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Abstract: Non-syndromic cleft lip with or without palate (NSCL/P) is a prevalent birth defect that
affects 1/500–1/1400 live births globally. The genetic basis of NSCL/P is intricate and involves both
genetic and environmental factors. In the past few years, various genetic inheritance models have
been proposed to elucidate the underlying mechanisms of NSCL/P. These models range from simple
monogenic inheritance to more complex polygenic inheritance. Here, we present a comprehensive
overview of the genetic inheritance model of NSCL/P exemplified by representative genes and
regions from both monogenic and polygenic perspectives. We also summarize existing association
studies and corresponding loci of NSCL/P within the Chinese population and highlight the potential
of utilizing polygenic risk scores for risk stratification of NSCL/P. The potential application of poly-
genic models offers promising avenues for improved risk assessment and personalized approaches
in the prevention and management of NSCL/P individuals.

Keywords: non-syndromic cleft lip with or without palate (NSCL/P); genetic etiology; inheritance
model; polygenic risk score (PRS)

1. Background

As the most common craniofacial anomalies worldwide, orofacial clefts (OFCs) present
in 1/700 live births worldwide [1]. The phenotype spectrum associated with OFCs is
highly variable and involves only lip (cleft lip, CL), only palate (cleft palate, CP), and the
combination thereof: cleft lip with or without palate (CL/P). Each phenotype could be
further categorized as unilateral/bilateral, and complete/incomplete [2]. Orofacial clefts
could substantially affect a child’s health and overall well-being, including difficulties with
feeding, speech, hearing, and social interaction. These anomalies not only affect patients’
aesthetics but also could result in significant psychological and financial burdens to the
family in some severe cases.

The embryogenesis of the lip and palate has been extensively and elaborately re-
viewed [2–5]. During the development of the upper lip (between the 4th and 8th weeks
of gestation), the mesenchymal cell proliferation and tissue augmentation give rise to the
bilateral medial and lateral nasal prominences encompassing the nasal placode. The medial
nasal prominences and the in-between intermaxillary segment continue to grow and merge
into the philtrum at the 5th week of gestation [4]. Then, the bilateral maxillary prominences
progress medially and coalesce with the philtrum, producing the continuous edge of the
upper lip. Palatogenesis commences from the 6th week to the 12th week. Following the
fusion of the philtrum and maxillary prominences, the tissue underlying the nasal pits
proliferates, giving rise to the median palatine process (primary palate), which demarcates
nostrils and upper lip. Subsequently, paired lateral palatine processes originate from the
maxillary processes and extend horizontally toward the midline beneath the nasal septum
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during the 8th to 9th week of gestation [5], ultimately forming the secondary palate [4].
The embryogenesis of the upper lip and palate encompasses overlapping temporal phases
and distinct embryonic origins. Disruptions in these processes can lead to varying degrees
of severity and phenotypic presentation. A cleft lip arises from the failed integration of
the philtrum and maxillary prominences on one or both sides, while a cleft palate could
be caused by the failed merging of paired lateral palatine processes. The study of embryo-
genesis not only offers insights into the fundamental mechanisms governing craniofacial
structure development but also enables researchers to identify potential genetic, epigenetic,
and environmental factors that may play a role in the occurrence of orofacial clefts.

