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Abstract: Digital watermarking technology is an important means to effectively protect three-
dimensional (3D) model data. Among them, “blind detection” and “robustness” are key and difficult
points in the current research of digital watermarking technology based on 3D models. In order
to realize the blind detection of a watermark and improve its robustness against various common
attacks at the same time, this paper proposes a dual blind watermarking method based on the normal
feature of the centroid of first-ring neighboring points. The local spherical coordinate system is
constructed by calculating two different normal vectors, and the first pattern watermark and the
second random binary sequence watermark are embedded, respectively. The experimental results
show that this method can not only realize the blind detection of dual watermarks, but also have
the ability to resist common attacks such as translation, rotation, scaling, cropping, simplification,
smoothing, noise, and vertex reordering to a certain extent.

Keywords: dual digital watermarking; three-dimensional model; blind detection; normal feature

1. Introduction

Digital watermarking technology has emerged as an effective tool for safeguarding
copyrights, making it a significant topic in the realm of digital multimedia research [1,2].
Currently, the majority of watermarking research is centered around images, audio, and
videos [3–6], with relatively fewer studies addressing watermarking in the context of 3D
digital models. It is widely recognized that in recent years, 3D models have found ex-
tensive applications in diverse fields such as industrial manufacturing, urban planning,
architectural design, healthcare, cultural heritage preservation, film, gaming, and virtual
reality. Hence, research focused on watermarking techniques tailored to 3D models holds
vital scientific and commercial value. However, when compared to traditional multimedia
watermarking techniques for text, images, audio, and videos, the exploration of watermark-
ing techniques for 3D models is still in its developmental stage. This is primarily due to
four factors: the non-linear nature of 3D model data, the non-uniqueness of representation
methods, a lack of natural parameterization decomposition techniques, and the increased
diversity and complexity of potential attack methods [7].

Watermark algorithms can be categorized into blind watermarking and non-blind
watermarking based on whether the original 3D model is needed for watermark detec-
tion, with the latter requiring the original model while the former does not [8]. Evidently,
blind watermarking technology significantly streamlines the watermark detection process,
thereby offering greater practical application value. Researchers worldwide have under-
taken relevant research on 3D digital watermarking. Among them are some groundbreaking
and classic 3D model digital watermarking algorithms, listed as follows. In 1997, Ohbuchi
and colleagues from IBM Tokyo Research Laboratory published the first report on 3D digital
model watermarking at the ACM Multimedia International Conference [9]. This work intro-
duced various 3D model watermarking algorithms like the Triangle Similarity Quadruple

Entropy 2023, 25, 1369. https://doi.org/10.3390/e25101369 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25101369
https://doi.org/10.3390/e25101369
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e25101369
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25101369?type=check_update&version=2


Entropy 2023, 25, 1369 2 of 14

(TSQ) and the Tetrahedral Volume Ratio (TVR) methods, although their robustness was
limited. Kanai and Date, from Hokkaido University in Japan, introduced a multiresolution
analysis-based 3D model watermarking method rooted in wavelet transformation and
polygonal models [10]. Benedens et al. embedded digital watermarks by modifying the
surface normal vectors of 3D models, demonstrating some resistance against simplification
attacks [11]. Praun and colleagues proposed a spread-spectrum watermarking algorithm
based on interpolation basis functions in the same year, which possessed a certain level
of robustness, but required the original model for watermark detection [12]. Yu and his
team embedded watermarks by altering the distance from the model vertices to the model
center [13]. Subsequent researchers made enhancements based on their algorithms [14].
Harte and Bors introduced a blind watermarking algorithm for 3D mesh models. This
algorithm established ellipsoids based on vertices and their first-ring neighbors, selecting
vertices whose distances to neighbors were less than a specified threshold and altering
their relative positions with the ellipsoids to embed the watermark [15,16]. Following that,
Li and others proposed a 3D model watermarking algorithm based on spherical parameter-
ization and harmonic analysis [17], while Cho and colleagues developed a watermarking
algorithm adjusting vertex norm distributions based on the embedded watermark [18]. In
recent years, the increasing demand for digital watermarking of 3D models has also led to
the rapid development of this direction. Researchers have also published many excellent
watermarking algorithms one after another. In 2017, Choi et al. proposed a solution for
cropping attacks, aiming to address synchronization issues caused by cropping attacks by
obtaining reference points from local model shapes [19]. This method evenly distributes
watermark energy throughout the entire model, enhancing watermark invisibility. The
following year, Jang et al. introduced a blind watermark algorithm based on consistency
segmentation [20]. It relied on vertex norm consistency and employed stepwise analysis
techniques to determine watermark schemes. However, this method requires embedding a
sufficient number of vertices and is not suitable for small models. In 2019, Hamidi et al.
proposed a three-dimensional model blind watermarking algorithm based on wavelet
transform [21]. This algorithm embedded watermarks by modifying the vector norms of
wavelet coefficients and exhibited good resistance against smoothness, additive noise, and
similar transformation attacks. However, it requires further improvement to withstand
severe cropping attacks and grid re-sampling, and it involves complex computations. To
address cropping attacks, in 2020, Ferreira et al. published a watermarking algorithm
for 3D point cloud models [22]. This algorithm embedded watermark information into
the color data of point clouds through DFT transformation, and it demonstrated strong
robustness against model cropping, noise, geometric, and other attacks. In comparison to
blind watermarking, non-blind watermarking involves lower embedding difficulty and
boasts stronger resistance against attacks [23]. However, non-blind watermarking algo-
rithms not only require access to the original model for watermark embedding, but also
entail complex preprocessing during watermark detection. Especially given the current
immaturity of 3D model retrieval techniques and the continuous expansion of 3D model
databases, the practical application of non-blind watermarking technology faces substan-
tial limitations. Therefore, the pursuit of blind watermarking techniques tailored to 3D
models holds significant practical significance [24–27]. Furthermore, the present emphasis
on 3D model watermarking predominantly lies within the realm of single watermarking.
Although these watermarks effectively secure carriers during regular usage, they often
struggle to withstand an array of diverse attack methods. Consequently, the development
of dual or even multiple watermarking techniques for 3D models is an urgently required
research avenue [28,29]. This would elevate the robustness of watermarking algorithms in
the face of various attack strategies.

