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Abstract: Dopamine receptors (DARs) are important transmembrane receptors responsible for re-
ceiving extracellular signals in the DAR-mediated signaling pathway, and are involved in a variety
of physiological functions. Herein, the D1 DAR gene from Marsupenaeus japonicus (MjDAD1) was
identified and characterized. The protein encoded by MjDAD1 has the typical structure and func-
tional domains of the G-protein coupled receptor family. MjDAD1 expression was significantly
upregulated in the gills and hepatopancreas after low temperature stress. Moreover, double-stranded
RNA-mediated silencing of MjDAD1 significantly changed the levels of protein kinases (PKA and
PKC), second messengers (cyclic AMP (cAMP), cyclic cGMP, calmodulin, and diacyl glycerol), and G-
protein effectors (adenylate cyclase and phospholipase C). Furthermore, MjDAD1 silencing increased
the apoptosis rate of gill and hepatopancreas cells. Thus, following binding to their specific receptors,
G-protein effectors are activated by MjDAD1, leading to DAD1-cAMP/PKA pathway-mediated
regulation of caspase-dependent mitochondrial apoptosis. We suggest that MjDAD1 is indispensable
for the environmental adaptation of M. japonicus.

Keywords: Marsupenaeus japonicus; low temperature; RNA interference; DAD1; apoptosis

1. Introduction

The diverse superfamily of GPCRs, comprising seven-transmembrane (TM) proteins,
transduces external signals by binding to various ligands to initiate intracellular signaling
cascades [1].GPCRs have many functions, acting as signal transducing-receptors in cellular
metabolism, immune support, hormone secretion, behavioral and mood regulation, and
diverse sensory activities [2].When DARs bind to their ligand, information is transduced
into the cell via conformational changes, thereby activating heterotrimeric G-proteins and
initiating downstream signaling pathways via the recruitment and activation of effectors [3].
Among them, the dopaminergic D1 receptor (DAD1) is the target for practically all currently
available clinical antipsychotic drugs. Moreover, aberrant DA signaling correlates with
many psychiatric and neurological deficits. A variety of DA receptor agonists engage
different downstream effectors, according to the concept of biased agonism.

Dopamine receptors’ (DARs) downstream signal regulation affects the host defense
against the external environment. However, the DAR synergistic regulation mechanisms
are mostly unknown. There are five subtypes of DAR (DA1−DA5), all of which are mem-
bers of the G protein-coupled receptors (GPCRs) family. DARs are further divided into
D1-like and D2-like receptors based on their pharmacological profiles, signaling mecha-
nisms, and conserved structures [4]. Subtypes DA1 and DA5 comprise D1-like receptors,
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which activate adenylyl cyclase (AC). AC activation leads to increased intracellular cyclic
adenosine monophosphate (cAMP) levels and cell metabolic regulation, such as changes to
the functions of ion channel function and GPCR desensitization, culminating in the release
of neurotransmitters [5]. Subtypes DA2–DA4 comprise D2-like receptors, whose coupled
signal transduction pathway inhibits AC, thereby decreasing cAMP levels. In invertebrates,
DARs are vital for physiology, particularly cell signaling, learning and memory, reproduc-
tion, processing visual stimuli, mood/feeding behavior regulation, and other metabolic
processes [6]. However, there have been few reports on crustacean DARs.

The economically important crustacean, kuruma shrimp Marsupenaeus japonicus (order
Decapoda, family Penaeidae), is found throughout the Indo-West Pacific [7]. M. japonicus is
a popular seafood produced in significant quantities by fishing and aquaculture. Currently,
M. japonicus is farmed in several European and Asian countries, among which the largest
producer is China, producing 44,548 tons in 2021 [8]. Crustaceans are cold-blooded organ-
isms and thus face significant challenges from environmental temperature fluctuations,
which result in global perturbations that modulate the reaction rates of most biological
processes. Under challenge, the body’s homeostasis will mount complicated responses,
including behavioral, neurological, and physiological responses, acting coordinately to
rebalance homeostasis and promote organismal survival. In aquatic animals, tempera-
ture affects the function of the neuroendocrine function system, which further reduces
immunity and alters their metabolism [9]. Moreover, low temperature induces apopto-
sis [10,11]; however, the potential toxic effect of low temperature on crustacean apoptosis
and hematopoiesis is unclear.

Therefore, investigations of the immunity of shrimp must be very helpful to the healthy
aquaculture of crustaceans. Herein, the DAD1 gene from M. japonicus (MjDAD1) was iden-
tified, and its role in temperature regulation was explored. We further characterized its
functions and possible regulatory mechanisms to gain a detailed picture of communication
between the crustacean immune and neuroendocrine systems. We explored the possible reg-
ulatory mechanism of MjDAD1 in M. japonicus under low temperature stress. Furthermore,
MjDAD1 was silenced to identify cold stress-related alterations in critical neuroendocrine
system factors, and the mRNA levels of apoptosis-associated genes in gills and hepatopan-
creas were also assessed. The results partially revealed MjDAD1’s functions in M. japonicus,
and provided a mechanistic explanation for crustacean low temperature resistance.