Depending on the involvement of other affected systems, CL/P can be categorized
into syndromic CL/P (SCL/P) and non-syndromic CL/P (NSCL/P) (Figure 1). SCL/P
often occurs as a craniofacial phenotype within syndromes that affect multiple systems,
e.g., neurologic, cardiovascular, and/or skeletal systems. SCL/P is typically caused by
genetic mutations or abnormalities that affect multiple aspects of development. Therefore,
individuals with syndromic CL/P may exhibit a range of additional health issues or
physical characteristics beyond the cleft itself. In contrast, NSCL/P exhibits the isolated
presentation of clefts at the lip and/or palate without the involvement of other systems.
It represents the predominant type of CL/P, constituting about 70% of OFC cases [6],
with a prevalence of 1/500–1/1400 among ethnicities [7]. The prevalence of NSCL/P is
highest in the White maternal race, followed by the Asian and Hispanic maternal race,
and lowest in the Black maternal race [8,9]. Additionally, it tends to be more frequently
diagnosed in males [10].The etiology of NSCL/P has long been an intense investigation
topic within the realm of craniofacial research. Historically, the search for NSCL/P genetic
underpinnings has evolved from monogenic Mendelian models to more intricate polygenic
and multifactorial paradigms. This shift in focus reflects the growing recognition of the
complexity of NSCL/P etiology and the need to account for the contribution of multiple
genes and their interactions with other factors. In this review, we aim to provide a detailed
summary of the genetic inheritance patterns of non-syndromic cleft lip with or without
palate (NSCL/P) within the Chinese population. We conducted a systematic search of the
literature using the PubMed database (https://pubmed.ncbi.nlm.nih.gov/, accessed on 15
April 2023) up to July 2023 to ensure the inclusion of relevant and high-quality studies. Our
search terms and criteria focused on NSCL/P, inheritance patterns, Chinese population,
and polygenic risk scores. The selection process involved a thorough examination of
titles, abstracts, and full-text articles, with a focus on peer-reviewed publications and their
relevance to our research objectives.
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cleft lip with or without palate (CL/P). Syndromic CL/P individuals (left panel) typically exhibit
multisystem involvement, affecting head, brain, mouth, limbs, etc. Several genes identified as
associated with syndromic CL/P include IRF6, NECTIN1, CDH1, ESCO2, ACTB, and FGF8 (refer to
Table 1 for details). In contrast, non-syndromic CL/P individuals (right panel) primarily manifest
the phenotype of CL/P without any additional abnormalities in other systems. The loci linked to
non-syndromic CL/P comprise rs8001641, rs58593329, rs7650466, rs2235371, rs4791774, and rs6072081
(see Table 2 for details).

Note: In this study, all figures were prepared using Adobe Illustrator 2023 (Adobe Inc.,
San Jose, CA, USA).

2. Genetic Etiology of CL/P

The processes of tissue fusion during the development of the upper lip and palate,
including cell proliferation and migration, are regulated by multiple cellular signaling
pathways, such as the Wingless-related integration site (WNT), Sonic Hedgehog (SHH),
bone morphogenetic protein (BMP), transforming growth factor β (TGF-β), and fibroblast
growth factor (FGF) signaling pathways [5,11,12]. Disruptions in these pathways can
impede normal embryogenesis, resulting in facial dysmorphology. Furthermore, the
etiology of OFCs can be intricate owing to the interplay between genetic and other
contributing factors.