This paper presents a dual watermarking technique based on normal features. It
begins by computing two distinct normal vectors for each vertex in a 3D model using its
first-ring neighboring points and their centroid. Next, a local spherical coordinate system
is established for the model vertices, utilizing the centroid point and the normal vectors.
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Subsequently, inspired by transformation domains, the discrete cosine domain coding
values of the first watermark are integrated into the local spherical coordinates of the model
vertices. Additionally, by considering statistical factors, the second watermark is embedded
into the second-ring neighboring points through adjustments in their positions relative to
the edges of the first-ring neighborhood. This dual watermarking method is designed to be
mutually non-interfering and provides both invisibility and robustness, making it highly
valuable for practical applications.

2. Algorithm Principle

In a 3D digital model, the mesh model M associated with each vertex can be repre-
sented as M = {Vm, Kn}. Here, Vm denotes the set of vertices of M, where m represents
the number of vertices in the mesh model; Kn represents the collection of all topological
connectivity relations of M; n represents the count of triangular faces in the mesh model;
and the elements of Kn fall into three types: vertices v = {i}, edges e = {i, j}, and facets
f = {i, j, k}. If the edge {i, j} ∈ Kn, the vertices {i} and {j} are mutually referred to as neighbors.
The first-ring neighbors of vertex {i} are defined as N1(i) = {j | {i, j} ∈ Kn}. The second-ring
neighbors of vertex {i}, denoted as N2(i), refer to non-first-ring neighboring points that
have a connection with the first-ring neighboring points N1(i). Moreover, the term “first-
ring neighboring edge” is defined as the edge determined by the connecting relationship
between two first-ring neighboring points (Figure 1).
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The centroid B of the first-ring neighboring vertices of any mesh model vertex v0 can
be determined by the following equation:

B =
1

|N1(v0)|∑
N1(v0) (1)

where |N1(v0)| represents the number of first-ring neighboring vertices. If the centroid B is
connected to each of the first-ring neighboring vertices of vertex v0, it results in |N1(v0)|
triangles, which are collectively referred to as the set T(B). The following section will
introduce two distinct centroid normal vectors based on these triangles.

As shown in Figure 2, the first type of centroid normal is defined by directly computing
the average of the normal vectors of all triangles in T(B), denoted as nt:

nt =
1

|N1(v0)|∑
ni (2)

where ni represents the normal vector of the i-th triangle in the triangle set T(B).
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The second type of centroid normal is determined collectively by the area and normal
vector ni of each triangle in T(B), denoted as na:

na =
1

∑ A2
i

∑ ni A2
i (3)

where Ai denotes the area of the i-th triangle in the set of triangles T(B).
Based on the aforementioned normal vectors na and nt, a customized local spher-

ical coordinate system can be established as shown in Figure 3. Taking the centroid
B (assuming its original coordinates are (x0, y0, z0)) as the origin of the defined local
spherical coordinate system, the plane determined by the centroid B and the normal
na is taken as the projection plane. The normal na serves as the local spherical coordi-
nate system’s Z-axis, while the projection nT of the normal nt onto the projection plane
serves as the local spherical coordinate system’s X-axis. Furthermore, the mean dis-
tance l from the centroid B to the first-ring neighboring points is computed. The ratio
between the distance from the model vertex v0 to the centroid point and l is denoted
as r. The angle between the model vertex v0 and the positive direction of the Z-axis is
referred to as θ, while the angle with the positive direction of the X-axis is denoted as
ϕ. The customized spherical coordinate transformation formula is as follows:

r =

√
(x−x0)

2+(y−y0)
2+(z−z0)

2

l

θ = cos−1

(
z−z0√

(x−x0)
2+(y−y0)

2+(z−z0)
2

)

ϕ =


tan−1

(
y−y0
x−x0

)
, i f 0 < tan−1

(
y−y0
x−x0

)
≤ π

2π − tan−1
(

y−y0
x−x0

)
, i f π < tan−1

(
y−y0
x−x0

)
≤ 2π

(4)
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Utilizing the previously discussed definitions and calculations, we can determine
the local spherical coordinate systems for individual vertices in a 3D mesh model. These
coordinate systems serve as the foundation for embedding the first-layer watermark (the
meaningful pattern) in the algorithm described in this paper. Prior to embedding, we
apply a preprocessing step involving discrete cosine transform encoding to the first-layer
watermark. The actual embedding involves the watermark’s information after undergoing
discrete cosine transform. As each discrete cosine domain information encompasses the
entirety of the original watermark data, in cases where a watermarked model is damaged
or subjected to attacks, even if only a limited amount of embedded information can be
extracted, the original watermark can still be reasonably recovered.