2. Results
2.1. Characterization of the MjDAD1 Sequence

The full length cDNA sequence of MjDAD1 was cloned using RACE technology.
Sequence feature analysis of the cDNA was performed using NCBI ORF finder software
(https://www.ncbi.nlm.nih.gov/orffinder/, accessed on 20 October 2021). The MjDAD1
cDNA (GenBank accession number MK287993) has a total length of 2253 bp, including
an 88 bp 5′ untranslated region (UTR) region, an ORF of 1254 bp, and a 3′ UTR of 911 bp.
The cDNA contains a typical tail signal, aataaa. The 3′ UTR region contains a 26 bp polyA
sequence. Starting from an ATG start codon and ending with a TAA stop codon, the ORF
encodes a putative protein of 417 amino acids (Figure 1). The predicted molecular weight
of MjDAD1 protein is 45.60 kDa, the theoretical pI is 8.11, and the instability coefficient is
36.35, indicating that it is a stable protein.

The prediction results of the SMATR software (http://www.cbs.dtu.dk/services/
TMHMM/, accessed on 22 October 2022) showed that MjDAD1 (Figure S1) contains seven
transmembrane domains at positions 40–62, 69–86, 141–163, 176–198, 213–235, 255–277,
and 304–326. The figure showed that MjDAD1 has the typical structural characteristics of
D1 class receptors, with a longer C-terminus.

The multiple alignment of DAD1 proteins showed strong similarity between MjDAD1
and DAD1 proteins from crustaceans. MjDAD1 has the highest sequence similarity with
the protein from Penaeus monodon (50.46%) (Figure 2). Overall, the phylogenetic analysis
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showed that MjDAD1 clusters with sequences from other crustaceans, then with mollusks,
and finally with vertebrates (Figure S2).
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2.2. Tissue Expression of MjDAD1

MjDAD1 mRNA expression in eight different M. japonicus tissues was assessed using
qRT-PCR (Figure S3). MjDAD1 showed the highest expression in muscle (p < 0.05) and the
lowest in hemocytes (p < 0.05).
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from other species. Black boxes indicatesequence identity between amino acid sequences, pink
boxes indicate the amino acid with high similarity, and blue boxes indicate the amino acid with
middle similarity.

2.3. MjDAD1 mRNA Expression under Low Temperature Stress

MjDAD1 mRNA expression in gills (Figure 3A) and hepatopancreas (Figure 3B) in-
creased significantly following 10 ◦C and 16 ◦C low temperature incubation, with the
highest level at 48 h (p < 0.05). MjDAD1 expression did not change significantly in the
22 ◦C and control groups (p > 0.05).
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Figure 3. Changes in the relative expression of MjDAD1gene in the M. japonicus gills (A) and
hepatopancreas (B) under low temperature stress. The data are shown as the means ± SD (n ≥ 3).
Different letters on the bar chart indicate significant differences (p < 0.05).

2.4. Low Temperature Stress Effects on Intracellular Pathway Factors
2.4.1. Effects of Low Temperature Stress on G Protein Effectors

The G protein effectors including AC and PLC in the gills and hepatopancreas of M.
japonicus were determined (Figure S4). Under 10 ◦C low temperature incubation, the AC
activity in the gills (Figure S4A) and hepatopancreas (Figure S4B) significantly increased
from 3 to 72 h, peaking at 24 h; in the 16 ◦C group, the AC activity in the gills was higher
than that in the control group from 24 h to 72 h, while in the hepatopancreas, the AC activity
was higher than that in the control group from 3 to 72h (p < 0.05). In the 22 ◦C group, the
AC activity in the gills and hepatopancreas was higher than that in the control group at
72 h (p < 0.05).