In SCL/P, cleft lip and cleft palate usually coincide with other systems’ abnormal-
ities and adhere to the classic Mendelian inheritance pattern. It can be etiologically
attributed to rare genetic alterations with a large effect size (Figure 2), such as single
nucleotide variants (SNVs), copy number variants (CNVs), or chromosomal abnormali-
ties. These variants may exert a substantial impact on the development of CL/P. The
disease-associated genes include IRF6, NECTIN1, CDH1, MSX1, etc. For instance, Van
der Woude syndrome (VWS, OMIM#119300), a dominant-inherited developmental dis-
order characterized by frequent occurrences of upper lip and/or palate clefts, constitutes
the most prevalent orofacial cleft syndrome and accounts for 2% of all CL/P cases [13].
The heterozygous pathogenic mutation of the IRF6 gene has been proven to be associ-
ated with numerous VWS cases [14,15]. Additionally, it has been reported by Du et al.
that mutations in the MSX1 gene are associated with congenital tooth loss in VWS pa-
tients [16]. Cleft lip/palate-ectodermal dysplasia syndrome (CLPED1, OMIM#225060) is
caused by the homozygous pathogenic mutation in the NECTIN1 gene, with clinical fea-
tures including cleft lip and palate, ectodermal dysplasia, and mental retardation [17,18].
Blepharocheilodontic syndrome (BCDS1, OMIM#119580) is a rare genetic condition with
specific features such as lower eyelid ectropion, wide eyelids, bilateral cleft lip and
palate, as well as conical teeth [19]. This syndrome follows an autosomal dominant
inheritance pattern and is caused by heterozygous pathogenic mutation of the CDH1
gene [20,21]. The MSX1 gene is mandatory for tooth agenesis and craniofacial devel-
opment [22,23]. The abnormality of MSX1 could result in Wolf–Hirshhorn syndrome
(WHS) [24]. The corresponding phenotypes involve hypodontia, cleft lip with or without
palate, and developmental delay. More genes associated with SCL/P are summarized in
detail in Table 1.
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Figure 2. Postulated genetic etiology of syndromic and non-syndromic cleft lip with or without
palate (CL/P) by risk allele frequency and effect size. Variants are categorized into two groups
by risk allele frequency (x-axis) and effect size (y-axis). Rare variants with high effect sizes are
depicted in the upper left quadrant as a blue circle, while common variants with low effect sizes are
represented in the lower right quadrant as a red circle. Syndromic CL/P, which follows a classic
Mendelian inheritance pattern, is more likely to be attributed to rare variants with high effect sizes
(blue circle). In contrast, non-syndromic CL/P, which displays a genetic inheritance tendency without
clear identification of responsible variants, is proposed to be influenced by the cumulative effects of
multiple common genetic alterations with low effect size (red circle). CL/P, cleft lip with or without
palate; MAF, minor allele frequency. This figure is adapted from McCarthy et al., 2008 [25].
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Table 1. Genes implicated in syndromic cleft lip with or without palate (SCL/P).

Gene Location Protein Function Phenotype Phenotype MIM Number † Inheritance

ACTB 7p22.1 β Actin Baraitser–Winter syndrome 1 243310 AD

CDH1 16q22.1 Cadherin 1 Blepharocheilodontic syndrome 1 119580 AD

EFNB1 Xq13.1 Ephrin B1 receptor protein-tyrosine kinase Craniofrontonasal dysplasia 304110 XLD

ESCO2 8p21.1 Chromatid cohesion N-acetyltransferase 2
Juberg–Hayward syndrome 216100 AR

Roberts-SC phocomelia syndrome 268300 AR

FGF8 10q24.32 Fibroblast Growth Factor 8 Hypogonadotropic hypogonadism 6 with or without anosmia 612702 AD

GLI2 2q14.2 GLI family zinc finger 2 Holoprosencephaly 9 610829 AD

GLI3 7p14.1 GLI family zinc finger 3 Pallister–Hall syndrome 146510 AD

HYLS1 11q24.2 HYLS1 Centriolar and Ciliogenesis Associated Hydrolethalus syndrome 236680 AR

IRF6 1q32.2 Interferon regulatory 6 transcription factor Van der Woude syndrome 1 119300 AD

KDM6A Xp11.3 Lysine demethylase 6A Kabuki syndrome 2 300867 XLD

MID1 Xp22.2 Midline 1 Opitz GBBB syndrome 300000 XLR

MSX1 4p16.2 Msh homeobox 1 Wolf–Hirschhorn syndrome 194190 Unknown
[24,26]

NECTIN1 11q23.3 Nectin cell adhesion molecule 1 Cleft lip/palate-ectodermal dysplasia syndrome 225060 AR

OFD1 Xp22.2 Centriole and centriolar satellite protein Orofaciodigital syndrome I 311200 XLD

PHF8 Xp11.22 PHD finger protein 8 Intellectual developmental disorder, X-linked syndromic,
Siderius type 300263 XLR

RIPK4 21q22.3 Receptor interacting serine/threonine kinase 4 Popliteal pterygium syndrome, Bartsocas–Papas type 1 263650 AR