For the embedding of the second-layer watermark, it is necessary to first define a series
of corresponding embedding units. An embedding unit consists of a specific model vertex,
its two first-ring neighboring points, and a second-ring neighboring point. Clearly, a single
model vertex can correspond to several embedding units. We refer to these embedding
units sharing a common model vertex as embedding unit subsets. As shown in Figure 4,
a model vertex v0 along with its first-ring neighboring points A and C, as well as the
corresponding second-ring neighboring point D, can form an embedding unit. Here, the
line segment AC represents the first-ring neighboring edge of vertex v0, and point P denotes
the projection of point D onto AC. The angle between the lines connecting vertex v0 to
its first-ring neighboring points A and C is denoted as β1. Similarly, different values of β
correspond to different index information. Once the index information of the embedding
unit is determined, the corresponding watermark binary information is embedded by
adjusting the position of the second-ring neighboring point within this unit. When the
projection position of the second-ring neighboring point on the first-ring neighboring edge
falls within the central region, the corresponding embedded watermark value is 0. If it falls
within the side edge regions, the corresponding embedded watermark value is 1. Each
embedding unit subset may embed one information value from the first-layer watermark,
and possibly multiple information values from the second-layer watermark.

Entropy 2023, 25, x FOR PEER REVIEW 5 of 14 
 

 

meaningful pattern) in the algorithm described in this paper. Prior to embedding, we ap-
ply a preprocessing step involving discrete cosine transform encoding to the first-layer 
watermark. The actual embedding involves the watermark�s information after undergo-
ing discrete cosine transform. As each discrete cosine domain information encompasses 
the entirety of the original watermark data, in cases where a watermarked model is dam-
aged or subjected to attacks, even if only a limited amount of embedded information can 
be extracted, the original watermark can still be reasonably recovered. 

For the embedding of the second-layer watermark, it is necessary to first define a 
series of corresponding embedding units. An embedding unit consists of a specific model 
vertex, its two first-ring neighboring points, and a second-ring neighboring point. Clearly, 
a single model vertex can correspond to several embedding units. We refer to these em-
bedding units sharing a common model vertex as embedding unit subsets. As shown in 
Figure 4, a model vertex v0 along with its first-ring neighboring points A and C, as well as 
the corresponding second-ring neighboring point D, can form an embedding unit. Here, 
the line segment AC represents the first-ring neighboring edge of vertex v0, and point P 
denotes the projection of point D onto AC. The angle between the lines connecting vertex 
v0 to its first-ring neighboring points A and C is denoted as β1. Similarly, different values 
of β correspond to different index information. Once the index information of the embed-
ding unit is determined, the corresponding watermark binary information is embedded 
by adjusting the position of the second-ring neighboring point within this unit. When the 
projection position of the second-ring neighboring point on the first-ring neighboring 
edge falls within the central region, the corresponding embedded watermark value is 0. If 
it falls within the side edge regions, the corresponding embedded watermark value is 1. 
Each embedding unit subset may embed one information value from the first-layer wa-
termark, and possibly multiple information values from the second-layer watermark. 

 

Figure 4. Embedded unit subaggregate of second watermarking: ■ vertex of the model; ● the 

first-ring neighboring points; ● the second-ring neighboring points. 

3. Watermark Embedding 
3.1. The Embedding of the First Watermark 

First, the watermark image undergoes transform-domain encoding pre-processing, 
as illustrated in Figure 5. This process involves the following four steps: 
(a) A discrete cosine transform is performed on the m × n binary watermark image to 

obtain the corresponding spectral matrix; 
(b) The positive and negative coefficient matrices of the transformation matrix are taken 

as the restoration key, denoted as key 1; 
(c) Arnold scrambling is applied to its absolute value matrix, resulting in matrix I, where 

the scrambling parameters serve as the restoration key, referred to as key 2; 
(d) It is necessary to perform index encoding and normalization on the scrambled ma-

trix. As spherical coordinate values are chosen as the embedding carrier, the row and 

Figure 4. Embedded unit subaggregate of second watermarking: � vertex of the model; • the
first-ring neighboring points; • the second-ring neighboring points.

3. Watermark Embedding
3.1. The Embedding of the First Watermark

First, the watermark image undergoes transform-domain encoding pre-processing, as
illustrated in Figure 5. This process involves the following four steps:

(a) A discrete cosine transform is performed on the m × n binary watermark image to
obtain the corresponding spectral matrix;

(b) The positive and negative coefficient matrices of the transformation matrix are taken
as the restoration key, denoted as key 1;

(c) Arnold scrambling is applied to its absolute value matrix, resulting in matrix I, where
the scrambling parameters serve as the restoration key, referred to as key 2;
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(d) It is necessary to perform index encoding and normalization on the scrambled matrix.
As spherical coordinate values are chosen as the embedding carrier, the row and
column indices of matrix elements need to be encoded into angle values. The encoding
and normalization formulae for the matrix are as follows:

Mij =
mij

max(m)
·λ1π + λ2π; Nij =

nij

max(n)
·λ3π; Iij =

Iij

max(I)
(5)

Taking into account the watermark’s imperceptibility, the value of λ1 is set to 0.5,
the value of λ2 is chosen from the range of 0.25 to 0.4, and the value of λ3 is set to 1.
Ultimately, each matrix element is assigned its corresponding attribute values (M, N, I),
and these three attribute values are effectively embedded. Additionally, the maximum
value of matrix I (referred to as max(I)) is preserved, serving as a recovery value during
watermark extraction.
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Next, it is necessary to filter out a series of key vertices. The specific filtering criteria
are as follows:

1. The centroid B of the first-ring neighboring points is calculated for each vertex, and the
normal vectors nt and na of the centroid point are computed. Let the angle between
the two normal vectors be denoted as Φ = 〈nt, na〉. This Φ value is used as the first
criterion for identifying key vertices, and it should be greater than a certain threshold
value δ1. The resulting set of vertices after filtering is denoted as V1.