Under low temperature stress at 10 ◦C, the PLC activity in the gills (Figure S4C) and
hepatopancreas (Figure S4D) was higher than that in the control group during the whole
experiment time (p < 0.05). In the 16 ◦C group, the PLC level in the gills increased during
3−24 h, reached the minimum value at 24 h, and returned to the control groups’ level at
72 h, while in the hepatopancreas, the PLC activity was higher than that in the control
group at 24 h (p < 0.05). In the 22 ◦C group, the PLC level in the gills decreased at 3 h
(p < 0.05), and returned to the control group level at 24 h, while in the hepatopancreas, the
PLC activity was higher than that in the control group at 24 h (p < 0.05)

2.4.2. Effect of Low Temperature Stress on Second Messengers

As shown in Figure S5, low temperature had a significant effect on the second mes-
senger concentrations in gills and hepatopancreas of M. japonicus (p < 0.05). Under low
temperature stress, the cAMP level in the gills (Figure S5A) was higher than that in the
control group at 24 h and 72 h (p < 0.05). In the 10 ◦C group, the cAMP activity (Figure S5B)
in the hepatopancreas increased from 3−72 h, reaching the maximum value at 24 h; in
the 16 ◦C group, the cAMP activity in the hepatopancreas increased at 24 h and 72 h,
significantly higher than the control group (p < 0.05); in the 22 ◦C group, the cAMP activity
in the hepatopancreas was higher than that in the control group at 72 h (p < 0.05).

Under 10 ◦C and 16 ◦C low temperature stress, the overall DAG levels in the gills
(Figure S5C) and hepatopancreas (Figure S5D) first increased and then decreased, reaching
its highest point at 24 h (p < 0.05). Under 22 ◦C stress, DAG levels in the gills and hep-
atopancreas first decreased and then increased, reaching its highest point at 72 h (p < 0.05).
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Similar to DAG levels, the CaM levels in the gills (Figure S5E) and hepatopancreas
(Figure S5F) of the 10 ◦C and 16 ◦C groups increased and then decreased, reaching its
highest level at 24 h (p < 0.05). Under low temperature stress at 22 ◦C, the CaM levels in the
gills and hepatopancreas gradually increased, reaching its highest level at 72 h (p < 0.05).

2.4.3. Effect of Low Temperature Stress on Protein Kinases

Under low temperature stress at 10 ◦C and 16 ◦C, the PKA levels in the gills (Figure S6A)
first increased and reached the highest levels at 3 h (p < 0.05), and then decreased to the
control level at 72 h. Under 22 ◦C low temperature stress, the PKA levels in the gills
gradually increased, reaching a peak at 72 h (p < 0.05). Under low temperature stress at
10 ◦C and 16 ◦C, the PKA levels in the hepatopancreas (Figure S6B) first increased and
reached the highest levels at 24 h (p < 0.05); in the 22 ◦C group, the PKA levels in the
hepatopancreas decreased at 24 h (p < 0.05), then increased to the control level at 72 h.

Under 10 ◦C low temperature stress, the PKC levels in the gills (Figure S6C) were
significantly higher than in the control group during the whole experiment time (p < 0.05).
In the 16 ◦C group, the PKC levels in the gills were higher than in the control group at
24 h (p < 0.05), then decreased to the control level at 72 h. The PKC levels in the gills of
the 22 ◦C group showed no significant difference compared with the control during the
whole experiment. Under low temperature stress of 10 ◦C and 16 ◦C, the PKC activity in
the hepatopancreas (Figure S6D) was higher than that in the control group at 24 h and 72 h
(p < 0.05), while in the 22 ◦C group, the PKC activity of the hepatopancreas was higher than
in the control group at 72 h (p < 0.05).

2.5. The Relative Expression Ratio of MjDAD1 after MjDAD1 RNAi

The function of MjDAD1 under low temperature stress was assessed using dsRNA
interference. After injecting dsRNA into M. japonicus, the mRNA expression level of
MjDAD1 in gill and hepatopancreas was detected using qRT-PCR. In comparison with the
NS group, MjDAD1 expression reached its lowest value at 14 h after the injection of dsRNA,
decreasing by 66% and 60% in the gills and hepatopancreas, respectively (Figure S7),
indicating that MjDAD1 was successfully silenced, and the synthesized dsRNA could be
used in the RNA interference experiment.

2.6. Effect of MjDAD1 Interference on Tissue Damage of M. japonicus under Low Temperature
Stress
2.6.1. Histopathology of the Gills and Hepatopancreas after MjDAD1 Interference

The gills of M. japonicus are composed of gill filaments and gill segments, which
include epithelial cells, keratin membranes, and gill cavities. The gills, gill filaments, and
gill segments of the control group were normal, and the gill segments grew regularly on
both sides of the gill filaments (Figure 4A). After 12 h of low temperature stress at 10 ◦C,
the NC group showed thinning or disappearance of the stratum corneum, narrowing of
the subepidermal space, and significant epithelial disintegration (Figure 4B). After 12 h
low temperature stress at 10 ◦C, the MjDAD1-silenced group showed thickening of gill
fragments, destruction of the epithelial layer, residual necrotic cells appearing in the gill
cavity, and partial collapse of the entire epithelial layer of gill fragments, leaving only
vacuoles composed of chitin (Figure 4C).