TFAP2A 6p24.3 Transcription factor AP-2 α Branchiooculofacial syndrome 113620 AD

TP63 3q28 Tumor protein p63

Ectrodactyly, ectodermal dysplasia, and cleft lip/palate
syndrome 3 604292 AD

Hay–Wells syndrome 106260 AD

Rapp–Hodgkin syndrome 129400 AD

WNT3 17q21.31-q21.32 Wnt family member 3 Tetra-amelia syndrome 1 273395 AR
† Phenotype identifier number in Online Mendelian Inheritance in Man (OMIM®) database (https://omim.org, accessed on 30 April 2023). Abbreviations: AD, autosomal dominant; AR
autosomal recessive; XLD, X-linked dominant; XLR, X-linked recessive.

https://omim.org
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In comparison to SCL/P, NSCL/P exhibits a higher disease incidence but lower genetic
interpretability. To date, only a few studies have elucidated the causal genes/mutations
of NSCL/P. For example, several pathogenic/likely pathogenic variants have been iden-
tified and validated in some genes (e.g., CTNND1, PLEKHA5, and ESRP2) that influence
the expression of epithelial Cadherin-p120-Catenin complex in multi-affected NSCL/P
families [27]. Population-based and family-based analyses identified that PAX9 and TGFB3
might contribute to NSCL/P as well [28,29]. However, according to previous twin studies,
40–60% of monozygotic twins shared the concurrence of NSCL/P and similar traits, while
only 3–5% of dizygotic twins displayed such concurrence, suggesting a strong tendency of
genetic inheritance [30]. Therefore, it is suggested that the isolated phenotype of NSCL/P
is attributed to the cumulative impact of multiple common genetic alterations with modest
effect sizes, such as single nucleotide polymorphisms (SNPs) (Figure 2).

Previous genetic investigations of NSCL/P included direct panel sequencing or link-
age analysis in large pedigrees with family histories or small pedigrees involving consan-
guineous marriages [7]. The advent of next-generation sequencing (NGS) has facilitated
high-throughput genetic analysis via whole-exome sequencing (WES) and whole-genome
sequencing (WGS) in extensive cohorts. In contrast to panel testing, which sequences
established candidate loci, WES/WGS can aid in uncovering novel pathogenic regions and
leverage multiple candidate relative variants for statistical risk evaluation. Nonetheless, the
scarce accessibility of genomic tools and the demand for more expansive datasets continue
to hinder progress in comprehending the genetics of NSCL/P. Therefore, completing the
genetic architecture of NSCL/P inheritance remains an ongoing challenge. As NSCL/P rep-
resents a multifactorial condition with a wide phenotypic spectrum and a limited number
of causal genes directly accountable for the disorder, it is presumed not to conform to the
conventional Mendelian inheritance model [31]. In this review, we will explore the genetic
inheritance models of NSCL/P from a polygenic inheritance perspective, with a particular
emphasis on the Chinese population, which has yet to be examined comprehensively.

3. Genome-Wide Association Study (GWAS) of NSCL/P Worldwide

The genome-wide association study (GWAS) has rapidly evolved as an advancing
technique for identifying single-nucleotide polymorphism loci exhibiting significant dispar-
ities in the sequencing results between case and control cohorts. This method is well-suited
for analyzing complex traits, wherein multiple loci, rather than a single rare variant, are
more likely to serve as additive contributing factors. Ludwig et al. performed the first
GWAS of NSCL/P in 2012, validating previously recognized loci related to NSCL/P and
uncovering six additional regions with susceptibility (1p36, 2p21, 3p11.1, 8q21.3, 13q31.1,
and 15q22) [32]. Among the specific genetic risk factors, rs8001641 was initially reported
and subsequently replicated in other studies investigating the genetic association [33–35].
Since then, dozens of genes and significant regions that could be retrieved from the GWAS
catalog database have been implicated in NSCL/P [36]. A comprehensive summary of
these findings up to 2020 has been provided by Nasreddine et al. [2].