2. Since we utilize the ratio of the distance from the vertices to the centroids of their
first-ring neighbors, with the mean distance l as the embedding carrier, and consid-
ering watermark invisibility, it is necessary to impose constraints on the first-ring
neighboring points of the vertex set V1. Let the set of distances between the vertex’s
first-ring neighborhood centroid and its first-ring neighbors be denoted as L. The ratio
of max(L) to min(L) should be less than the threshold value δ2. After applying this
filtering, the resulting vertex set is denoted as V2.

3. Feature vertices cannot be adjacent to each other. If they are, all feature vertices in
the set V2 with neighbor relationships are removed. The final filtered set of feature
vertices is denoted as V3.

Then, a custom local spherical coordinate system is established for the feature vertices,
as described in Figure 2. Each feature vertex in its corresponding spherical coordinate
system possesses three attributes (θ, ϕ, r). Finally, watermark embedding is performed.
During watermark embedding, the watermark attributes (M, N, I) are embedded in de-
scending order of these I values. Similarly, the feature vertices are embedded in descending
order of the angle Φ between the normal vectors of the first-ring neighboring centroid.
During the embedding process, the positions of the feature vertices are adjusted to ensure
that their attribute values (θ, ϕ, r) in the corresponding local spherical coordinate systems
match the corresponding watermark attribute values (M, N, I). The watermark is traversed
and embedded until the entire process is complete.



Entropy 2023, 25, 1369 7 of 14

3.2. The Embedding of the Second Watermark

The second watermark involves embedding a binary sequence of length w. It should
not interfere with the first watermark and must maintain a high level of imperceptibility.
During the embedding process, adjustments are made to the positions of the vertices’
second-ring neighbors relative to the first-ring neighboring edges.

First, the second-ring neighboring points (screening points) that can be embedded in
the watermark are screened. The vertex set V1, obtained previously, is used as the base point
for embedding the second watermark, and each base point corresponds to several second-
ring neighboring points. Considering that the second watermark cannot conflict with the
first watermark, and it is convenient to embed the watermark, it is necessary to filter the
neighboring points of the second ring. There are four preliminary screening conditions:

(a) It must be connected topologically only to the two first-ring neighboring points of the
base point.

(b) The angle Φ between the centroid’s normal of its first-ring neighboring points must
be less than a certain threshold. This threshold is the same as the one given in step
b of the first watermark embedding process, denoted as “δ1”. In other words, it is
necessary to exclude the potential embedding points for the first watermark.

(c) The angle Φ between the centroid’s normal of the first-ring neighboring points’ own
first-ring neighboring points also needs to be less than the threshold “δ1”, given in
step b of the first watermark embedding process. This ensures that these points are
not first-ring neighbors of vertices that have been embedded with the first watermark.

(d) The triangle created by the base point and its two neighboring points in the first ring
(with the edge formed by those two adjacent points as the base) must have both of its
base angles measuring less than 90 degrees.

The second-ring neighboring points selected based on the aforementioned conditions
are referred to as preliminary filtered points. An embedding unit can be formed by combin-
ing the base point, preliminary filtered points, and the two first-ring neighboring points
connected to them. This unit comprises four vertices, creating two triangular facets. The
base edge of these triangles is formed by connecting the two first-ring neighboring points,
and the angle at the base point’s triangle is denoted as β. As depicted in Figure 4, the angle
β falls within the range of (0, π). Considering the relatively limited occurrence of extreme
values in the distribution of angle β, further refinement is conducted in the selection of
filtering points. The points selected for filtering should correspond to β values within the
range of (a·π, b·π), where “a” is slightly greater than 0 and significantly less than 1, while
“b” is slightly less than 1 and notably greater than 0.

Next, the filtered points are grouped. If “W” represents the watermark binary sequence
and “w” stands for the length of the watermark binary sequence, the filtered points can
be divided into “w” groups. The range of angle values corresponding to the i-th bit of the
watermark binary sequence (‘Wi’) is as follows:(

a·π +
b·π − a·π

w
i, a·π +

b·π − a·π
w

(i + 1)
)
(0 ≤ i ≤ w− 1) (6)

When the angle value corresponding to the filtered point falls within this range, the
point is placed in the i-th group. Within the same group, the embedding units of the
corresponding filtered points are used to embed the corresponding index’s α value. The α
value can be either 0 or 1.