The hepatopancreas of M. japonicus is composed of hepatic tubules. The lumen of
normal hepatic tubules has the shape of a quadrangle star or pentagram with a clear
boundary (Figure 5A). After 12 h of low temperature stress at 10 ◦C, the lumen of the NC
group began to degenerate, with vacuoles appearing; however, the basement membrane
was relatively intact (Figure 5B). After 12 h of low temperature stress at 10 ◦C, the MjDAD1-
silenced group showed severe swelling of hepatic tubules, enlargement of the lumen, and
complete loss of regular star-like structure. The swelling of hepatic tubules led to adjacent
liver tubules being squeezed against each other, and the boundaries of the tubules were
blurred (Figure 5C).
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nucleus, (P) Pillar cell, (Va) Vacuole.
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Note: (A): Control group (28 ◦C) (×400); (B): 10 ◦C NC stress for 12 h (×400); (C): 10 ◦C RNAi stress
for 12 h (×400). Scale bar = 100 µm. (Bc) B cells, (Bm) Basement membrane, (Lu) Lumen, (Rc) R cells,
(Tv) Transferred vacuole, (Va) Vacuole.

2.6.2. TUNEL Detection of Apoptosis after MjDAD1 Interference

The TUNEL results showed that, in the gills and hepatopancreas, the 28 ◦C treatment
group had few apoptotic cells, while in the RNAi and NC groups, the number of apoptotic
cells continued to increase with the decrease in temperature. The 28 ◦C MjDAD1-silenced
group and the NC group had similar numbers of apoptotic cells, while under 10 ◦C low
temperature treatment, the MjDAD1-silenced group had significantly more apoptotic cells
than the NC treatment group (Figure 6A,B). Figure 6C represents the statistical results of
gill cell apoptosis rate (apoptotic cells/total cells). Following 12 h of low temperature stress,
the apoptosis rates were 1.73% in the 28 ◦C NC group, 2.35% in the 28 ◦C RNAi group,
21.59% in the 10 ◦C NC group, and 33.70% in 10 ◦C RNAi group. Figure 6D represents
the statistical results of the hepatocyte apoptosis rate. Following 12 h of low temperature
stress, the apoptosis rate was 1.27% in the 28 ◦C NC group, 1.84% in the 28 ◦C RNAi group,
31.60% in the 10 ◦C NC group, and 51.38% in the 10 ◦C RNAi group.
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(B): Detection of apoptosis in hepatopancreatic cells; (C): Statistical analysis of apoptosis in gill tissue;
(D): Statistical analysis of hepatopancreatic cell apoptosis. Apoptotic cells were detected by TUNEL
staining (green) and the nuclei by DAPI staining (blue). Scale bar = 20 µm. Arrows point towards
apoptotic cells. The data are shown as the means ± SD (n ≥ 3). Different letters on the bar chart
indicate significant differences (p < 0.05).

2.7. MjDAD1 Silencing Affects Intracellular Signaling Pathway Factors in the Gills and
Hepatopancreas under Low Temperature Stress

We detected intracellular signaling pathway factors, including protein kinases, second
messengers, and G protein effectors in the gills and hepatopancreas of M. japonicus after
low temperature exposure. The results showed that under 10 ◦C low temperature stress,
the AC level in gills (Figure 7A) and hepatopancreas (Figure 7B) in the MjDAD1-silenced
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group increased from 3–12 h, peaking at 12 h, while being significantly lower than that in
the 28 ◦C NC group at 48 h (p < 0.05). The PLC level (Figure 7C,D) in the 10 ◦C NC group
increased from 3–12h, peaking at 12h, and in the 10 ◦C RNAi group the PLC level was
significantly lower than that in the 28 ◦C NC and 10 ◦C NC groups.
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In addition, in the 10 ◦C MjDAD1-silenced group, the levels of cAMP in the gills
(Figure 8A) and hepatopancreas (Figure 8B) decreased at 3 h after low temperature exposure,
and recovered to the starting concentration at 48 h. After MjDAD1 knockdown, the DAG
content in the gills (Figure 8C) and hepatopancreas (Figure 8D) of the 10 ◦C group was
downregulated significantly from 3−12 h, but was restored to the levels in the two control
groups at 48 h. In the 28 ◦C MjDAD1-silenced group and 10 ◦C NC group, the DAG content
increased steadily from 3–12h. Similarly, the CaM content in the gills (Figure 8E) and
hepatopancreas (Figure 8F) of the MjDAD1 interference group was significantly reduced
compared with that in the two control groups at 3–48 h.
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Moreover, the results showed that, in the gills of the 28 ◦C MjDAD1-silenced group
and the 10 ◦C MjDAD1-silenced group, the levels of PKA were gradually downregulated
in the gills, and were significantly lower than those in the 28 ◦C NC group and 10 ◦C
NC group at 48 h (Figure 9A). The PKA content in the hepatopancreas of the 10 ◦C NC
group showed an initial significant increase and then decreased to the control level at 48 h
(Figure 9B). When MjDAD1 was knocked down, the PKA content in the gills (Figure 9C) of
the 10 ◦C RNAi group gradually decreased from 12 to 48 h, which was significantly lower
than that in the other groups. The PKC content in the hepatopancreas (Figure 9D) of the
10 ◦C MjDAD1-silenced group was significantly higher than that of the 28 ◦C NC group,
and returned to the same level as that in the control groups at 48 h, while in the 28 ◦C
MjDAD1-silenced group and 10 ◦C NC group, the PKC level was higher than that in the
28 ◦C NC group at 12 h and 48 h (p < 0.05).
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2.8. MjDAD1 Silencing Affects Apoptosis-related Gene Expression in M. japonicus under Low
Temperature Stress