One of the pitfalls of GWAS is that the result is easily confounded by different an-
cestries of selected samples, case–control imbalance, various sequencing methods, and
linkage disequilibrium, leading to poor stability and transferability across different study
groups [37–39]. However, with the progression of GWAS analysis tools, these confounding
factors could be minimized to a lower level. For example, SAIGE, developed by Zhou
et al. [40], employs saddle-point approximation (SPA) to address the unbalanced case–
control ratio issue and offers an algorithm to construct a logistic/linear mixed model to
compute sample relatedness. Another example for solving the ancestry problem is Trac-
tor [41], which estimates specific effect sizes according to population structure and thus
boosts GWAS analysis power. Leveraging these analysis tools, cohort analysis is able to
unveil more novel and biologically relevant SNPs/indels of NSCL/P.
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4. Association Studies and Related Loci of NSCL/P in the Chinese Population

Among diverse ethnic groups, the significant loci identified by GWAS may vary con-
siderably due to diverse geographic and ancestral population structures. For now, the
majority of GWASs are Eurocentric, which introduces bias when analyzing other ances-
tries [42]. Therefore, in addition to developing novel statistical methods to enhance stability
and transferability, identifying geographic-specific significant loci is of great importance.
In the following sections, we will discuss several well-established genes and their loci with
strong relevance to NSCL/P among the Chinese population. A comprehensive summary of
significant loci related to NSCL/P that were reported in the Chinese population is shown
in Table 2.

Table 2. Significant loci associated with non-syndromic cleft lip with or without palate (NSCL/P)
in Chinese population.

SNP ID Affected
Allele

Gene/
Region OR (95% CI) p-Value Population Method Case:

Control Year PMID

rs7650466 T EPHA3 0.211(0.131–0.338) 4.88 × 10−10 Han Chinese Targeted
sequencing 180:167 2018 29932736

[43]

rs58593329 A

VAX1

1.34 (1.2–1.5) 1.90 × 10−7

Western Han
Chinese

Targeted
sequencing 1626:2255 2022

35419918
[44]

rs11197887 A 1.35 (1.21–1.51) 8.52 × 10−8

rs1904302 T 1.39 (1.24–1.54) 2.66 × 10−9

rs10886040 G 1.40 (1.26–1.56 9.50 × 10−10

rs744937 T 1.39 (1.25–1.54) 2.23 × 10−9

rs7078160 A 1.40 (1.25–1.55) 1.12 × 10−9

rs17095681 T SHTN1 0.64 (NA) 3.80 × 10−9 Han and Hui
Chinese

GWAS and
Targeted

sequencing
1931:2258 2016 28008912

[45]

rs4791331 T NTN1 1.43 (1.20–1.70) 5.10 × 10−5 Han Chinese Targeted
sequencing 873:830 2020 31780810

[46]

rs2235371 T 1q32.2 0.67 (0.62–0.73) 8.69 × 10−22

Chinese GWAS 858:1248 2015
25775280

[47]

rs7078160 A 10q25.3 1.29 (1.19–1.39) 3.09 × 10−10

rs8049367 T 16p13.3 0.74 (0.68–0.80) 8.98 × 10−12

rs4791774 G 17p13.1 1.56 (1.42–1.72) 5.05 × 10−19

rs13041247 C 20q12 0.76 (0.71–0.83) 1.69 × 10−11

rs17820943 T
20q12

- 6.70 × 10−5
Southern

Han Chinese
Targeted

sequencing 430:451 2020
31713353

[48]rs6072081 G - 4.52 × 10−4

rs6072081 G

20q12

0.72 (0.58–0.9) 4.00 × 10−3

Han Chinese
Targeted

sequencing 305:356 2012
22522387

[49]rs13041247 C 0.68 (0.54–0.85) 7.20 × 10−4

rs6102085 A 0.62 (0.49–0.77) 2.14 × 10−5

Abbreviations: OR, odds ratio; CI, confidence interval; NA, not applicable; PMID, PubMed identifier.