After determining the embedding values α for each embedding unit, the second
watermark is embedded by adjusting the filtered points within the embedding unit, namely,
the second-ring neighbors. As shown in Figure 4, there are two first-ring neighboring
points (A, C) and a second-ring neighboring point D. Point D is projected onto the first-ring
neighbor edge to determine the projection point P. If the α value and the position of point P
satisfy Equations (7b) and (7d), no adjustment is needed for the second-ring neighbor point
D. If the α value and the position of point P satisfy Equations (7a) and (7c), adjustments
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are necessary for point D to ensure that its position on the first-ring neighboring edge’s
projection point P meets the requirements.

min(|AP|,|PC|)
|AC| = 0.15 i f α = 0 and min(|AP|,|PC|)

|AC| > 0.2 (7a)

do nothing i f α = 0 and 0 ≤ min(|AP|,|PC|)
|AC| ≤ 0.2 (7b)

min(|AP|,|PC|)
|AC| = 0.5 i f α = 1 and min(|AP|,|PC|)

|AC| < 0.4 (7c)

do nothing i f α = 1 and min(|AP|,|PC|)
|AC| ≥ 0.4 (7d)

During the specific adjustment process, the position coordinates of the projection point
P are determined based on the α value. Then, using point P and the first-ring neighboring
edge AC, a projection plane perpendicular to edge AC is established. The second-ring
neighboring point D is projected onto this plane, yielding a projected point coordinate.
The coordinates of point D are then replaced with the coordinates of the projected point,
completing the watermark embedding for a unit. This process is repeated for all embedding
units until the watermark is fully embedded.

4. Watermark Detection

To enhance its resilience against various attacks, this paper proposes a dual blind
watermark-embedding algorithm. The key idea is that if either of these watermarks is
detected, it can be considered as evidence that the model has received effective watermark
protection.

4.1. Extraction and Detection of the First-Level Watermark

The angle Φ between the two normal vectors of each model vertex’s neighboring
points within its first ring is calculated. Then, for model vertices where Φ exceeds the
threshold value δ1 (predefined threshold), a local spherical coordinate system is established.
The spherical coordinate values (θ, ϕ, r) of the model vertex are then calculated within this
spherical coordinate system. The subsequent decoding process is as follows:

Hi1 =
θi·max(M)− λ2·π

λ1·π
; Hi2 =

ϕi·max(n)
λ3·π

; Hi3 =
ri
ρ
·max(I) (8)

An m× n zero matrix O, where each matrix element has three attribute values (M, N, 0)
(M = 1,2,3. . .m, N = 1,2,3. . .n), is defined. When the difference between the row and
column indices of one zero matrix element and the decoded values of the vertex spherical
coordinates is less than the threshold values σ1 and σ2, respectively, the zero value can be
replaced. Here, σ1 and σ2 are taken as 0.01 and 0.005, respectively:

Omn = Hi3 i f |M− Hi1| < σ1 and |N − Hi2| < σ2 (9)

Next, the matrix O is restored using the key 2 for Arnold permutation, followed by
applying the positive and negative coefficients using the key 1. Then, an inverse discrete
cosine transform is performed to obtain the extracted watermark image O. Finally, the
correlation between the extracted watermark image matrix O and the original watermark
image (represented as S) is calculated using the following correlation equation:

cor1 =
∑m

i=1 ∑n
j=1 S(i, j)O(i, j)√

∑m
i=1 ∑n

j=1 S(i, j)2
√

∑m
i=1 ∑n

j=1 O(i, j)2
(10)

When the value of cor1 exceeds the specified threshold, it can be concluded that the
model has embedded the first watermark. Conversely, if the value is below this threshold,
it is considered that the first watermark has not been embedded.
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4.2. Extraction and Detection of the Second-Level Watermark

First, vertices are selected that satisfy the conditions as base points. The selection
criteria for base points are the same as those in step b of the first watermark-embedding
process, which means that the angle between the two normal vectors of a vertex’s centroid
and its first-ring neighbors, denoted as Φ, should be greater than a given threshold value
δ1. Once the base points are selected, the potential second watermark-embedding points
among their second-ring neighbors can be identified. Each base point contains several
second-ring neighbors, but not all of them contain information about the second watermark.
The specific selection method for these neighbors is the same as the filtering process during
the embedding step.

After the filtering process, the filtered points are grouped. The size of the angle β in the
triangle where the base point resides is used as the basis for grouping, effectively serving
as an index for the watermark binary sequence. Once the groups and the embedding units
within each group are determined, the evaluation of watermark values can be conducted.
As shown in Figure 4, let us assume that (v0, A, C, D) represents a filtered unit. The next step
involves projecting the second-ring neighboring point D onto the first-ring neighboring
edge, determining the projection point P. The relative position of the projection point
P is then used to ascertain whether the watermark is embedded and to determine the
embedding value α, as illustrated below:α = 0 i f min(|AP|,|PC|)

|AC| ≤ 0.2

α = 1 i f min(|AP|,|PC|)
|AC| ≥ 0.4

(11)

After performing binary extraction on all units within each group, a “voting decision”
process is carried out to determine the binary value for each group (1, 2, . . ., i, . . ., w),
thereby obtaining the binary sequence W1, as depicted below:{

W1i = 1 i f number(0) < number(1)
W1i = 0 i f number(0) > number(1)

(12)

The original watermark binary sequence is denoted as W, with W being its mean.
The extracted watermark binary sequence is denoted as W1, with W1 being its mean. The
formula for calculating the correlation coefficient is as follows:

cor2 =
∑w

i=1
(
W1(i)−W1

)(
W(i)−W

)√
∑w

i=1
(
W1(i)−W1

)2
√

∑w
i=1
(
W(i)−W

)2
(13)

When the value of cor2 is greater than the specified threshold, it can be concluded that
the model has embedded the second watermark.

5. Experimental Results and Analysis

In this paper, the first watermark selected for the primary layer has a size of 40 × 40
pixels and consists of a binary image depicting the letter “L.” The secondary watermark, on
the other hand, comprises a random binary sequence of 32 bits. The experimental models
which we employed are simplified versions of the bunny, dragon, and armadillo 3D mesh
models from Stanford University’s 3D Mesh Repository. As shown in Figure 6, the three
models on the left represent the models before watermark embedding, while the one in
the middle represents the model after watermark embedding. It is challenging to visually
observe any significant changes in the model. The calculated signal-to-noise ratios (SNR)
caused by embedding the watermarks were 82.33, 87.66, and 78.50 dB, respectively. This
indicates that after watermark embedding, the imperceptibility of the watermark was good.
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Figure 6. Experimental 3D models.

