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Abstract: Nitric oxide (NO) plays an important and diverse signalling role in the cardiovascular
system, contributing to the regulation of vascular tone, endothelial function, myocardial function,
haemostasis, and thrombosis, amongst many other roles. NO is synthesised through the nitric oxide
synthase (NOS)-dependent L-arginine-NO pathway, as well as the nitrate-nitrite-NO pathway. The
three isoforms of NOS, namely neuronal (NOS1), inducible (NOS2), and endothelial (NOS3), have
different localisation and functions in the human body, and are consequently thought to have differing
pathophysiological roles. Furthermore, as we continue to develop a deepened understanding of
the different roles of NOS isoforms in disease, the possibility of therapeutically modulating NOS
activity has emerged. Indeed, impaired (or dysfunctional), as well as overactive (or dysregulated)
NOS activity are attractive therapeutic targets in cardiovascular disease. This review aims to describe
recent advances in elucidating the physiological role of NOS isoforms within the cardiovascular
system, as well as mechanisms of dysfunctional and dysregulated NOS in cardiovascular disease.
We then discuss the modulation of NO and NOS activity as a target in the development of novel
cardiovascular therapeutics.

Keywords: nitric oxide synthase; endothelial NOS; neuronal NOS; inducible NOS; NOS inhibitor;
cardiovascular disease

1. Introduction

Nitric oxide (NO) plays an important signalling role in multiple organ systems, notably
within the cardiovascular system. Whilst originally described as a vasoactive molecule
that causes the relaxation of smooth muscles and thereby vasodilatation, NO has also been
shown to exert a myriad of other effects, including contributing to endothelial function,
myocardial function [1], and neuronal signalling [2].

The biosynthesis of NO in humans is via two pathways: the L-arginine-NO pathway,
and the nitrate-nitrite-NO pathway. The L-arginine-NO pathway relies on nitric oxide
synthases (NOSs) catalysing the conversion of L-arginine to L-citrulline, yielding NO in the
process. Three isoforms of NOS have been described in humans, namely neuronal (nNOS,
NOS1), inducible (iNOS, NOS2), and endothelial (eNOS, NOS3). The isoforms of NOS have
distinct physiological roles within the human body. Broadly, within the cardiovascular
system, eNOS and nNOS regulate arterial blood flow (with each isoform having varying
effects dependent on the arterial size) and exert direct myocardial effects. nNOS also has a
role in the central nervous system, regulating cerebral blood flow, synaptic plasticity and
functional connectivity [3]. iNOS is primarily considered to be physiologically important
in the host response to infection and inflammation [4].
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An increasing body of evidence has described the physiological role of NOS isoforms
and thus the ramifications of impaired or dysfunctional NOS activity, as well as the potential
therapeutic benefits of NO-based therapies. Recent evidence has also highlighted the
contribution of overactive and dysregulated NOS to a range of cardiovascular diseases,
thus making this pathway a promising target for therapeutic interventions. This review
will summarise the physiological role of NOS in the cardiovascular system, as well as the
pathophysiological effects of dysfunctional and dysregulated NOS and how targeting these
pathways may hold therapeutic potential (Figure 1).
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2. Nitric Oxide Signalling

NO exerts widespread signalling activity, with well-described roles in vascular func-
tion, host defence against pathogens, the mediation of inflammation, redox homeostasis,
and the regulation of metabolism. These varied roles make NO an important physio-
logical molecule in systems throughout the human body, specifically the cardiovascular,
cerebrovascular, respiratory, reproductive system, and many more.

NO primarily acts in a paracrine manner by diffusing into surrounding cells and
binding to the haem moiety of soluble guanylate cyclase (sGC) [5]. This leads to an
increase in cellular concentration of second messenger cyclic guanylate monophosphate
(cGMP), which in turn activates protein kinase G (PKG). PKG subsequently phosphorylates
L-type calcium channels, leading to a reduction in intracellular calcium concentration, the
relaxation of smooth muscle cells, and vasodilatation. PKG also exerts its actions via the
activation of a variety of transcription factors [6].

In addition, NO can exert cGMP-independent effects via the post-translational modifi-
cation of proteins. S-nitrosylation, the process by which NO covalently binds to cysteine
residues of proteins, is the best described mechanism of NO protein modification, and has
been linked to various systems and implicated in pathophysiology of many diseases [7–9].
Given the large number of proteins that can undergo S-nitrosylation, this provides a mech-
anism by which NO can exert its many physiological effects. Other, less well described
forms of NO-mediated post-translational modification include metal nitrosylation and
nitration [7].

3. Structure and Function of Nitric Oxide Synthases

As described above, all NOS isoforms convert L-arginine to L-citrulline and NO.
This process is haem-dependent and occurs in the presence of co-factors tetrahydro-