4.1. VAX1

The VAX1 gene, located on chromosome 10q25.3, encodes a transcription factor with a
highly conserved homeodomain DNA-binding motif. This motif enables these proteins
to regulate the expression of downstream target genes. The protein product of VAX1 is
essential in embryonic development, contributing to the formation of the eyes, nose, and
upper jaw.

Multiple lines of evidence have linked VAX1 to cleft lip and palate development. In
mouse models, loss of Vax1 expression has demonstrated abnormal craniofacial devel-
opment, including cleft palate [50]. Similarly, genetic studies in humans have identified
VAX1 mutations associated with the phenotype [31,51,52]. With target sequencing of
1626 NSCL/P patients and 2255 controls in the Western Han Chinese population, You et al.
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replicated one previously reported VAX1 SNP (rs7078160) and identified five additional
SNPs exhibiting significant associations with NSCL/P risk, suggesting that VAX1 may
contribute to the disease development [44].

4.2. 20q12

Investigations have identified certain genetic variants within the 20q12 region associ-
ated with an elevated risk of NSCL/P in both European and Asian ancestries [53,54]. It is
postulated that these variants may impact the development of lip and palate by regulating
the expression of genes that involve cell proliferation, differentiation, and apoptosis during
embryonic development. However, SNPs associated with NSCL/P in specific ancestries
have not been fully identified yet because of different genetic backgrounds. One of the most
frequently reported SNPs in 20q12, rs13041247, was initially identified to be associated with
NSCL/P with a p-value of 0.0161 in the East Asian population and 0.0002 in the European
and Euro-American population [51]. This SNP was subsequently confirmed in the Chinese
Han population respectively through GWAS and targeted sequencing in large cohorts
respectively, supplementing the cross-ancestry genetic architecture of NSCL/P [47,49]. An-
other case–control analysis involving 430 patients and 451 controls also revealed significant
associations of rs17820943 and rs6072081 at 20q12 in Southern Han Chinese [48].

Given that NSCL/P is a complex condition with multiple genetic and environmental
factors contributing to its development, the association between these regions and NSCL/P
constitutes only a small part of a much larger puzzle. Continued research is required to
further comprehend the underlying mechanisms contributing to NSCL/P and to devise
more effective prevention and treatment strategies.

5. Polygenic Inheritance and Polygenic Risk Score in NSCL/P

GWAS yields two parameters of specific loci that can be utilized for subsequent
calculations: significance (p-value) and effect size (β) [55]. Loci with positive effect sizes
may be considered as risk factors, while those with negative effect sizes may be regarded
as protective factors. Since GWAS solely interprets the association between SNP loci and
disease, and most SNP loci have relatively small effect sizes, these loci are considered to be
more indicative of risk, rather than the whole genetic landscape of the disease [56].

A rational approach is to integrate multiple genetic loci and their effects into polygenic
risk scores (PRS), which more accurately reflect the genetic foundation of a phenotype or
disease in different disease groups. With the accumulation of genomic data and the estab-
lishment of large prospective population-based cohorts, such as the China Kadoorie Biobank
(CKB) [57] and the UK Biobank (UKB) [58], the predictive power of PRS in a variety of complex
diseases and phenotypes has been independently and prospectively evaluated [59,60]. PRS
has been demonstrated to function as a genetic indicator representing genetic intensity or
genetic risk for population risk stratification, with potential applications in predicting disease
risk, treatment selection, and disease prognosis estimation to advance precision medicine.
To calculate PRS for a disease of interest, researchers can use either in-house association
results (SNPs and their effect sizes) or existing published association results from the PGS
catalog (https://www.pgscatalog.org/, accessed on 15 April 2023). The PGS catalog is a
comprehensive database that consolidates polygenic score data from various studies, offering
a centralized resource for researchers and clinicians. It provides information on the predictive
power of polygenic scores for different traits and diseases, including the specific genetic
variants, effect sizes, and sample populations used in each score. This valuable tool aids in un-
derstanding the genetic basis of complex traits and diseases, enabling personalized medicine
approaches based on an individual’s genetic risk profile. State-of-the-art software products for
calculating PRS include LDpred [61], SBayesR [62], PRS-CS [63], and PRSice-2 [64]. The utiliza-
tion of PRS exhibits promising potential for precise prediction, prevention, and personalized
treatment of complex diseases. Notably, PRS has been extensively employed in risk prediction
and stratification for breast cancer [65,66] and cardiovascular diseases [67,68]. Nevertheless,
the application of PRS in the context of NSCL/P remains limited [69,70]. Figure 3 provides