After embedding the watermarks into the models, it was necessary to establish ap-
propriate thresholds to determine the validity of the extracted watermarks. Based on
experience, this study set the relevance threshold at 0.3. The following section presents the
results and analysis of the watermark robustness attack experiments which were conducted.

(1) Affine transformation and vertex reordering attacks

Affine transformation attacks involve operations such as translation, rotation, and
scaling applied to a model, which alter the coordinate positions of the model’s vertices.
The first watermark in this study, being embedded within the local spherical coordinate
system of the model’s vertices, naturally possessed immunity against translation, rotation,
and uniform scaling. Consequently, the first watermark could be extracted in its entirety.
The index value of the second watermark was embedded within angular information. As
translation, rotation, and uniform scaling attacks do not affect angular information, the
second watermark could also be extracted completely. Furthermore, the embedding of the
two watermarks was not correlated with the sequence of model vertices. Therefore, even
when subjected to vertex reordering attacks, the dual watermark information could still be
fully extracted.

(2) Cropping attack

The first watermark was embedded into the information in the transform domain by
adjusting the feature vertices in the spatial domain. Even with a small amount of extracted
information, the overall contour of the watermark image could be approximately recon-
structed. As a result, the first watermark exhibited strong resistance to cropping attacks.
Similarly, the second watermark, due to the distribution of its watermark information across
multiple subunits for each bit, also demonstrated robust resistance to cropping attacks.
While both watermarks exhibited strong resilience against cropping, the first watermark
served as a visually interpretable watermark, making it more meaningful compared to the
second watermark (Table 1).

Table 1. Cropping attack.

Cropping
Rate

Bunny Dragon Armadillo

cor1 cor2 cor1 cor2 cor1 cor2

15% 0.8404 1 0.8127 1 0.8216 0.9113
30% 0.7663 1 0.7223 1 0.7867 0.9010
45% 0.7012 1 0.6501 1 0.6908 0.9000
60% 0.5417 1 0.5564 1 0.6071 0.8547
75% 0.4867 1 0.4491 1 0.4675 0.8081
90% 0.3739 0.9344 0.2175 1 0.3714 0.8014
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(3) Simplification Attack

The essence of a simplification attack lies in minimizing the number of vertices and
triangles while preserving the model’s features. In this type of attack, certain points and
triangles may be removed. The first watermark was relatively sensitive to vertex loss
and perturbation, making it weaker in terms of countering simplification attacks. On the
other hand, the second watermark was comparatively less sensitive than the first one and
possessed stronger resistance against simplification attacks (Table 2).

Table 2. Simplification attack.

Simplification
Ratio

Bunny Dragon Armadillo

cor1 cor2 cor1 cor2 cor1 cor2

5% 0.0717 0.9344 0.0888 1 0.0443 1
10% 0.0949 0.8207 0.0160 0.9344 0.0247 0.9315
15% 0.0627 0.5238 0.0132 0.7014 0.0079 0.6625
20% 0.0062 0.3477 0.0035 0.6101 0.0017 0.5554
25% 0.0013 0.2328 0.0290 0.4667 0.0012 0.3615

(4) Noise Attack

Uniform random noise was added to the coordinates of watermark-embedded model
vertices, where the magnitude of noise was defined as the ratio of the length of the noise
vector to the distance from the mesh vertex to the mesh center. The first watermark was rel-
atively sensitive to vertex perturbations, making it less resistant to noise attacks. In contrast,
the second watermark’s index values corresponded to angles, and the watermark values
corresponded to projected positions. Both had more leniency, and the final watermark value
was determined by statistics. Therefore, the second watermark exhibited stronger resistance
to noise attacks. Comparing the data in references [5,13,28], this algorithm demonstrated a
higher capability to withstand noise attacks (Table 3).

Table 3. Noise attack.

Noise
Intensity

Bunny Dragon Armadillo

cor1 cor2 cor1 cor2 cor1 cor2

0.5% 0.0252 1 0.0688 1 0.0670 1
1% 0.0040 1 0.0075 1 0.0413 0.9344

1.5% 0.0022 1 0.0461 1 0.0052 0.9344
2% 0.0057 1 0.0296 1 0.0208 0.7896

(5) Smoothing Attack

Smoothing attacks lead to the loss of surface details in 3D models, and the greater
the degree of smoothing, the more severe the loss of details becomes. In this algorithm,
the resistance of the first watermark against smoothing attacks was weaker, while the
second watermark exhibited stronger robustness. The experimental results indicate that the
algorithm’s ability to resist smoothing attacks is also influenced by the inherent roughness
of the model itself. Models like the dragon and armadillo are rougher compared to the
bunny model, making smoothing attacks more impactful on these models. Consequently,
the detected relevance of the second watermark was lower for the dragon and armadillo
models than for the bunny model (Table 4).
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Table 4. Smooth attack.