Int. J. Mol. Sci. 2023, 24, 15200 3 of 21

biopterin (BH4), nicotinamide adenine dinucleotide phosphate (NADPH), and O2, in-
volving dimerism of the NOS enzyme [10]. All three NOS isoforms depend on calmodulin
binding to the enzyme in the transfer of electrons. For eNOS and nNOS, this process occurs
in the context of high intracellular calcium concentrations (full activity at 500 nmol/L [11]),
whereas iNOS binds to calmodulin very tightly and is therefore fully ‘on’ at resting cal-
cium concentrations. iNOS is therefore considered calcium-independent, enabling it to
produce large amounts of cytotoxic NO, which is important in its physiological function
in the immune system [12]. NO synthesis by NOS is oxygen-dependent, with rates of
synthesis proportional to the oxygen concentration. For nNOS, this occurs over a broad
range, with a KmO2 value (the O2 concentration at which the enzyme is at 50% Vmax) of
~400 µM, saturation at ~800 µM, and a Vmax value for NO synthesis of ~2.6 nmol/min,
with a similar KmO2 for NADPH oxidation (~350 µM), with a corresponding Vmax value
of ~6.0 nmol/min [13]. For purified iNOS, the KmO2 is about three-fold lower, ~120 µM,
but with a three-fold greater, Vmax > 15 nmol/min, for NADPH consumption [14]. By
contrast, eNOS has the weakest activity, with one-sixth and one-tenth the activity of nNOS
and iNOS, respectively (due, at least in part, to a shorter hinge element with a unique
composition that connects to the FMN module in the reductase domain) but with a much
lower KmO2 of ~4 µM [15]. eNOS and nNOS are constitutively expressed and regulated by
transcriptional, post-transcriptional, and post-translational modifications [16], whilst iNOS
is induced primarily by gene transcription [17].

4. Physiological Role of Nitric Oxide Synthases in the Cardiovascular System

Despite their names, the isoforms of NOS are all expressed in various cell types
throughout the body: nNOS is mostly found in neurons, but also in smooth, skeletal,
and cardiac muscle; eNOS is typically expressed in endothelial cells, but is also found in
smooth muscle, myocardium, and platelets; and iNOS is found in macrophages, smooth
muscle, and the liver. Each NOS isoform plays a distinct physiological role within the
cardiovascular system, which will be reviewed in detail below.

4.1. Endothelial NOS

As its name suggests, eNOS is constitutively expressed in the vascular endothelium,
and thus has a crucial role in the regulation of vascular tone and endothelial function.
eNOS-derived NO production is regulated by intracellular calcium concentrations, as
described above, as well as by shear stress and agonist stimulation by acetylcholine and
substance P [11,18–20].

Within the vasculature, the primary function of eNOS-derived NO is to vasodilate
blood vessels via cGMP-dependent mechanisms as described above. eNOS-derived NO
is therefore a significant determinant of tone in multiple vascular beds, contributing to
control of cardiovascular haemodynamics.

eNOS-derived NO also plays an important physiological role in vascular protection
against thrombosis and atherosclerosis [21]. NO inhibits platelet aggregation by a cGMP-
mediated decrease in intracellular calcium flux and resulting in the negative regulation
of glycoprotein IIb-IIIa (GP IIb-IIIa), protecting against thrombosis [22]. NO also inhibits
leukocyte adhesion to the vascular wall by the inhibition of nuclear factor κB (NFκB),
reducing atherosclerosis [23].

NO within the vasculature plays an important but complex role in redox homeostasis.
At low levels, eNOS-derived NO acts as an anti-oxidant, reducing reactive oxygen species
(ROS) production [22,24,25]. However, at higher concentrations, NO combining with
superoxide to form peroxynitrite increases oxidative stress within cells, which has important
pathological implications, as discussed below.

In addition to eNOS-derived NO from endothelial cells, eNOS (and to a lesser ex-
tent iNOS) contributes to platelet-derived NO [26]. Platelet-derived NO inhibits platelet
activation, via cGMP-mediated pathways (decreasing intracellular calcium, inhibiting
thromboxane A2 receptor function, and downregulating GP IIb-IIIa receptors [26,27]), but
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also via cGMP-independent mechanisms (the S-nitrosylation of N-ethylmaleimide-sensitive
factor reducing platelet granule exocytosis [28]). Furthermore, through the inhibition of
platelet adhesion to endothelial cells and leukocytes as well as promoting the disaggrega-
tion of platelets, platelet-derived NO plays an important role in modulating intravascular
thrombus formation [26].

eNOS has an important role in the development of and protection against endothelial
dysfunction, a state of elevated oxidative stress and inflammation within the endothelium
that can lead to the abnormal vasodilatation and vasoconstriction of the vasculature. En-
dothelial dysfunction has been implicated in a multitude of cardiovascular diseases and
diseases of other organ systems [21,29–31]. The role of eNOS and NO in endothelial dys-
function is complex; both a decrease and increase in eNOS function have been implicated
in endothelial dysfunction. A large number of pre-clinical studies have illustrated the car-
dioprotective effects of eNOS and thereby its physiological role within the cardiovascular
system. eNOS deficiency has been shown to cause a predisposition to atherosclerosis and
endothelial dysfunction [32,33], coronary artery disease [32], aortic aneurysm and dissec-
tion [32], and hypertension [30]. In addition to its expression in the endothelium, eNOS has
more recently been localised to adipocytes and the endothelial cells of perivascular adipose
tissue, where it is thought to play a vasculoprotective role [34].

Finally, eNOS is also expressed constitutively in cardiomyocytes, where it primarily
localises to the caveolae and plays an important role in mechanoregulation [35]. The effects
of NO signalling on cardiac function are complex, depending on the balance in eNOS and
nNOS activity within cardiomyocytes and endothelial cells, and also on the influence of
β-adrenergic and cholinergic agonism [36]. Within the myocardium, eNOS and nNOS are
expressed in different subcellular locations and are understood to have distinct physiologi-
cal roles [1,37,38]. eNOS activity within the cardiomyocyte is regulated by β-adrenergic
and cholinergic drive, and is thought to contribute to net negative chronotropic and in-
otropic, and positive lusitropic effects [24,35,38]. It is also implicated in the Anrep effect,
which describes the positive inotropic effect of myocardial stretch caused by an increased
afterload [35]. Beyond its acute effects on cardiac contractility and function, eNOS is also
implicated in longer-term cardiac remodelling, acting under physiological circumstances to
inhibit pro-hypertrophic stimuli [35].