https://www.pgscatalog.org/
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a brief depiction of a plausible clinical process for application of the polygenic risk score for
NSCL/P.
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Figure 3. Clinical process for application of polygenic risk score (PRS) for non-syndromic cleft
lip with or without palate (NSCL/P). 1. left panel: Affected individuals and unrelated healthy
controls undergo sequencing, and the results are utilized in association studies to identify genetic
signals and calculate effect sizes. The lower left section is a simplified Manhattan plot, which serves
as a commonly used tool for interpreting genome-wide association study (GWAS) analysis results.
2. middle panel: Using variant information from the association studies, PRS is calculated with

the formula PRSi =
M
∑
j
βj × dosageij, which involves a weighted sum of effect sizes and dosages

(0/1/2) of all variants. The calculation is performed on each person of a separate group of individuals
different from the population used in generating the association study results. The PRS values
are then plotted into a normal distribution graph, assigning each individual a position indicating
their relative risk for NSCL/P within the population. 3. right panel: In a clinical scenario where a
pregnant woman desires to ascertain her baby’s risk of developing NSCL/P, the following steps are
outlined: (a) Genetic sequencing is conducted on the baby; (b) the baby’s PRS is calculated using the
aforementioned formula; (c) by comparing the baby’s PRS to the population PRS distribution plot,
the relative risk of the baby (risk percentile) can be determined; (d) the PRS, along with other prenatal
examinations such as ultrasound, assists clinicians in making informed clinical decisions.

To the best of our knowledge, no PRS study has specifically investigated NSCL/P
within the Chinese population. As sequencing cohorts expand, more SNP candidate loci
with high quality and strong associations are expected to be discovered and utilized in PRS
calculation. Furthermore, although data are currently limited, integrating rare and common
variants may be another approach to enhance risk estimation and explain some unusual
genetic patterns. For instance, Yu et al. reported that in a large NSCL/P pedigree, the
penetrance of a putatively causal variant in PDGFRA(c.C2740T) was modified by additional
common variants [71]. However, as previously mentioned, the remarkable heterogeneity
of SNP heritability of different ancestries is a major obstacle to PRS calculation. Europe
possesses a more complete sequencing database, and the majority of GWASs are now
conducted within European populations, which results in poor transferability to other
populations such as Asians. Sequencing of large samples and subsequent analysis for
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NSCL/P needs to be prioritized in Asian populations to explore the genetic architecture
and to facilitate risk prediction and stratification for NSCL/P.

6. Conclusions and Perspectives

The identification of environmental factors and the investigation of gene–environment
interactions requires not only extensive cohort studies but also access to genetic mate-
rial for optimal results. During early embryonic development, certain environmental
factors can induce abnormalities through a variety of mechanisms, resulting in cleft lip
and/or palate. It has been demonstrated that maternal active/passive smoking during
the first pregnancy trimester could significantly elevate the risk of NSCL/P [72]. Fur-
thermore, alcohol consumption [73], drug use [74], increased maternal age at birth [75],
infections during pregnancy, and history of miscarriage also contribute to risk [76]. The
intake of folic acid and vitamins is another crucial factor. Studies have revealed that 5,10-
methylenetetrahydrofolate reductase (MTHFR) is essential in lip and palate development
and mandatory folic acid fortification is effective in reducing the risk [77]. High temper-
ature, stress, maternal obesity, occupational exposure, and ionizing radiation have also
been associated with NSCL/P [76,78,79]. However, consensus regarding the detrimental
impacts of these factors is lacking, and large-scale retrospective and prospective cohort
studies may be required.