Level of
Smoothing

Bunny Dragon Armadillo

cor1 cor2 cor1 cor2 cor1 cor2

1 0.0008 0.9344 0.0271 0.6102 0.0073 0.6958
2 0.0025 0.7237 0.0039 0.3710 0.0037 0.5057
3 0.0257 0.6798 0.0460 0.3031 0.0138 0.3391
4 0.0255 0.7237 0.0107 0.2659 0.0060 0.2051

(6) Combined Attacks

In existing dual blind watermarking algorithms, although the design of dual wa-
termarks has, to some extent, enhanced resistance against individual attacks, the ability
to resist combined attacks is significantly lacking. For instance, as demonstrated in ref-
erences [13,28], their algorithms were unable to extract either watermark in the case of
combined cropping and noise attacks. In contrast, the algorithm proposed in this paper
was still able to effectively extract the second watermark when subjected to certain levels
of such attacks (Table 5).

Table 5. Combined attack.

Combined Attacks
Bunny Dragon Armadillo

cor1 cor2 cor1 cor2 cor1 cor2

2% noise + 15%cropping 0.0023 1 0.0078 1 0.0212 0.9344
2% noise + 30% cropping 0.0015 1 0.0081 1 0.0209 0.9344
2% noise + 45% cropping 0.0021 1 0.0071 0.9344 0.0200 0.7984
2% noise + 60% cropping 0.0008 0.9344 0.0065 0.8150 0.0012 0.7229

(7) Comparison with Similar Algorithms

This algorithm is a blind watermarking technique, meaning that watermark extraction
does not require the involvement of the original model. Similar to this algorithm, there have
been works such as references [8,14,26–28]. The approach in reference [8] is a single blind
watermarking method, capable of resisting affine transformation and cropping attacks,
yet able to withstand limited attack types. Both references [14,28] proposed dual blind
watermarking schemes, expanding the range of attack resistances, but they failed to counter
simplification, smoothing, and noise combined with cropping attacks. Reference [26]
employed the skewness measure of the spherical angle as the resilient feature; however,
it was unable to resist the cropping attacks. As the watermark data were drawn by
modifying the vertex control of the structure in [27], it could not prevent noise, smoothing,
or mesh simplification. In contrast, the algorithm presented in this paper, aside from being
vulnerable to non-uniform scaling attacks, exhibited a certain resistance against various
attacks, including affine transformation, cropping, noise, simplification, smoothing, and
combined attacks. A comparison between this algorithm and the other three is illustrated
in Table 6.

Table 6. Comparison of algorithms.

Types of Attacks
Can It Resist Attacks?

Method
Proposed Reference [8] Reference [14] Reference [28] Reference [26] Reference [27]

Affine Transformation
Attack Yes Yes Yes Yes Yes Yes

Non-uniform Scaling
Attack No Yes No Yes Yes Yes
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Table 6. Cont.

Types of Attacks
Can It Resist Attacks?

Method
Proposed Reference [8] Reference [14] Reference [28] Reference [26] Reference [27]

Cropping Attack Yes Yes Yes Yes No Yes

Noise Attack Yes Yes No Yes Yes No

Simplification Attack Yes No No No Yes No

Smoothing Attack Yes No No No Yes No

Noise and Cropping
Combined Attack Yes No No No No No

6. Conclusions

This paper introduces a dual blind watermarking algorithm that demonstrates ro-
bustness for 3D mesh models. The algorithm embeds two distinct watermarks using two
different embedding methods within the 3D model. These watermarks remain mutually
independent and do not interfere with each other. The resulting watermarked model
maintains excellent invisibility, and watermark extraction does not require the original
model, thus achieving blind detection. The experimental results show that the algorithm
displays a certain level of resistance against various attacks, including affine transformation,
cropping, noise, simplification, smoothing, and combined attacks. In comparison to similar
previous blind watermarking algorithms, this algorithm extends the range of attacks it can
withstand. However, it should be noted that neither watermark 1 or watermark 2 can be
effectively extracted under non-uniform scaling attacks, which represents a limitation of
this algorithm and a subject for future research.
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5. Bistroń, M.; Piotrowski, Z. Efficient video watermarking algorithm based on convolutional neural networks with entropy-based

information mapper. Entropy 2023, 25, 284. [CrossRef]
6. Wang, D.; Li, M.; Zhang, Y. Adversarial data hiding in digital images. Entropy 2022, 24, 749. [CrossRef]
7. Wang, X.Y. Research on Digital Watermarking Techniques for Copyright Projection of Three-Dimensional Mesh Models.

Ph.D. Dissertation, Jiangsu University, Zhenjiang, China, 2017.
8. Sun, S.; Pan, Z.; Zhang, M.; Ye, L. A blind 3D model watermarking algorithm based on local coordinate system. J. Image Graph.

2007, 12, 289–294.

https://doi.org/10.3390/e21040355
https://www.ncbi.nlm.nih.gov/pubmed/33267069
https://doi.org/10.1109/ACCESS.2019.2940972
https://doi.org/10.1007/s11042-023-16109-y
https://doi.org/10.3390/e25020284
https://doi.org/10.3390/e24060749


Entropy 2023, 25, 1369 14 of 14

9. Ohbuchi, R.; Masuda, H.; Aono, M. Watermarking three-dimensional polygonal models. In Proceedings of the ACM International
Conference on Multimedia’97, Seattle, WA, USA, 9–13 November 1997; pp. 261–272.

10. Kanai, S.; Date, H.; Kishinami, T. Digital watermarking for 3D polygons using multi-resolution wavelet decomposition. In
Proceedings of the Sixth IFIP WG 5.2 International Workshop on Geometric Modeling: Fundamentals and Applications (GEO-6),
Tokyo, Japan, 7–9 December 1998; pp. 296–307.

