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Abstract: Neurolysin oligopeptidase (E.C.3.4.24.16; Nln), a member of the zinc metallopeptidase
M3 family, was first identified in rat brain synaptic membranes hydrolyzing neurotensin at the
Pro-Tyr peptide bond. The previous development of C57BL6/N mice with suppression of Nln gene
expression (Nln-/-), demonstrated the biological relevance of this oligopeptidase for insulin signaling
and glucose uptake. Here, several metabolic parameters were investigated in Nln-/- and wild-type
C57BL6/N animals (WT; n = 5–8), male and female, fed either a standard (SD) or a hypercaloric diet
(HD), for seven weeks. Higher food intake and body mass gain was observed for Nln-/- animals
fed HD, compared to both male and female WT control animals fed HD. Leptin gene expression
was higher in Nln-/- male and female animals fed HD, compared to WT controls. Both WT and
Nln-/- females fed HD showed similar gene expression increase of dipeptidyl peptidase 4 (DPP4), a
peptidase related to glucagon-like peptide-1 (GLP-1) metabolism. The present data suggest that Nln
participates in the physiological mechanisms related to diet-induced obesity. Further studies will be
necessary to better understand the molecular mechanism responsible for the higher body mass gain
observed in Nln-/- animals fed HD.

Keywords: neurolysin; adipose tissue; neurotensin; intracellular peptides; obesity; diet-induced
obesity; leptin; glucagon-like peptide-1

1. Introduction

Neurolysin (EC 3.4.24.16; Nln) belongs to the metallo-oligopeptidase family of pro-
teases [1–5]. Nln was identified by immunohistochemistry in different intracellular com-
partments of rat brain neurons [6–8], and it can undergo alternative splicing to be addressed
to the mitochondria [9]. The conformation of the Nln active site allows access only to pep-
tides containing 5–17 amino acids, as its catalytic site is located at the base of a narrow
and deep channel, which shapes its specificity for bioactive peptides without a developed
secondary or tertiary structure [10–12]. Nln is capable of cleaving a series of neuropep-
tides [1,13–15] and intracellular peptides (InPeps) [16,17], and it has been suggested that it
plays a biological function in pain control [18,19], and in blood pressure regulation [20,21].
Neurotensin, the first neuropeptide characterized as a substrate for Nln [2,3,22,23], is a
small peptide with several functions: controlling food intake and energy balance, possibly
through the regulation of gut lipid absorption and fat homeostasis [24]. Moreover, Nln has
been shown to be encoded in two isoforms: a longer form containing a cleavable mitochon-
drial targeting sequence directed to mitochondria, and a shorter form that remains in the
cytosol [9].

The generation of a C57BL6/N animal model of Nln gene knockout (Nln-/-) showed
that its deletion is compatible with embryonic and adult life, and that Nln-/- animals cannot
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be visually distinguishable from wild-type (WT) animals [16,17]. Between Nln-/- and WT
animals there was no distinction in muscle mass and fat mass, although Nln-/- animals
showed a slight, but significant, decrease in body mass compared to WT animals [16].
Findings from glucose and insulin tolerance tests indicated that Nln-/- animals were
more sensitive to insulin compared to WT animals [16]. Furthermore, Western blotting
assays revealed increased levels of AKT phosphorylation in the gastrocnemius muscle and
epididymal adipose tissue but not in the liver of Nln-/- animals [16]. Moreover, Nln-/-

animals demonstrate a greater gluconeogenic capacity, with greater production of glucose
from pyruvate [16]. Genes such as fructose 6-bisphosphatase and glucokinase that directly
participate in the gluconeogenesis process in the liver showed greater expression in Nln-/-

animals compared to WT animals [16]. The differences observed in the metabolic phenotype
of Nln-/- animals emphasized the need for additional biological characterization, including
a possible role in obesity.