4.2. Neuronal NOS

As implied by its name, nNOS is primarily located in the neurons of the central nervous
system (CNS), but is also found in peripheral nitrergic nerves, endothelium, cardiac and
skeletal muscle and other cell types. nNOS exerts important haemodynamic effects within
the cardiovascular system. The isoform has been localised in the endothelium and/or
smooth muscle of multiple vascular beds, including the coronary arteries [39], carotid
arteries [40], aorta [40,41], kidneys (macula densa, collecting tubules, and neurons) [42]
and microvasculature [19], and has been shown to regulate basal blood flow and vascular
tone through these beds [18,19,43]. This regulation of vascular tone occurs through direct
vasodilatory effects and via parasympathetic nitrergic nerves. Both nNOS and eNOS
contribute to the regulation of arterial tone, with nNOS-derived NO regulating basal
arterial tone and thereby systemic vascular resistance and blood pressure [19,44], whilst
eNOS contributes to responses to changes in flow stimulated by shear stress or agonist
stimulation, as described above [19].

nNOS localised to the cardiomyocyte has been shown to affect both inotropy and
dromotropy via effects on intracellular calcium handling [45]. Within the heart, nNOS is
found in the cardiomyocytes (sarcoplasmic reticulum, mitochondria, and plasma mem-
brane), intrinsic neurons, and coronary arteries [46,47], contrary to the localisation of eNOS
primarily within the caveolae of cardiomyocytes. nNOS regulates cardiac inotropy by
increasing the sarcoplasmic reticulum Ca2+ ATPase (SERCA) reuptake of calcium and by
modulating L-type calcium channel activity, overall reducing contractility and promoting
lusitropy [38,47,48]. Beyond calcium handling, nNOS has a physiological role in the heart
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via its effects on ROS within the cardiomyocyte as well as on mitochondrial proteins (via
the inhibition of the mitochondrial respiratory chain) [47].

In addition to its cardiovascular effects, nNOS also exerts important effects within the
cerebrovascular system. nNOS-derived NO has been implicated in neurovascular coupling
(NVC) [49] and dynamic cerebral autoregulation (dCA), two mechanisms contributing
to regulation of cerebral blood flow. NVC describes the relationship between neuronal
activity and local CNS blood flow, and is a mechanism by which neural activation leads to
an increase in cerebral blood flow (otherwise described as functional hyperaemia). dCA
refers to the ability to maintain stable cerebral blood flow despite variations in cerebral
perfusion pressures. Cerebral blood flow regulation is complex and consists of a multitude
of mechanisms, which act to regulate resistance via large conduit arteries (such as internal
carotid arteries, vertebral arteries) but also at the neurovascular unit [50].

One such mechanism involves glutamate release at the synapse-activating N-methyl-D-
aspartate (NMDA) receptors, leading to an influx of calcium and thereby nNOS activation.
nNOS-derived NO then acts as a vasodilator via the sGC-cGMP-PKG pathway [51], increas-
ing cerebral blood flow. It should be noted that additional nNOS-independent mechanisms
of NVC have been described [51]. nNOS-derived NO has been shown to play a role in cere-
bral blood flow regulation in a variety of physiological and pathological settings, including
functional neural activation [3], hypercapnia [52], and hypoxia [53].

Finally, at a neuronal level, nNOS contributes to synaptic plasticity and is thereby
implicated in the development of memory and learning, but also in the regulation of
neurogenesis [54]. nNOS also has an important role in the cardiovascular response to
mental stress; healthy patients exposed to mental stress show nNOS-mediated coronary
vasodilatation and increased blood flow [55], whilst patients with arterial hypertension
show a blunted nNOS response to mental stress [56].

4.3. Inducible NOS

Initially purified from animal macrophages, iNOS has since been found in diverse cell
types, including hepatocytes, smooth muscle cells, chondrocytes, CNS cells, and cardiac
myocytes [57,58]. As opposed to the constitutively expressed eNOS and nNOS, iNOS has
its expression upregulated by stimuli, usually proinflammatory cytokines and/or bacterial
lipopolysaccharide [4]. Additionally, and in further contrast to the other two isoforms, iNOS
exhibits activity at lower intracellular concentrations of the calcium/calmodulin (CaM)
complex (due to tighter binding of CaM to the hinge region of its dimer) [57,59], thus locking
iNOS in an “always on” position whereby calcium regulation is no longer relevant. This
allows for the high-volume localised production of NO, which is physiologically important
in an infection-initiated inflammatory response against multiple microbial pathogens
(including viral, bacterial, protozoal and fungal infections) [60,61].

However, iNOS upregulation has been touted as both beneficial and detrimental,
with the overproduction of NO via iNOS implicated in disease states such as sepsis [4,12],
neurodegenerative disease and stroke [62,63], diabetes and obesity-induced insulin resis-
tance [64], pain syndromes [4], and cancer [4]. Within the cardiovascular system, iNOS
induced by inflammatory cytokines provides a mechanism by which inflammation con-
tributes to pathophysiological states, such as atherosclerosis (discussed in more detail
below) [65,66].

The inhibition of dysregulated iNOS has been attempted, but studies of in vivo treat-
ment have been met with little success, including in septic shock [12,67] and pain [4].
However, early results in neurodegenerative disease, cancer, obesity-induced insulin resis-
tance/diabetes, and lung disease show promise [4,68].