RNA interference showed that, when MjDAD1 was downregulated, the expression
levels of Bcl2 expression in the gills (Figure 10C) and hepatopancreas (Figure 10D) were
also downregulated in the 10 ◦C low temperature group, while the expression levels of
p53 (Figure 10A,B) and cas3 (Figure 10E,F) were significantly upregulated after MjDAD1
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silencing (p < 0.05). We speculated that MjDAD1 had a negative regulatory effect on Bcl2
and a positive feedback regulation effect on p53 and casp3.
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(n ≥ 3). Different letters on the bar chart indicate significant differences (p < 0.05).
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3. Discussion

We isolated and characterized the full length cDNA sequence of MjDAD1. The putative
MjDAD1 protein has high homology (50.46%) with DAD1 from Penaeus monodon. MjDAD1
contains seven transmembrane domains, corresponding to G protein coupled receptors,
and MjDAD1 has high similarity with other marine invertebrates in the transmembrane
domain, indicating that MjDAD1 has been highly conserved during the evolution process.
These analyses indicated that we had successfully cloned the full length cDNA of MjDAD1
from M. japonicus.

The eyestalk is an important neuroendocrine regulatory organ in crustaceans. MjDAD1
is highly expressed in the eyestalk, indicating its involvement in neuroendocrine and
immune regulation of M. japonicus. Under low temperature stress, MjDAD1 mRNA levels
increased markedly within 3 h, suggesting that MjDAD1 might participate in the cold stress
response of M. japonicus. The expression level of the D2 receptor (DRD4) in Litopenaeus
vannamei changed under ammonia nitrogen exposure, and the expression of dopamine
receptors EsDAD1 and EsDAD2 in Eriocheir sinensis also changed with the decrease in
salinity during the desalination process [12,13]. These observations indicated that dopamine
receptors have important functions in crustaceans’ responses to environmental stimuli and
the maintenance of internal homeostasis.

Studies have shown that DARs, following binding to their membrane receptors, mod-
ulate shrimp immune defense by regulating intracellular signaling transduction pathways
(nuclear transcription factors-protein kinases), ultimately affecting proteins related to im-
munity [14–16]. D1-like receptors activate AC to positively regulate the intracellular cAMP
content [17,18]. cAMP activates PKA, which in turn, phosphorylates nuclear and cyto-
plasmic proteins to regulate gene expression [19,20]. Our results indicated that, after low
temperature stress, the contents of PKC, PKA, CaM, DAG, cAMP, PLC, and AC in the gills
and hepatopancreas of M. japonicus showed an overall trend of increase and then decrease.
Previous studies have shown that cAMP and DAG, as second messengers, affect specific
immunity by regulating PKA and PKC activities [21,22]. In the blue crab Callinectes sapidus,
D1-like dopamine receptors increased the production of cAMP in the posterior gills [23].
In the present study, MjDAD1 silencing significantly decreased the levels of G protein
effectors (PLC and AC), intracellular second messengers (DAG, CaM, and cAMP), and
PKA, while the content of PKC increased significantly, which demonstrate that MjDAD1
can transduce its signal via cAMP generation and Ca2+ mobilization in response to cold
stress. Thus, we deduced that the MjDAD1 signaling pathway exists in M. japonicus and
MjDAD1 is an ortholog of the vertebrate receptors.