Nln and thimet oligopeptidase (EC3.4.24.15; THOP1) are both members of the zinc
metallopeptidase M3 family, containing a thermolysin-like catalytic domain [10,25]. Human
Nln and THOP1 share 63% sequence identity over 677 common residues, and the crystal
structures of both enzymes show that they adopt almost identical folds [10–12]. Both Nln
and THOP1 are commonly distributed in different mammalian tissues, although with
distinctive subcellular locations [6,8,26,27]. Both Nln and THOP1 have substrate size
restriction, optimally metabolizing peptides containing from 8–13 amino acids involved in
a range of physiological processes [5–7,25,28–30]. Both Nln and THOP1 have been shown to
degrade several neuropeptides [1,19,26,31,32], and to metabolize peptides released by the
proteasome [16,17,28,30]. Despite the biochemical similarities of Nln and THOP1 among
most substrates, neurotensin (pyr-Glu-Leu-Tyr-Glu-Asn-Lys-Pro-Arg-Arg-Pro-Tyr-Ile-Leu-
OH) is cleaved by Nln at the Pro10-Tyr11 bond, while THOP1 cleaves the Arg8-Arg9 bond [1].
Moreover, Nln and THOP1 can also be distinguished by their sensitivity to carboalkyls,
phosphinic and Pro-Ile inhibitors [23,33,34], and their drastic, distinct sensitivity to thiol
compounds [35–38].

Nln and THOP1 subcellular distribution in a rat brain was evaluated side-by-side
using electron microscopic immunogold labeling [6]. In all areas of the rat brain examined,
Nln and THOP1 immunoreactivity were observed in selective subpopulations of neuronal
and glial cells. Subcellular localization of THOP1 in neurons revealed that this enzyme
was predominantly concentrated in the nucleus, whereas Nln was almost exclusively
cytoplasmic. Within the cytoplasm, both Nln and THOP1 were identified throughout the
perikarya and dendrites, as well as within axons and axon terminals. However, whereas
Nln was observed on both the cytoplasmic and luminal sides of cytoplasmic membranes,
THOP1 was observed on the cytoplasmic face of the membranes. These results suggest
that both THOP1 and Nln could play a major role in the metabolism of intracellular
substrates, whereas Nln would primarily be involved in the processing and deactivation
of extracellular signaling peptides [6]. Indeed, Nln soluble subcellular distribution was
suggested to occur in glial cells, while cytoplasmic and membrane associated Nln occurs in
neuronal cells [27]. Nln secreted from glial cells can diffusely metabolize neuropeptides in
the extracellular milieu, while neuronal Nln can metabolize neuropeptides close to their
receptor as a membrane-bound peptidase [8].

Obesity can be caused by multiple mechanisms, unbalancing the energy metabolism
homeostasis [39,40]. Currently, there is an increased consumption of ultra-processed foods,
generally rich in hydrogenated fats, simple carbohydrates and low levels of complex
carbohydrates [41], as well as a decline in energy expenditure, which is associated with
a lack of regular physical activity [42]. An excess of energy ingested and not expended
accumulates as body fat, especially in white adipose (WAT) and hepatic tissues, representing
one of the main reasons people are overweight and obese [39,43]. The WAT is known for its
storing energy function in subcutaneous and visceral depots. Subcutaneous depot forms a
layer in the hypodermis, while the visceral depot is subdivided into: (a) omental, adipose
tissue that superficially surrounds the anterior region of the intestine; (b) mesenteric, deeper
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adipose tissue, which surrounds the posterior region of the intestine close to the spine;
(c) retroperitoneal, located near the kidneys, in the dorsal region of the abdominal cavity;
(d) gonadal, located around the gonads and gonadal ducts. In addition to these two main
depots (subcutaneous and visceral), there are small depots of visceral adipose tissue in
the heart (epicardial adipose tissue), stomach (epigastric adipose tissue) and blood vessels
(perivascular adipose tissue) [44].

High-fat diets are commonly used to induce obesity in animals, since they generate
adverse metabolic effects, which includes obesity [45]. THOP1 knockout C57BL6/N mice
(THOP1-/-) were fed for 24 weeks with either a standard diet (SD; caloric content of 3.8
kcal/g; 70% carbohydrate, 20% protein, 10% fat) or a high-fat diet (HD; caloric content
of 5.4 kcal/g; 25.9% carbohydrate, 14.9% protein, 59% fat) [28]. THOP1-/- mice gained
75% less body weight and showed neither insulin resistance nor non-alcoholic fatty liver
steatosis when compared to WT mice [28]. The expression of a phenotype emerges through
intricate macromolecular interactions [46–52]. Within cells, complex signaling pathways
orchestrate and regulate these interactions, and alterations in these have been used to
predict new targets for treatments of human diseases [46–48,50,53–55]. InPeps generated
by the orchestrated intracellular action of the proteasome and peptidases such as Nln and
THOP1 [56–61], may be physiologically functional modulating the G protein-coupled recep-
tors signal transduction [62–66], altering protein–protein interactions [67,68] and interfering
with gene expression, possibly through physical interaction with specific microRNAs [28].