11. Oliver, B. Geometry-Based Watermarking of 3D Models. IEEE Comput. Graph. Appl. 1999, 19, 46–55.
12. Praun, E.; Hoppe, H.; Finkelstein, A. Robust mesh watermarking. In Proceedings of the 26th Annual Conference on Computer

Graphics and Interactive Techniques, SIGGRAPH, Los Angeles, CA, USA, 8–13 August 1999; pp. 49–57.
13. Yu, Z.Q.; Ip, H.H.; Kowk, L.F. Robust watermarking of 3D polygonal models based on vertex scrambling. In Proceedings of the

Computer Graphics International Conference, Tokyo, Japan, 9–11 July 2003; pp. 254–257.
14. Feng, X.Q.; Pan, Z.G.; Li, L. A multi-watermarking method for 3D meshes. J. Comput. Aided Des. Comput. Graph. 2010, 22, 17–23.

[CrossRef]
15. Harte, T.; Bors, A.G. Watermarking 3D models. In Proceedings of the International Conference on Image Processing IEEE,

Rochester, NY, USA, 22–25 September 2002; pp. 661–664.
16. Bors, A.G. Watermarking mesh-based representations of 3-D objects using local moments. IEEE Trans. Image Process.

2006, 15, 687–701. [CrossRef]
17. Li, L.; Zhang, D.; Pan, Z.G.; Shi, J.Y.; Zhou, K.; Ye, K. Watermarking 3D mesh by spherical parameterization. Comput. Graph.

2004, 28, 981–989. [CrossRef]
18. Cho, J.W.; Prost, R.; Jung, H.Y. An oblivious watermarking for 3-d polygonal meshes using distribution of vertex norms. IEEE

Trans. Signal Process. 2007, 55, 142–155. [CrossRef]
19. Choi, H.; Jang, H.; Son, J.; Lee, H. Blind 3D mesh watermarking based on cropping-resilient synchro. Multimed. Tools Appl.

2017, 76, 26695–26721. [CrossRef]
20. Jang, H.; Choi, H.; Son, J.; Kim, D.; Hou, J.; Choi, S.; Lee, H. Cropping- resilient 3D mesh watermarking based on consistent

segmentation and mesh steganalysis. Multimed. Tools Appl. 2018, 77, 5685–5712. [CrossRef]
21. Hamidi, M.; Chetouani, A.; El Haziti, M.; El Hassouni, M.; Cherifi, H. Blind Robust 3D Mesh Watermarking Based on Mesh

Saliency and Wavelet Transform for Copyright Protection. Information 2019, 10, 67. [CrossRef]
22. Ferreira, F.; Lima, J. A robust 3D point cloud watermarking method based on the graph Fourier transform. Multimed. Tools Appl.

2020, 79, 1921–1950. [CrossRef]
23. Wang, K.; Lavoue, G.; Denis, F.; Baskurt, A. A comprehensive survey on three-dimensional mesh watermarking. IEEE Trans.

Multimed. 2008, 10, 1513–1527. [CrossRef]
24. Van Rensburg, B.J.; Puteaux, P.; Puech, W.; Pedeboy, J.P. 3D object watermarking from data hiding in the homomorphic encrypted

domain. ACM Trans. Multimed. Comput. Commun. Appl. 2023, 19, 175. [CrossRef]
25. Lyu, W.L.; Cheng, L.; Yin, Z. High-capacity reversible data hiding in encrypted 3D mesh models based on multi-MSB prediction.

Signal Process. 2022, 201, 108686. [CrossRef]
26. Lee, J.; Liu, C.; Chen, Y.; Hung, W.; Li, B. Robust 3D mesh zero-watermarking based on spherical coordinate and Skewness

measurement. Multimed. Tools Appl. 2021, 80, 25757–25772. [CrossRef]
27. Wang, C. Exhaustive study on post effect processing of 3D image based on nonlinear digital watermarking algorithm. Nonlinear

Eng. 2023, 12, 20220288. [CrossRef]
28. Tang, B.; Kang, B.S.; Wang, G.D.; Kang, J.C.; Zhao, J.D. Dual digital blind watermark algorithm based on three-dimensional mesh

model. Comput. Eng. 2012, 38, 119–122.
29. Ren, S.; Cheng, H.; Fan, A. Dual information hiding algorithm based on the regularity of 3D mesh model. Optoelectron. Lett.

2022, 18, 559–565. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3724/SP.J.1089.2010.10403
https://doi.org/10.1109/TIP.2005.863116
https://doi.org/10.1016/j.cag.2004.08.002
https://doi.org/10.1109/TSP.2006.882111
https://doi.org/10.1007/s11042-016-4194-4
https://doi.org/10.1007/s11042-017-4483-6
https://doi.org/10.3390/info10020067
https://doi.org/10.1007/s11042-019-08296-4
https://doi.org/10.1109/TMM.2008.2007350
https://doi.org/10.1145/3588573
https://doi.org/10.1016/j.sigpro.2022.108686
https://doi.org/10.1007/s11042-021-10878-0
https://doi.org/10.1515/nleng-2022-0288
https://doi.org/10.1007/s11801-022-2035-4

	Introduction 
	Algorithm Principle 
	Watermark Embedding 
	The Embedding of the First Watermark 
	The Embedding of the Second Watermark 

	Watermark Detection 
	Extraction and Detection of the First-Level Watermark 
	Extraction and Detection of the Second-Level Watermark 

	Experimental Results and Analysis 
	Conclusions 
	References