5. Dysfunctional NOS in Cardiovascular Disease

Dysfunctional NOS has been implicated in a variety of cardiovascular diseases. eNOS
dysfunction in particular, has been demonstrated in various pathophysiological states,
including endothelial dysfunction, atherosclerosis [66], arterial hypertension [30], cardiac
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hypertrophy [38], and heart failure [38]. The mechanism by which dysfunctional NOS
contributes to pathophysiology is generally twofold: a reduction in NOS-derived NO, and
NOS “uncoupling” leading to an increase in ROS and oxidative stress. Uncoupling is a
state in which NOS generates ROS, including superoxide (O2

−) and hydrogen peroxide
(H2O2) [17]. It occurs under conditions of low L-arginine and BH4 concentrations, and
has previously been linked to the dissociation of the eNOS dimer to monomers [69,70],
although this has more recently been disputed [71]. All three isoforms of NOS are prone to
uncoupling, although it is most described in eNOS.

5.1. Hypertension

An abundance of evidence has linked hypertension to disruptions in NOS and NO sig-
nalling, with eNOS dysfunction and uncoupling particularly implicated [30,72,73]. Reduced
vascular eNOS activity and subsequently reduced NO bioavailability leads to impaired va-
sodilatation and increased peripheral vascular resistance. In addition to changes seen in the
regulation of vascular tone, both eNOS and nNOS localised to the myocardium are affected
in hypertension; whilst eNOS activity is reduced in hypertensive hearts, nNOS-derived
NO is increased and thought to play a protective role [74].

5.2. Endothelial Dysfunction

Abnormal eNOS function contributes to endothelial dysfunction, an early hallmark
of atherosclerosis, which has been implicated in a wide variety of cardiovascular diseases,
including hypertension [30], heart failure [31], and coronary artery disease [29], amongst
many others. Endothelial dysfunction is characterised by reduced eNOS-derived NO
within blood vessels leading to an impairment in endothelium-dependent relaxation [21].
The mechanisms impairing eNOS activity in disease are multiple, including inhibition
by oxidised low-density lipoprotein [33,75] and lysophosphatidylcholine [76], as well as
endogenous NOS inhibitors, such as asymmetric dimethylarginine (ADMA) [21,77]. In
addition to the inhibition of eNOS-derived NO, the uncoupling of eNOS from its cofactor or
substrate leads to production of ROS, further contributing to endothelial dysfunction [78].
nNOS has been shown to be protective against endothelial dysfunction and atherosclero-
sis, with studies demonstrating the development of accelerated atherosclerosis in nNOS
knockout mice [79,80].

Elevated concentrations of arginase, which competes with eNOS for the substrate
L-arginine, have been associated with endothelial dysfunction in a number of pathological
states including hypertension, atherosclerosis and ischaemia/reperfusion injury [81]. Addi-
tionally, the S-glutathionylation of eNOS, promoted by a pro-oxidative environment within
the endothelial cell, contributes to eNOS uncoupling [82]. However, eNOS is linked to
endothelial dysfunction beyond the uncoupling phenomenon; proline-rich tyrosine kinase
2 (PYK2), activated by not only oxidative stress but also by angiotensin II and insulin,
phosphorylates eNOS, inhibiting its effect and reducing NO bioavailability [83].

5.3. Myocardial Infarction and Ischaemia/Reperfusion Injury

Evidence has supported a cardioprotective role of both eNOS and nNOS after myocar-
dial infarction (MI) and in ischaemia/reperfusion injury (IRI). Early studies showed that
eNOS-knockout mice subjected to coronary artery ligation exhibited higher rates of car-
diac remodelling, left ventricular dysfunction and death compared to wild-type mice [84].
Similarly, nNOS-knockout mice subjected to MI showed more cardiac remodelling and
higher mortality rates than wild-type mice [85,86]. Furthermore, evidence has pointed
towards a role for NOS-derived NO in ischaemic preconditioning (IPC); whilst eNOS may
contribute to the early phase of IPC [87], iNOS upregulation is thought to contribute to late
IPC [88,89].

A significant evidence base has investigated the use of NO donors in the IRI of
the myocardium, implicating reduced NO bioavailability in its pathophysiology [90,91].
eNOS has been observed to be protective after an IRI, with eNOS-deficient mice showing
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exacerbated IRI compared to wild-type mice [92]. Furthermore, mice overexpressing eNOS
have shown attenuated IRI, with beneficial effects of eNOS overexpression being reversed
by the non-selective NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME) [93].

5.4. Heart Failure

NOS dysfunction has been implicated in myocardial remodelling and heart fail-
ure [17,94], with early animal and human studies demonstrating that myocardial eNOS
expression is decreased in hypertrophic cardiomyopathy [95], ischaemic cardiomyopa-
thy [96], dilated cardiomyopathy [96,97], and diabetic cardiomyopathy [98]. Conversely,
iNOS activity is increased in the failing heart and associated with decreased responsiveness
to β-adrenergic stimulation [94,96]. Similarly, Nanos-derived NO is increased in patients
with dilated cardiomyopathy [97], although the transgenic overexpression of nNOS in
mice has been shown to be protective in IRIs [99]. It remains unclear whether this increase
in nNOS activity is adaptive or maladaptive, although the translocation of nNOS to the
plasma membrane seen under ischaemic conditions and in heart failure [97] has been
postulated to limit myocardial remodelling caused by chronic β-adrenergic stimulation,
implying an adaptive role [17]. Animal models have underlined the deleterious effects
of eNOS dysfunction whilst highlighting the therapeutic potential of eNOS upregulation
in HF. The upregulation of eNOS expression and/or activity in mice has been shown to
be protective against post-MI left ventricular dysfunction and remodelling [24,100–102],
oxidative stress [102] and survival [101], as well as infarct size following IRI [99]. In diabetic
cardiomyopathy, studies have shown not only downregulated eNOS but also evidence of
uncoupled eNOS activity [98,103]. Upregulated iNOS activity and subsequent increased
NO and ROS production has also been associated with diabetic cardiomyopathy [98,103].