Here, Nln-/- was challenged by a high-fat/high-sugar diet-induced obesity model [69],
to advance the understanding of the possible biological relevance of Nln in energy metabolism
and obesity. The combination of high-fat/high-sugar in a diet-induced obesity model
was shown to induce a pronounced obesity after feeding the animals for up to eight
weeks [69,70]. Body mass and several other metabolic parameters were evaluated in both
male and female animals, comparing Nln-/- to WT animals fed either SD or HD.

2. Results
2.1. Body Mass, Food and Water Consumption

WT or Nln-/- animals were weighed before starting the SD or HD (Week “zero”,
Figure 1A,B). Importantly, none of these mice showed statistically significant differences in
their initial body mass (Figure 1A,B). The individual body mass of each of these animals—
WT and Nln-/-, male and female, fed either SD or HD—were checked once a week during
the following seven weeks (Figure 1A,B).

After seven weeks fed HD, all animals had a greater body mass compared to those
fed SD, regardless of genotype or gender (Figure 1A,B). Nln-/- animals, both male and
female, showed a significantly higher body mass after only four weeks on HD, compared
to their respective control WT animals fed HD (Figure 1). The total body mass gain of
male WT animals fed SD was 2.67 g ± 0.49 g, while the mass gain of Nln-/- male animals
fed SD was 4.0 g ± 0.55 g. After seven weeks, male WT animals fed HD gained 8.87 g
± 3.6 g of body mass, while male Nln-/- animals, also fed HD, gained 14.0 g ± 1.29 g of
body mass. WT females fed SD gained 4.28 g ± 0.28 g of body mass in relation to their
initial mass, while WT females fed HD gained 5.8 g ± 0.37 g of body mass compared to
their initial mass. SD-fed Nln-/- females gained a body mass of 3.83 g ± 0.6 g, while Nln-/-

females fed HD gained 10.88 g ± 10.2 g of body mass. Therefore, after seven weeks, all
animals fed HD gained significantly more body mass than their respective controls fed SD
(Figure 1C,D). Nonetheless, after being fed a HD for seven weeks, the body mass gain of the
Nln-/- animals, regardless of gender, was significantly higher compared to their respective
WT controls fed HD (Figure 1C,D).
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Figure 1. Weight gain of animals over seven weeks. A and B: body mass week gain in male (A) or 
female (B) mice, WT or Nln-/-, fed SD or HD diet. C and D: the final body mass was subtracted from 
the initial body mass (body mass gain) of male (C) or female (D) mice, WT or Nln-/-, fed SD or HD. 
A–D: *, p < 0.05 between WT SD vs. WT HD or Nln-/- SD vs. Nln-/- HD; #, p < 0.05 between WT SD vs. 
Nln-/- SD or WT HD vs. Nln-/- HD. Statistical analyses were performed using two-way ANOVA with 
the post-hoc Holm–Sidak test. Data are presented as mean ± SEM. n = 5–8 animals per group. Each 
individual group (WT, SD; WT, HD; Nln-/-, SD; Nln-/-, HD) was indicated with a specific symbol 
shown on the figure legend. 