Dopaminergic signaling and cellular apoptosis are believed to involve mitochondrial
dysfunction and oxidative stress induced by low temperature [24,25]. Our previous study
demonstrated that in the gills and hepatopancreas, low temperature increased p53 to induce
apoptosis [26]. Thus, we assessed the effects of MjDAD1 silencing on the endogenous
apoptosis pathway after low temperature treatment. Mitochondrial apoptosis-related gene
expressions, specifically the anti-apoptotic gene Bcl2, and a gene encoding an apoptotic
protein downstream of the cascade, specifically casp3, were determined. Yin et al. [27] found
that, under low temperature, apoptosis was induced through the mitochondrial pathway
in Litopenaeus vannamei. Herein, MjDAD1 silencing increased p53 and casp3 expression (en-
coding members of the caspase-dependent mitochondrial pathway) significantly compared
with those in the control; however, they returned to control levels at 48 h. This suggested
that MjDAD1 is involved in the regulation of the shrimp caspase-dependent mitochondrial
apoptosis pathway. Similar to our results, Pirger et al. [28] found that, in snail salivary
gland cells, programmed cell death induced by dopamine was associated with caspase-3
activation and cytochrome c release. Thus, considering the findings for the endogenous
pathway of apoptosis, the results of the present study suggested that, under low temper-
ature stress, endoplasmic reticulum stress-related apoptosis and the caspase-dependent
mitochondrial pathway are modulated via the D1-like mediated AC/cAMP-PKA axis.
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4. Materials and Methods
4.1. Ethical Considerations

The Guidelines for the Care and Use of Laboratory Animals in China were followed
when carrying out all the experiments. The Institutional Animal Care and Use Committee
(IACUC) of the Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery
Sciences (Qingdao, China), approved the study (approval number YSFRI-2022022).

4.2. Experimental Animals

A commercial aquaculture market (Qingdao, Shandong Province, China) provided
healthy shrimp (M. japonicus: body weight = 13.04 ± 0.88 g), which were allowed to
acclimate for 7 days in cement tanks (area = 8 m2; water depth = 20 cm, non-sandy bottom)
containing filtered cycling aerated seawater (salinity = 28.6‰; temperature = 28 ± 0.5 ◦C;
pH 8.2). The shrimp received fresh clam meat twice daily during acclimation up to 24 h
before their use.

4.3. Application of Low Temperature Stress and Collection of Samples

The shrimp were transferred to aquariums with water temperatures of 10 ± 0.2 ◦C,
16 ± 0.2◦C, and 22 ± 0.2◦C, and then sampled at different time points (0, 3, 24 and 72 h).
The water temperature was controlled using an Artificial Climate Chamber (temperature
range 5–50 ◦C, GRTE- HXB10N, Greete Energy Saving Equipment Limited Company,
Weifang, China). The control water temperature was 28.0 ± 0.5 ◦C. Each group comprised
ten shrimps, and each condition was applied as three replicates. We collected gill and
hepatopancreas tissues, which were snap frozen in liquid nitrogen and placed at −80 ◦C
before experimentation.

4.4. Cloning of MjDAD1
4.4.1. Extraction of Total RNA and Full Length cDNA Cloning

The TRIzol Reagent (Ambion, Foster City, CA, USA) was used to extract total RNA
from shrimp muscle, eyestalk, stomach, brain, thymus, gills, hepatopancreas, and hemo-
cytes according to the supplier’s protocol. In addition, 1% agarose gel electrophoresis was
used to determine the RNA quality and the RNA concentration was determine using a
Nanodrop 2000 instrument (Thermo Fisher Scientific, Waltham, MA, USA). cDNA was
synthesized from high quality RNA from each tissue.

Our previously published M. japonicus transcript database [29] provided partial Mj-
DAD1 cDNA sequences. A 5′ and 3′ rapid amplification of cDNA ends (RACE) kit (Takara,
Shiga, Japan) was used to amplify further MjDAD1 cDNA sequences following the sup-
plier’s guidelines. The RACE experiments used specific primers (Table 1) and comprised
initial denaturation at 94 ◦C for 5 min, 35 cycles at 94 ◦C for 30 s, 58 ◦C for 30 s, and 72 ◦C
for 1 min, with a last extension at 72 ◦C for 10 min. The amplicons were separated using
1% agarose gel electrophoresis, the gel purified, ligated into vector pMD18-T (Takara),
and sequenced commercially (Sangon, Shanghai, China). The resultant sequences were
assembled into the full length MjDAD1 cDNA.

Table 1. Primers used in cloning and characterizing the MjDAD1 gene.

Primer Sequence Usage

MjDAD1 F1 ATTCCCGACATCGTTTTCAAGGTGC 3′ RACE
MjDAD1 F2 CAGTTCTTCTTCTGCTTACGCCACCC 3′ RACE
MjDAD1 R1 GGCAAAGGTCATCACCACGCA 5′ RACE
MjDAD1 R2 AGGAAGATGACGAAGGAGAGGATGATGC 5′ RACE
UPM(short) CTAATACGACTCACTATAGGGC RACE
UPM(long) CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT RACE

M13 F GTAAAACGACGGCCAGT colony PCR
M13 R CAGGAAACAGCTATGAC colony PCR
NUP AAGCAGTGGTATCAACGCAGAGT RACE



Int. J. Mol. Sci. 2023, 24, 15278 15 of 19

Table 1. Cont.

