., San Diego, CA, USA). This system uses impedance measure-
ments from each individual well, reflecting the surface area grown by the tumor cells.
Each well was seeded with 25,000 cells in 200 µL culture medium, and at 24 h, 350 µL
culture medium with everolimus was added (Selleckchem, Madrid, Spain), selumetinib
(Selleckchem, Madrid, Spain) was added, or a combination of both was added at 5 nM and
50 nM final concentration. The cells were monitored in real-time for 190 h after cell seeding.
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Cell proliferation was analyzed with RTCA Data Analysis Software version 1.0 (ACEA
Biosciences, Inc., San Diego, CA, USA).

4.5. Western Blot

Protein extraction was carried out using a buffer consisting of 90% RIPA Lysis Buffer
(Sigma-Aldrich; Darmstadt, Hesse, Germany), 1 mM sodium orthovanadate, 0.1 mM
phenylmethylsulfonyl fluoride, phosphatase inhibitor PhosSTOPTM 1 X (Roche, Basel,
Switzerland), and CompleteTM Protease Inhibitor Cocktail 1 X (Roche, Basel, Switzerland).
Then, samples were centrifuged at 13,000 rpm at 4 ◦C for 10 min, and the supernatant
was collected and preserved at −20 ◦C until use. Protein quantification was analyzed
with bicinchoninic acid technique (Pierce BCA Protein Assay kit; Pierce Biothecnology Inc.,
Waltham, MA, USA).

Electrophoresis of 30 µg total protein was performed on 4–15% Mini-PROTEAN®

Precast Gel (BioRad Laboratories Inc., Hercules, CA, USA) and then transferred to PVDF
membranes (Millipore, Burlington, MA, USA), which were then blocked with 5% BSA in
TBS-T (Tris-buffered saline with 5% BSA and 1% Tween-20). Membranes were incubated
with the following antibodies during 24 h at 4 ◦C: anti-p-AKT (Ser473, clone D9E; Cell
Signaling, Danvers, MA, USA), anti-AKT (clone C67E7; Cell Signaling, Danvers, MA,
USA), anti-p-mTOR (Ser2448, clone D9C2; Cell Signaling, Danvers, MA, USA), anti-mTOR
(clone 7C10; Cell Signaling, Danvers, MA, USA), anti-p-S6 (Ser235/236; Cell Signaling,
Danvers, MA, USA), anti-S6 (clone 5G10; Cell Signaling, Danvers, MA, USA), anti-p-4E-BP1
(Thr37/46, clone 236B4; Cell Signaling, Danvers, MA, USA), anti-4E-BP1 (clone 53H11; Cell
Signaling, Danvers, MA, USA), anti-p-MAPK (Thr202/Tyr204; Cell Signaling, Danvers, MA,
USA), and anti-MAPK (Cell Signaling, Danvers, MA, USA). GAPDH (clone 6C5; Millipore,
Burlington, MA, USA) was used as control to quantify and normalize protein levels. Next,
membranes were incubated with corresponding secondary antibodies conjugated with
horseradish peroxidase (Santa Cruz Biotechnologies, Dallas, TX, USA) during 1 h at RT.
Finally, membranes were developed with LuminataTM Forte (Millipore, Burlington, MA,
USA) and Odyssey Fc Dual-Model Imaging System (LI-COR Biosciences, Lincoln, NE, USA).
Images were acquired using the software Image StudioTM Lite Quantification Version 5.2
(LICOR Bioscience, Lincoln, NE, USA). After analyzing the phosphorylated forms of the
proteins, a stripping of the membranes was performed to study the total forms. To do this,
the membranes were incubated with RestoreTM Western Blot Stripping Buffer (Thermo
Fisher Scientific, Inc., Waltham, MA, USA) for 30 min at 37 ◦C.

4.6. Statistical Analysis

The Chi2 test was used to test possible associations between the immunohistochem-
ical staining and clinico-pathological variables. Kaplan–Meier curves were plotted to
assess survival using the Log rank test. Western blot quantification data are shown as the
mean ± standard error of the mean, and comparison among groups was performed with
one-way ANOVA with Bonferroni post hoc test. SPSS was used for statistical analysis
IBM SPSS Statistics 25.0. (SPSS Inc., Chicago, IL, USA). Values of p < 0.05 were considered
significant.
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