More recently, dysfunctional or uncoupled eNOS has been implicated in the patho-
physiology of heart failure with preserved ejection (HFpEF). The currently accepted patho-
physiological model of HFpEF involves co-morbidities driving systemic and arterial inflam-
mation. At the level of the heart, this inflammation drives eNOS uncoupling in the coronary
vasculature, resulting in impaired paracrine NO and cGMP signalling [104], with effects on
the giant cytoskeletal protein titin, resulting in increased myocardial stiffness and cardiac
diastolic dysfunction [105,106]. However, as will be discussed below, the differing effects
of various NOS isoforms must be considered, with evidence of a pathological increase in
myocardial NOS activity also described in HFpEF.

5.5. Therapeutic Potential

Attempts to target the NO signalling pathways in cardiovascular therapeutics are
abundant. Efforts have been made to increase the bioavailability of NO using NO donors,
as well as targeting downstream molecules in the NO signalling cascade (downstream
targets have been reviewed elsewhere [17]). Additionally, the modulation of dysfunc-
tional NOS has been a target of therapies of cardiovascular disease. Indeed, although
not their primary mechanism of action, established cardiovascular drugs, such as those
targeting the renin–angiotensin system [107], statins [108], calcium channel blockers [109],
and β-adrenergic antagonists [110], have been shown to exert some of their cardio- and
vasculoprotective effects via eNOS-dependent mechanisms. Attempts at targeting NO
signalling are discussed below, with a focus on targeting dysfunctional NOS.

5.6. L-Arginine

As discussed above, the endogenous production of NO by NOS enzymes is dependent
on the availability of L-arginine. Consequently, supplementation with L-arginine has been
proposed as a means to increase eNOS-derived NO and reduce eNOS uncoupling, which
could lead to increased NO bioavailability and reduced ROS production. However, clinical
trials investigating L-arginine supplementation in a wide variety of cardiovascular diseases
have failed to consistently demonstrate benefits on markers of endothelial function and on
clinical outcomes, and have even been associated with possible harm [111–113].
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One explanation for the lack of efficacy of L-arginine may be its relationship with the
endogenous NOS inhibitor ADMA, which competes with L-arginine to bind with NOS,
thereby reducing the availability of NOS-derived NO. Studies have shown increased levels
of ADMA in patients with heart failure, but also conditions causing predisposition to
heart failure, including hypertension, coronary artery disease, valvular disease, endothelial
dysfunction, and others [114,115]. Furthermore, L-arginine supplementation may augment
iNOS activity and associated deleterious effects via the overproduction of NO and ROS. Fi-
nally, human studies have shown impaired L-arginine transport in the failing myocardium
and in hypertension, suggesting that the supplementation of L-arginine alone in the context
of impaired transport may not be sufficient to improve the bioavailability of NOS-derived
NO [116].

5.7. BH4

Under physiological conditions, BH4 acts as a cofactor, allowing the NOS enzyme
to remain dimerized and thereby facilitating NOS-derived NO production and prevent-
ing uncoupling [24]. BH4 supplementation has shown promise in preclinical models of
atherosclerosis, inhibiting atherogenesis in apolipoprotein E knockout (ApoE-KO) mice fed
a high-cholesterol diet [117], and reversing severe atherosclerosis in ApoE-KO mice with
partial carotid ligation fed a high-fat diet [118]. Similarly, the oral supplementation of BH4
in mice with transverse aortic constriction-induced heart failure led to recoupled eNOS
activity and reversed hypertrophy and fibrosis [119]. Interestingly, a 2013 study showed
that the co-administration of L-arginine and BH4 was able to protect rats and pigs from
IRI [120]. In ex vivo human coronary arterioles from patients undergoing coronary artery
bypass grafting (CABG), treatment with sepiapterin (a substrate for BH4 synthesis) was
able to improve endothelium-dependent vasodilatation [121].

Despite promising preclinical results, clinical evidence of benefit from BH4 supple-
mentation is limited. One randomised controlled trial (RCT) in patients undergoing CABG
showed that oral BH4 had no effect on vascular redox state or endothelial function, poten-
tially due to the oxidation of BH4 to BH2, which lacks eNOS cofactor activity [122]. This
limitation of oral supplementation of BH4 presents a major obstacle to its therapeutic use.
Similarly, a RCT in patients with CADASIL (cerebral autosomal dominant arteriopathy
with subcortical infarcts and leukoencephalopathy) showed no improvement in markers
of endothelium-dependent vasodilatation with sapropterin treatment (a synthetic BH4
analogue) [123].

5.8. NO Donors

NO donors, compounds that release NO and NO-related molecules, have been exten-
sively studied for their potential therapeutic benefits in cardiovascular disease. Glyceryl
trinitrate, isosorbide nitrates, and nicorandil are three common examples of NO donors
used in cardiovascular disease, primarily for angina and acute MI. Similarly, a wealth
of evidence has investigated the therapeutic use of dietary nitrate/nitrite in conditions
including hypertension, heart failure (with reduced and preserved ejection fraction; HFrEF
and HFpEF), as well as ischaemic heart disease [124,125]. These approaches aim to increase
the bioavailability of NO in settings where NOS-derived NO may be deficient [126], as
described above. Numerous ongoing studies are investigating the role of dietary nitrate
and NO donors in various cardiovascular diseases, including in HFrEF, HFpEF, systemic
hypertension, pulmonary hypertension, angina, and stroke [127].