After seven weeks fed HD, all animals had a greater body mass compared to those 
fed SD, regardless of genotype or gender (Figure 1A,B). Nln-/- animals, both male and fe-
male, showed a significantly higher body mass after only four weeks on HD, compared to 
their respective control WT animals fed HD (Figure 1). The total body mass gain of male 
WT animals fed SD was 2.67 g ± 0.49 g, while the mass gain of Nln-/- male animals fed SD 
was 4.0 g ± 0.55 g. After seven weeks, male WT animals fed HD gained 8.87 g ± 3.6 g of 
body mass, while male Nln-/- animals, also fed HD, gained 14.0 g ± 1.29 g of body mass. 
WT females fed SD gained 4.28 g ± 0.28 g of body mass in relation to their initial mass, 
while WT females fed HD gained 5.8 g ± 0.37 g of body mass compared to their initial 
mass. SD-fed Nln-/- females gained a body mass of 3.83 g ± 0.6 g, while Nln-/- females fed 
HD gained 10.88 g ± 10.2 g of body mass. Therefore, after seven weeks, all animals fed HD 
gained significantly more body mass than their respective controls fed SD (Figure 1C,D). 
Nonetheless, after being fed a HD for seven weeks, the body mass gain of the Nln-/- ani-
mals, regardless of gender, was significantly higher compared to their respective WT con-
trols fed HD (Figure 1C,D). 
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sumption between male groups (Table 1); however, water consumption was slightly 
higher in female fed HD (Table 2). 

  

Figure 1. Weight gain of animals over seven weeks. A and B: body mass week gain in male (A) or
female (B) mice, WT or Nln-/-, fed SD or HD diet. C and D: the final body mass was subtracted
from the initial body mass (body mass gain) of male (C) or female (D) mice, WT or Nln-/-, fed SD or
HD. (A–D): *, p < 0.05 between WT SD vs. WT HD or Nln-/- SD vs. Nln-/- HD; #, p < 0.05 between
WT SD vs. Nln-/- SD or WT HD vs. Nln-/- HD. Statistical analyses were performed using two-way
ANOVA with the post-hoc Holm–Sidak test. Data are presented as mean ± SEM. n = 5–8 animals
per group. Each individual group (WT, SD; WT, HD; Nln-/-, SD; Nln-/-, HD) was indicated with a
specific symbol shown on the figure legend.

Both WT and Nln-/- mice, male and female, fed SD consumed more food than their
control animals fed HD (Tables 1 and 2). There was no variation in water and calorie
consumption between male groups (Table 1); however, water consumption was slightly
higher in female fed HD (Table 2).

Table 1. Food, water and calorie consumption of male animals.

Consumption: WT SD WT HD Nln-/- SD Nln-/- HD

Food (g/day/animal) 5.02 ± 0.27 1.87 ± 0.25 * 5.9 ± 0.46 2.57 ± 0.10 *.#

Water (mL/day/animal) 1.3 ± 0.15 1.5 ± 0.05 1.5 ± 0.09 1.3 ± 0.16

Calories (Kcal/day/animal) 19.08 ± 0.95 15.98 ± 2.07 22.43 ± 2.24 21.97 ± 1.05

*, represents statistical significance between diets (SD or HD); #, represents statistical significance between
genotypes. Data were analyzed using ANOVA two-way and post-test of post-hoc Holm–Sidak. It was considered
statistically significant when p < 0.05. Data are shown as mean ± SEM. n = 5–8.

Comparing the wet mass of individual tissues (liver, inguinal adipose tissue, gonadal
adipose tissue, retroperitoneal adipose tissue and gastrocnemius), among male and female
animals fed with SD, regardless of genotype or gender, no statistically significant differences
were observed (Tables 3 and 4). Liver tissue wet mass was reduced in animals fed HD
compared to those fed SD, regardless of genotype or gender (Tables 3 and 4). An increase
was observed in the wet mass of all adipose tissues evaluated (inguinal, gonadal and
retroperitoneal) from animals fed HD, compared to those fed SD, regardless of genotype or
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gender (Tables 3 and 4). Nln-/- female animals have a greater increase in all adipose tissue
depots investigated herein, compared to their respective WT control animals (Table 4).
However, Nln-/- male animals only showed a significant increase in the wet mass of
retroperitoneal adipose tissue depot, compared to their respective WT control animals
(Table 4). These data suggest the distinctive metabolic behavior of Nln-/- inguinal and
gonadal adipose tissues in male and female animals. Moreover, male animals, Nln-/- or
WT, fed HD, had a lower weight of gastrocnemius muscle (Table 3). Female Nln-/- animals
fed with HD showed a lower wet weight of the gastrocnemius muscle, compared to the
respective Nln-/- fed SD (Table 4).

Table 2. Food, water, and calories consumption of female animals.