Phenotyping is one of the most important steps in clinical genetic analysis. Accurate
phenotyping provides valuable references for data curation. NSCL/P is a heterogeneous
disease with complex traits that can be categorized into various subtypes. In patients with
milder phenotypes, subtle subclinical phenotypes may go unnoticed. Detailed clinical
information should be meticulously documented and can be supplemented with advanced
measuring machines, e.g., high-resolution or 3D prenatal sonography.

It is worth mentioning that both GWAS and PRS focus on the gene level. For a more
in-depth exploration at the expression level, RNA sequencing is required. Integrative
analysis of expression quantitative trait loci (eQTL) and GWAS results can shed light on
how the variants affect gene expression and the function of their products. Since NSCL/P
is a multifactorial disease, dissecting its etiology from both genetics and environment
would be more comprehensive. The utilization of the genetics*environment (G*E) model
makes it possible to take environmental factors into consideration. The G*E interaction
model not only calculates the effects of specific environmental or genetic risk factors but
combines them in a statistically explainable manner [80]. Nevertheless, such models are
not yet easily accessible for widespread use. The primary reason is that environmental
factors, unlike genetics, cannot be as tightly controlled and can vary over time. Additionally,
environmental factors can be both binary and continuous variables, and cross-validation
may require significant computational resources, making it challenging to incorporate them
into a mathematical model in a comprehensible and reliable manner.

It is essential to acknowledge the limitations of this study. Firstly, the focus of this
review was primarily on the Chinese population, and while it offers some insights, it may
not fully represent the genetic diversity seen in other populations. Additionally, here, we
only chose some representative loci/genes/regions to elucidate the inheritance pattern of
NSCL/P. The formation of the lip and cleft represents fundamental embryogenic processes
intricately governed by numerous signaling pathways. While we have provided a sum-
mary of several genes and loci associated with CL/P, it is imperative to underscore the
necessity of considering additional related loci, genes, and regions in a more comprehensive
investigation. Finally, while we discuss the potential of polygenic risk scores for risk strati-
fication, it is essential to note that their practical clinical application and validation require
further research. Several key considerations merit attention, including the availability of
suitable GWAS summary statistics for the target population and the judicious selection of
computational methods to maximize predictive accuracy.

In conclusion, our review delves into the intricate genetic factors underlying non-
syndromic cleft lip with or without palate (NSCL/P) in the Chinese population. We
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explained the genetic inheritance models from monogenic to polygenic perspectives, pre-
sented representative genes and regions, and highlighted the potential of polygenic risk
scores for personalized risk assessment. Multiple genes and their loci are associated with
the development of NSCL/P worldwide, including the Chinese population. However,
experimental data findings could be inconsistent across populations and sometimes even
contradictory, possibly due to the intricate ethnic composition of the Chinese population
and the genetic heterogeneity of NSCL/P. Furthermore, the occurrence of such a complex
disease is also influenced by environmental factors. As research methods and techniques
advance, it is imperative to further explore the genetic background and underlying mech-
anisms by integrating multiple genetic analysis strategies. Elaborate phenotyping with
polygenic risk scores could be utilized for calculating NSCL/P to normal facial variation
and to investigate genes with known effects on facial morphology under certain conditions.
The combination of genetic and environmental risks with gene expression, system biology,
epigenetics, and epidemiology promises to yield a more comprehensive etiological profile,
providing new avenues for early disease screening, diagnosis, and prevention of cleft lip
and palate, as well as better clinical care and prevention.
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ESRP2 Epithelial Splicing Regulatory Protein 2
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MSX1 Msh Homeobox 1
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NGS next-generation sequencing
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PDGFRA Platelet-Derived Growth Factor Receptor Alpha
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SNPs single nucleotide polymorphisms
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VAX1 Ventral Anterior Homeobox 1
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