Although the delivery of NO donors is primarily via the oral route in clinical practice,
they can also be delivered sublingually, intranasally, transdermally, or intravenously. NO
itself can be delivered to the lungs through inhalation, such as for the treatment of pul-
monary artery hypertension. Sublingual and immediate-release orally absorbed NO donors
tend to have a shorter duration of action compared to transdermal and slow-release oral
NO donors. Importantly, barriers to therapeutic success for organic nitrates have included
side effects, such as headaches and tolerance, requiring drug-free intervals, as well as en-
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dothelial dysfunction, which may develop with chronic use [128]. Slow-release oral nitrates
are less likely to cause tolerance than fast release preparations. Furthermore, the NEAT-
HFpEF trial found a dose-dependent decrease in daily activity levels in patients taking
isosorbide mononitrate versus placebo, highlighting the limitations of organic nitrates [129].
Nitrite, on the other hand, carries the possible adverse effects of methaemoglobinaemia
and conversion to carcinogenic nitrosamines [128], limiting its clinical use.

5.9. NOS Transcriptional Regulators/Enhancers

In an effort to enhance NOS function in disease states characterised by dysfunctional
NOS, transcriptional regulators of NOS activity have been developed. Preclinical studies
have demonstrated the potential of transcriptional enhancers for eNOS in improving left
ventricular remodelling and contractile dysfunction in rats with experimental MI [130], as
well as in reducing hypertrophy/fibrosis and improving diastolic function in a rat model
of diastolic heart failure [131]. In addition, they have shown efficacy in reducing cardiac
remodelling in mice subjected to aortic banding [132], and reducing platelet activation in
rats with post-MI heart failure [133], amongst others [134,135]. Despite these promising
preclinical results, the translation of these approaches into clinical research and improved
outcomes has yet to be achieved.

5.10. Gene Therapy

NOS gene therapy has provided a platform for the improvement of NO bioavailability
in cardiovascular diseases. For instance, the delivery of the eNOS gene via an adenovirus
vector before MI in rats has been shown to be cardioprotective, reducing infarct size
and improving contractility and left ventricular diastolic function [136]. Similarly, the
adenovirus vector delivery of eNOS after MI protected against myocardial fibrosis and
remodelling as well as apoptosis [102].

Furthermore, adenoviral vectors for the expression of dimethylarginine dimethy-
laminohydrolase (DDAH), an enzyme that degrades ADMA and thereby increases NO,
have shown promise in improving vascular function in mouse carotid arteries [137]. This
approach may offer a potential strategy to target endothelial dysfunction in a range of
disorders. However, further research is needed to evaluate the efficacy and safety of NOS
gene therapy in humans.

6. Dysregulated NOS in Cardiovascular Disease
6.1. Endothelial Dysfunction, Inflammation, and Oxidative Stress

Alongside evidence for dysfunctional eNOS function, preclinical studies have demon-
strated that dysregulated or elevated iNOS activity may also contribute to endothelial
dysfunction. Investigations showed that an iNOS-specific inhibitor reversed the impaired
pressor responsiveness and endothelial function observed in rats with streptozotocin-
induced diabetes, indicating that increased iNOS expression may play a role in diabetes-
associated endothelial dysfunction [98]. Similarly, in mice with lipopolysaccharide-induced
endothelial dysfunction, iNOS protein expression and plasma NOx levels were increased,
whereas iNOS knockout mice exhibited no changes in NOx levels [138], supporting a link
between iNOS activity and endothelial dysfunction. Furthermore, early work showed
elevated macrophage iNOS expression in a rabbit model of post-MI inflammation [139].

Mechanisms linking inflammation and disease states characterised by inflammation
to dysregulated iNOS activity are numerous. Inflammatory cytokines, including IL-1β
and IFN-γ, induce iNOS activity [140], leading to the generation of ROS and reactive
nitrogen species (RNS) [141]. Furthermore, iNOS-derived NO leads to the upregulation of
cyclo-oxygenases (COX), a group of enzymes involved in the generation of prostanoids and
thereby contributing to a pro-inflammatory state [65]. Finally, beyond iNOS, the activation
of the pro-inflammatory cascade will cause the uncoupling of eNOS, further contributing
to reduced NO bioavailability and driving oxidative stress within the cell. These effects
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lead to an unfavourable oxidant versus antioxidant balance, driving apoptosis, contractile
dysfunction, and mitochondrial dysfunction amongst other effects [142].

6.2. NO and Mitochondria

In addition to endothelial function, NO and NOS have important effects on mito-
chondrial health. NO, either from NO donors or produced within the mitochondria itself,
reversibly inhibits the action of cytochrome C oxidase, the last enzyme in the electron
transport chain, thereby modulating mitochondrial oxygen consumption [143,144]. At
higher concentrations, however, NO has harmful effects on the mitochondria. NO causes
the inhibition of the mitochondrial respiratory chain, the generation of peroxynitrite, the ni-
tration of mitochondrial proteins, and the release of cytochrome C into the cytosol [143,145].
Peroxynitrite will oxidise a wide variety of substrates (including proteins, tyrosine residues,
and DNA, amongst others), inhibiting enzymes at multiple sites of the mitochondrial
respiratory chain, and leading to cytochrome C release into the cytosol with subsequent
signalling, leading to apoptosis [144,146].

Dysregulated NOS and subsequent excess NO production, therefore, will have detri-
mental effects on mitochondrial and cell function. iNOS, for example, has been associated
with metabolic remodelling and cytokine production, contributing to the pro-inflammatory
cascades within macrophages [145].