Consumption: WT SD WT HD Nln-/- SD Nln-/- HD

Food (g/day/animal) 3.91 ± 0.59 1.39 ± 0.15 * 4.38 ± 0.20 2.09 ± 0.16 *. #

Water (mL/day/animal) 1.6 ± 0.1 2.0 ± 0.2 * 1.7 ± 0.2 1.0 ± 0.1 #

Calories (Kcal/day/animal) 14.3 ± 1.56 11.88 ± 1.20 16.6 ± 0.83 17.86 ± 0.90

*, represents statistical significance between diets (SD or HD); #, represents statistical significance between
genotypes. Data were analyzed using ANOVA two-way and post-test of post-hoc Holm–Sidak. It was considered
statistically significant when p < 0.05. Data are shown as mean ± SEM. n = 5–8.

Table 3. The percentage of wet mass of different tissues from WT or Nln-/- corrected by the animals’
body mass (mg/g).

Tissues WT SD WT HD Nln-/- SD Nln-/- HD

Liver 4.48 ± 0.09 2.95 ± 0.07 * 4.70 ± 0.16 2.90 ± 0.10 *

Inguinal Fat 0.80 ± 0.06 2.24 ± 0.30 * 0.76 ± 0.06 2.98 ± 0.29 *

Gonadal Fat 1.31 ± 0.12 3.67 ± 0.47 * 0.92 ± 0.09 4.37 ± 0.25 *

Retroperitoneal Fat 0.38 ± 0.08 1.34 ± 0.13 * 0.33 ± 0.06 2.36 ± 0.13 *,#

Gastrocnemius muscle 1.15 ± 0.02 0.96 ± 0.03 * 1.07 ± 0.04 0.89 ± 0.08*

*, represents statistical significance between diets (SD or HD); #, represents statistical significance between
genotypes. Data were analyzed using ANOVA two-way and post-test of post-hoc Holm–Sidak. It was considered
statistically significant when p < 0.05. Data are shown as mean ± SEM. n = 5–8.

Table 4. The percentage of wet mass of different tissues from females WT or Nln-/- corrected by the
animals’ body mass (mg/g).

Tissues WT SD WT HD Nln-/- SD Nln-/- HD

Liver 4.22 ± 0.35 3.45 ± 0.09 * 4.4 ± 0.18 3.32 ± 0.09 *

Inguinal Fat 1.01 ± 0.11 1.92 ± 0.13 * 0.86 ± 0.07 3.26 ± 0.19 *,#

Gonadal Fat 1.10 ± 0.17 2.76 ± 0.26 * 0.61 ± 0.11 4.29 ± 0.41 *,#

Retroperitoneal Fat 0.39 ± 0.11 1.16 ± 0.11 * 0.27 ± 0.06 2.55 ± 0.23 *,#

Gastrocnemius muscle 1.10 ± 0.02 1.05 ± 0.02 1.13 ± 0.08 0.94 ± 0.04 *

*, represents statistical significance between diets (SD or HD); #, represents statistical significance between
genotypes. Data were analyzed using ANOVA two-way and post-test of post-hoc Holm–Sidak. It was considered
statistically significant when p < 0.05. Data are shown as mean ± SEM. n = 5–8.

WT and Nln-/- animals, male and female, fed with SD or HD for seven weeks, were
submitted to GTT (Figure 2). WT and Nln-/- male animals HD-fed presented lower glucose
uptake, compared to their respective controls fed SD (Figure 2A,C). Similar results were
not observed for both WT and Nln-/- female animals; although Nln-/- female animals fed
HD presented higher glucose uptake compared to WT female fed HD (Figure 2B,D).
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Figure 2. Glucose tolerance test (GTT) in male (A,C) or female (B,D) animals. (A,B), glycemic curves
over the 120 min interval, (C,D), the area under the glycemic curves of the WT or Nln-/- animals
fed SD or HD. Intraperitoneal administration of glucose (2 g/Kg) was followed by blood glucose
measurement with AccuCheck glycostrip (Roche, São Paulo, Brazil), at 15, 30, 60, 90 and 120 min.
A sample collected and evaluated before glucose administration was considered as fasting blood
glucose (time 0). A–D: *, p < 0.05 between WT SD vs. WT HD or Nln-/- SD vs. Nln-/- HD; #, p < 0.05
between WT SD vs. Nln-/- SD or WT HD vs. Nln-/- HD. Statistical analyses were performed using
two-way ANOVA with the post-hoc Holm–Sidak test. Data are presented as mean ± SEM. n = 5–8
animals per group.