Primer Sequence Usage

dsDAD1 F GCUUGAUAUCAAUCUUCUATT RNAi
dsDAD1 R UAGAAGAGUGAUAUCAAGCTT RNAi

NC F UUCUCCGAACGUGUCACGUTT RNAi
NC R ACGUGACACGUUCGGAGAATT RNAi

MjDAD1 F CGCCTCCATCATCAACCTCT qRT-PCR
MjDAD1 R GCCATCGTCACGATCCTCTT qRT-PCR
MjDAD2 R AAGCAAGCACGTCGAAACTCC qRT-PCR
MjBcl-2 F TCTCAAAATGGCTCCCG qRT-PCR
MjBcl-2 R GTCACTGTCGCTCACACTAC qRT-PCR

p53 F CCAGTGGGTGGAGTATCA qRT-PCR
p53 R TTTGTGACGACCAGCCC qRT-PCR

caspase-3 F GCCTCTCACGACGCCTACAT qRT-PCR
caspase-3 R GTCGCTGTGGTCTCGTT qRT-PCR

β-actin F TCCACGAGACCACATACAAC qRT-PCR
β-actin R CACTTCCTGTGAACGATTGA qRT-PCR

4.4.2. Analysis of the Sequence and Phylogenetic Tree Construction

The deduced protein sequence of MjDAD1 was searched using BLAST at the Na-
tional Center for Biotechnology Information (NCBI) database (http://blast.ncbi.nlm.nih.
gov/Blast.cgi, accessed on 3 November 2021). The SMART program (http://smart.embl-
heidelberg.de/, accessed on 3 November 2021) was used to predict functional sites and
domains in the putative MjDAD1 sequence. The molecular weight and isoelectric point
(pI) were predicted using the ProtParam tool at the ExPASy molecular biology server
(http://www.expasy.org/tools, accessed on 4 November 2020). The MjDAD1 protein
sequence was multiply aligned with other known DAD1 proteins using the CLUSTALW
program package in the DNAMAN 8.0 software [30]. The phylogenetic tree was con-
structed using the neighbor-joining (N-J) method [31] in MEGA 6.0 [32] with support from
10,000 bootstrap replicates.

4.4.3. The Distribution of MjDAD1 in Tissues and Analysis of Its Expression Pattern

We extracted RNA from tissues and used a PrimeScript RT Reagent Kit with gDNA
Eraser (Takara) to obtain cDNA via reverse transcription. The open reading frames (ORFs)
of the genes were used to design PCR primers to detect their expression levels; the control
was ACTB (encoding β-actin) (Table 1). The relative expression levels of MjDAD1 were
determined on an ABI 7500 Real-Time PCR Detection System (Applied Biosystems, Foster
City, CA, USA) using a SYBR Premix Ex Taq II kit (Takara). The reactions comprised 5 µL
of SYBR Premix Ex Taq II (2×), 2 µL of cDNA, 0.4 µL of specific primers (10 mol/L), 0.2 µL
of ROX Reference Dye II (50×), and 3.4 µL of RNase-free water. The cycling comprised
initial denaturation at 95 ◦C for 30 s; 40 cycles of 95 ◦C for 5 s, 60 ◦C for 34 s, and 95 ◦C
for 15 s; then 1 min at 60 ◦C and 15 s at 95 ◦C. Each sample was analyzed repeatedly to
ensure that the data were reliable. The 2−∆∆Ct method [33] was employed to determine the
relative expression of MjDAD1.

4.5. Short Interfering RNA (siRNA) Analysis

This study conducted temperature experiments at 10 ◦C and 28 ◦C gradients after
siRNA interference. Each temperature gradient was divided into two groups, namely the
RNAi group and the negative control (NC) treatment group. Shrimp were evenly divided
into groups according to their respective amounts, and siRNA was injected at a rate of
1 µg/g at their fourth tail segment. The control group was injected with an NC negative
control (meaningless double-stranded RNA), and gill and hepatopancreas tissues were
collected from nine shrimp and stored in liquid nitrogen for RNA extraction at 3, 12, and
48 h (which were injected again at 24 h).

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://smart.embl-heidelberg.de/
http://smart.embl-heidelberg.de/
http://www.expasy.org/tools
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4.6. Histological Examination and TUNEL Assay

Gill and hepatopancreas samples for histological examination were prepared according
to previously published methods [34,35]. In brief, the gill and hepatopancreas samples
were stored for 24 h in 10% neutral formalin, paraffin-embedded, sectioned at 5 µm, and
subjected to hematoxylin and eosin staining before being examined under an optical
microscope (Eclipse 80i/90i, Nikon, Tokyo, Japan).