6.3. Heart Failure with Preserved Ejection Fraction (HFpEF)

As described above, inflammation and subsequent eNOS uncoupling within the coro-
nary vasculature has been shown to contribute to the pathophysiology of HFpEF [104,105].
This focus on eNOS function, however, ignores the anatomical compartmentalisation and
differing cardiac effects of the various NOS isoforms. Indeed, recent evidence has identified
that pathological increases in myocardial NOS activity may be implicated in HFpEF patho-
physiology. In a study reporting data from both animal models and human myocardial
tissue in patients with cardiac diastolic dysfunction, upregulated/dysregulated nNOS
function led to the S-nitrosylation of histone deacetylase, an enzyme known to be involved
in the regulation of cardiac hypertrophy [147]. Similarly, animal and human data suggest
that upregulated iNOS activity leads to the S-nitrosylation of proteins involved in the car-
diomyocyte stress response [94]. Furthermore, it remains unclear how nNOS function in the
coronary microvasculature affects myocardial function in a paracrine manner, suggesting
possible mechanisms via cellular crosstalk.

The complexity of the pathophysiological role of the different NOS isoforms in HFpEF,
as well as their anatomical compartmentalisation may explain why treating patients with
NO donors is of limited clinical benefit. Targeting therapy to the dysfunction of specific
isoforms with isoform specific NOS inhibitors may provide greater success.

Interestingly, sodium-glucose cotransporter 2 (SGLT2) inhibitors, recently shown to
reduce cardiovascular death in patients with HFpEF [148], have been shown to improve
NOS coupling [149]—further work will elucidate the extent to which clinical benefits of
SGLT2 inhibitors depend upon the modulation of NO signalling pathways.

6.4. Coronary Microvascular Disease (CMD)

CMD is increasingly recognised as an important cause of angina in patients that were
found to have unobstructed coronary arteries via coronary angiography. Recent work has
classified CMD into two key endotypes: functional and structural [150]. In the functional
endotype, there is elevated resting basal coronary blood flow. Given that nNOS (rather than
eNOS) is responsible for the regulation of basal arterial tone, it has been postulated that the
raised basal coronary flow seen in the functional endotype may be due to dysregulated
nNOS activity, with studies ongoing to investigate this possibility [151].
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6.5. Ischaemia-Reperfusion Injury in the Heart

NOS inhibition has been proposed as a potential therapy for IRI following acute
coronary syndromes. As the myocardium is reperfused following injury, a complex set of
mechanisms, including the generation of free radicals, pro-apoptotic and pro-inflammatory
signalling cascades, and endothelial dysfunction, contribute to myocardial damage/cell
death, arrhythmias, and myocardial stunning [152,153]. The role of NOS isoforms in IRI
is complex: nNOS is upregulated in the myocardium following ischaemia [154] and is
thought to mediate the protective effects of ischaemic post-conditioning against IRI. iNOS
has been implicated in IRI through worse contractile function and increased oxidative stress
via the production of peroxynitrite, but has also been suggested to have a protective role
via iNOS-derived NO increasing TNF-α- and COX-2-dependent prostanoids, protecting
the myocardium [155]. Recently, iNOS expression was seen to be increased in myocardial
tissue from autopsies of patients with acute MI [156], although it is unclear if this is an
adaptive or maladaptive change.

Early work investigated non-selective NOS inhibitors, such as NG-nitro-L-arginine
methyl ester (L-NAME) and NG-monomethyl-L-arginine (L-NMMA), in rabbit and rat mod-
els of IRI, finding improved recovery of mechanical heart function during the reperfusion
period with NOS inhibition [157,158] and reduced infarct size [159]. A subsequent work
using a selective inhibitor of iNOS dimerization found improved contractile performance
and reduced cell death in isolated perfused rat hearts after IRI [160]. A similar study
demonstrated that selective iNOS inhibition and iNOS-knockout mice showed reduced
apoptosis and infarct size after IRI in chronic β-adrenergic stimulation-induced cardiac
damage in mice [161].

To date there are few clinical studies investigating the use of NOS inhibitors in patients
with IRI. A group has investigated NOS inhibition in cardiogenic shock complicating acute
MI, with initial studies suggesting that L-NMMA and L-NAME led to haemodynamic
improvements [162,163]. However, a subsequent placebo-controlled study in 79 patients
showed that L-NMMA resulted only in a modest, short-lived increase in mean arterial
pressure at 15 min which was not sustained at two hours [164], and a larger RCT was
terminated early for futility, finding no difference in mortality in patients with refractory
cardiogenic shock after MI [165].

6.6. Post-Stroke Reperfusion Injury

In ischaemic stroke, a large proportion of the neurological damage comes not just from
the initial ischaemic insult but also from excitotoxicity, i.e., dysregulated glutaminergic
and NO signalling that occurs for several hours/days after the initial ischaemia [166,167].
Current established therapies in ischaemic stroke (e.g., tissue plasminogen activator and
mechanical thrombectomy) are aimed at achieving the successful reperfusion of the is-
chaemic territory but play no direct role in diminishing the inevitable excitotoxicity that
follows. Therefore, there remains a significant clinical need for effective treatments to
reduce the levels of excitotoxicity and minimise infarct volumes and neurological injury
following stroke [168].