Gill tissues were subjected to terminal deoxynulceotidyl transferase nick-end-labeling
(TUNEL) staining employing an In Situ Cell Death Detection Kit (Roche, Basel, Switzerland)
following the supplier’s guidelines. In summary, the cell sections were deparaffinized,
rehydrated, and digested with proteinase K for 30 min. The sections were added to
the TUNEL reaction mixture and incubated in a humidified chamber at 37 ◦C for 1 h.
Subsequently, the sections were rinsed using phosphate-buffered saline (PBS), stained using
3,3’-diaminobenzidine (DAB), subjected to Mayer-hematoxylin counterstaining, viewed
under a microscope, and photographed. Image-Pro Plus 6.0 (Media Cybernetics, Rockville,
MD, USA) was used to quantitatively analyze the staining intensity.

4.7. Protein Kinases and Intracellular Second Messengers Determination
4.7.1. Supernatant Preparations

Gill and hepatopancreas samples (0.1 g) were homogenized in buffer at 0 ◦C, composed
of 20 mM Tris-HCl (pH 7.6), 10% (v:v) glycerol, 1.0 mM dithiothreitol, and 1.5 mM EDTA.
The debris was removed by centrifugation at 12,000× g (4 ◦C, 5 min). The supernatants
were further centrifuged at 3000× g (4 ◦C, 25 min) and the obtained supernatants were
analyzed for their concentrations of PKC, PKA, CaM, DAG, cAMP, PLC, and AC, and their
protein contents.

4.7.2. Assay for Intracellular Signaling Transduction Factors

The enzyme-linked immunosorbent assay method was used to determine the intracel-
lular levels of protein kinases and second messengers. The AC, PLC, cAMP, CaM, DAG,
PKA, and PKC concentrations were determined using shrimp AC (BP-E94058), shrimp PLC
(BP-E94030), shrimp cAMP (BPE94058), shrimp CaM (BPE94030), shrimp DAG (BPE94095),
shrimp PKA (BPE94011), and shrimp PKC (BPE94012) ELISA kits (Shanghai Lengton Bio-
science Co., LTD, Shanghai, China). Their concentrations were determined following the
supplier’s guidelines.

4.8. Quantitative Real-Time Reverse Transcription PCR (qRT-PCR)

Trizol was used to extract RNA from the samples following the supplier’s protocol
(Roche, San Francisco, CA, USA). HiScript II Q RT SuperMix for qPCR (+gDNA wiper)
kit (Vazyme, Jiangsu, China) was used to produce single-stranded cDNAs from the RNA,
which were used as templates for the quantitative real-time PCR (qPCR) step of the qRT-
PCR protocol. An Applied Biosystems™ 7500 Real-Time PCR instrument (ABI, Foster City,
CA, USA) with ChamQ SYBR qPCR Master Mix (High ROX Premixed) kit (Vazyme) were
used to carry out the qPCR reactions. Table 1 shows the primers for Mjp53 and ACTB
(internal control). The reaction conditions comprised: 10 min at 95 ◦C; 40 cycles of 95 ◦C for
30 s and 60 ◦C 34 s; 95 ◦C for 5 s; 60 ◦C for 1 min; and 95 ◦C for 15 s. The 2−∆∆Ct method [33]
was employed to determine the relative gene expression levels.

4.9. Statistical Considerations

Data are shown as the mean ± standard deviation (SD) of three independent ex-
periments. Significant differences between control and experimental individuals were
determined using one-way analysis of variance (ANOVA), followed by Dunnett’s test.
A p value less than 0.05 was considered to indicate statistical significance. SPSS 23.0 for
Windows (IBM Corp., Armonk, NY, USA) was employed for all statistical tests.
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5. Conclusions

In summary, we cloned an M. japonicus DAR gene, MjDAD1, whose expression was
upregulated markedly by low temperature stress. MjDAD1 effects DA signaling, which
alters PLC and AC levels, resulting in CaM, DAG, and cAMP concentration changes. Silenc-
ing of MjDAD1 resulted in downregulated Bcl2 expression in the hepatopancreas. Likewise,
silencing of MjDAD1 led to low temperature-induced activation of apoptosis signaling
pathway-associated genes. Ultimately, PKA/PKC induced changes to nuclear transcrip-
tion factors, which regulated apoptosis. These results implied that D1-like receptors, via
their positive association with the cAMP-PKA-CREB signaling pathway, have synergistic
functions in the M. japonicus neuroendocrine immune (NEI) system.
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PKA protein kinase A
PKC protein kinases C
Bcl-2 BCL2 apoptosis regulator
TM transmembrane
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