Animal data suggest that nNOS contributes significantly to excitotoxicity via cellular
crosstalk [169,170]. nNOS is bound to the glutaminergic NMDA receptor by postsynaptic
density protein 95 (PSD95), creating a death-inducing signalling complex (Figure 2). NMDA
receptor activation in the ischaemic penumbra therefore leads to neurotoxic levels of NO
production [168]. Inhibiting nNOS protects against glutaminergic excitotoxicity in animal
models of non-ischaemic neurological disease, while nNOS knockout mice are resistant to
cerebral ischaemia [171–174].
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leads to an increase in release of the excitatory neurotransmitter glutamate. Glutamate activates the
N-methyl-D-aspartate receptor (NMDA-R), with subsequent influx of calcium (Ca2+) (and sodium,
Na+). Excess Ca2+ within the neuron contributes to the generation of superoxide (•O2

−), which
reacts with nitric oxide (NO) to generate peroxynitrite (ONOO−). Furthermore, neuronal nitric oxide
synthase (nNOS) is bound to the NMDA-R by the postsynaptic density protein 95 (PSD95), forming a
death-inducing signalling complex (DISC). This cascade leads to neuronal cell death via a number of
mechanisms, including increased oxidative stress, mitochondrial dysfunction, and S-nitrosylation.
Selective nNOS inhibition may provide a mechanism to interrupt this detrimental signalling cascade.
Figure was partly generated using Servier Medical Art, provided by Servier, licensed under a Creative
Commons Attribution 3.0 unported license.

Attempts have been made to indirectly interrupt nNOS signalling following acute
stroke using the drug NA-1, which inhibits PSD95. In a phase II study, NA-1 was shown to
reduce the number of ischaemic infarcts versus placebo in patients undergoing endovascu-
lar treatment for intracranial aneurysm [175]. However, in a phase III RCT in patients with
ischaemic stroke, NA-1 did not improve functional outcome compared to placebo [176].

Beyond acute (within minutes) detrimental effects of increased nNOS activity, iNOS ac-
tivity has also been seen to be upregulated in the later stages following stroke (within hours),
where its effects are also suggested to be neurotoxic [177]. Conversely, eNOS-derived NO,
which is acutely upregulated following stroke, is thought to be neuroprotective [177],
underlining the importance of a targeted therapeutic approach.

6.7. Therapeutic Potential of NOS Inhibitors

To date, no assessment has been made of the effect of directly inhibiting nNOS in
ischaemic stroke. This is largely because direct nNOS inhibition has previously been
considered an unfavourable approach, based on behavioural effects seen in murine nNOS
knock-out models [178]. However, direct nNOS inhibition with the synthetic L-arginine
analogue S-methyl-L-thiocitrulline (SMTC) has been employed in a number of human
mechanistic studies without adverse effect [3,18,44,49,55,56], suggesting that the acute
systemic and local intra-arterial dosing of SMTC is safe. SMTC is 17 times more selective
for nNOS in brain tissue than eNOS in vascular endothelium [179] and is also considered
to cross the blood–brain barrier, as demonstrated through use of 11C-labelled SMTC in rat
and primate models [180]. In a human study assessing the effect of nNOS inhibition on
cerebral blood flow responses, changes in functional connectivity between different brain
regions were identified, strongly suggesting that SMTC crosses the blood–brain barrier to
affect neuronal function rather than simply altering perfusion [3].
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Although it may seem counter-intuitive to treat a condition that is primarily one
of insufficient blood flow (i.e., ischaemic stroke) with a drug that acts to decrease brain
perfusion, it is important to consider that (a) nNOS inhibition is being considered as
a potential therapy for post-reperfusion excitotoxicity and would only be given once
adequate reperfusion had been achieved, and (b) nNOS-derived NO is one of a number
of molecules implicated in the regulation of cerebral blood flow and the effect of nNOS
inhibition on cerebral blood flow is modest. In addition, as the interventional management
of stroke becomes more widespread, the catheterisation of the cerebral arteries may afford
the opportunity to deliver more anatomically targeted treatment, thereby improving the
delivery of nNOS inhibitors to the ischaemic brain tissue most at risk of excitotoxicity, and
limiting any systemic side effects.

Previous work has investigated the use of agmatine, a compound with pleiotropic
effects, which include the modulation of NOS function, in ischaemic stroke. Agmatine, an
amine synthesised by the decarboxylation of arginine, acts to inhibit nNOS activity [181,182]
whilst enhancing eNOS activity [182,183]. Preclinical studies of agmatine use following
stroke have shown promise as a neuroprotective strategy [181,184,185].

6.8. Safety Concerns with NOS Inhibitors

The safety profile of NOS inhibitors is critical as their use in conditions with evidence
of dysregulated NOS is suggested. In addition to the aforementioned behavioural concerns
in murine models of nNOS inhibitors, there have been concerns about multi-system effects.
Dose-dependent acute kidney injury was seen in the NOSTRA trial, a study investigat-
ing the use of ronopterin in traumatic brain injury [186]; however, a subsequent RCT
described this effect as only a mild, transient reduction in renal perfusion and glomerular
function [187].

7. Conclusions, Limitations, and Future Directions

The vasoactive properties, and direct cardiac and cerebral effects of NO have long
made it an attractive therapeutic target within these systems. As our understanding of the
roles of NOS and its isoforms within the cardiovascular system has grown, the distinct roles
played by eNOS, nNOS, and iNOS in the pathophysiology of major diseases has become
clearer (Figure 1). Strategies to improve NOS activity and thereby NO signalling continue
to be developed for use in conditions with a pathological lack of NO activity. Furthermore,
disorders causing significant mortality and morbidity, including HFpEF and post-stroke
excitotoxicity, now have evidence supporting distinct roles of the NOS isoforms in their
pathophysiology, implying the possibility of selective NOS modulation. Future, studies
should continue to elucidate the potential of modulating NOS activity, with a particular
focus on deepening our understanding of anatomical and functional differences in NOS
isoforms and harnessing this in the therapeutic approach to cardiovascular disease.

The primary limitation of this review is that we did not perform a systematic review
of the topic. Nevertheless, by basing a non-systematic review of the literature on expertise
of the authors, we were able to identify key articles in this field and synthesise them.
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