Blood insulin measurement suggested that only Nln-/- females fed HD, have increased
plasma insulin concentration (Figure 3). These results could corroborate the higher glucose
uptake observed for Nln-/- female animals fed HD, compared to WT female fed HD
(Figure 2B,D).
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ITT was performed on WT and Nln-/-, male and female animals, fed either SD or HD
for seven weeks, with blood glucose monitored at 4 min intervals for 16 min (Figure 4).
Despite the absence of statistical significance, Nln-/- male animals fed SD seem to have
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a better glucose uptake and higher insulin sensitivity (Figures 2 and 4A,C). Male Nln-/-

animals fed HD showed a statistically significant reduction in insulin sensitivity (Figure 4C);
these data suggest that HD reverses the higher insulin sensitivity of Nln-/- male animals.
No differences were observed among female animals fed either SD or HD, regardless of
their genotype.
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male and female animals, fed either SD or HD (Tables 5–8). Increased expression of leptin 
was commonly observed in male and female Nln-/- animals fed with HD, compared to WT 
animals on the same HD diet (Tables 5–8). Among several additional differences, in-
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Figure 4. Insulin tolerance test (ITT) was performed in WT and Nln-/-, male (A,C) and female
(B,D) animals fed SD or HD. Intraperitoneal insulin administration was followed by blood glucose
measurement after 4, 8, 12 and 16 min (A,B). Note that only HD-fed male Nln-/- animals showed
statistically significant reduced insulin sensitivity (C). Nln-/- male animals fed SD have a tendency
to have greater insulin sensitivity, which was not seen as statistically significant. (A–D): *, p < 0.05
between WT SD vs. WT HD or Nln-/- SD vs. Nln-/- HD. Statistical analyses were performed using
two-way ANOVA with the post-hoc Holm–Sidak test. Data are presented as mean ± SEM. n = 5–8
animals per group.

2.2. Analysis of Gene Expression

Gene expression analyses of adipose tissues from WT and Nln-/- animals, male
(Tables 5 and 6) and female (Tables 7 and 8), were performed herein. Possible variation on
specific gene expression was defined comparing to the expression levels of constitutively
expressed RPL19 or cyclophilin A mRNA. Analyzing gene expression on the adipose tissue
of mice fed a HD-induced obesity, both RPL19 and cyclophilin A have been suggested the
most appropriate reference housekeeping genes [71].

Both WT and Nln-/- animals, male and female, fed a HD presented increased or
decreased expression of several genes related to energy metabolism, compared to control
animals fed SD (Tables 5–8). The effect of the Nln-/- phenotype could be observed in both
male and female animals, fed either SD or HD (Tables 5–8). Increased expression of leptin
was commonly observed in male and female Nln-/- animals fed with HD, compared to
WT animals on the same HD diet (Tables 5–8). Among several additional differences,
increased gene expression of PPAR-alpha was observed comparing animals fed SD vs HD,
and also between Nln-/- and WT females fed SD (Tables 5–8). In addition, increased gene
expression of LPL, IDE, ACE1 and ß5-Prot was observed in male animals fed HD vs SD;
for ACE1 the difference was only seen with RPL19 as the housekeeping reference gene
(Tables 5 and 6). Reduced gene expression in SD-fed Nln-/- male animals, compared to WT
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male animals also fed SD, was observed for PPAR gamma and ß3-adrenoceptor (ADBR3)
(Tables 5 and 6). A reduction in the expression of PGC-1 alpha was observed in Nln-/-

SD-fed female animals, compared to WT female animals SD-fed (Tables 7 and 8).

Table 5. Gene expression levels in adipose tissue from male WT and Nln-/- mice analyzed by RT-PCR,
compared to constitutively expressed RPL19.

Gene WT SD WT HD Nln-/- SD Nln-/- HD

PPAR-alpha 1.04 ± 0.22 54.23 ± 6.66 * 5.46 ± 0.85 # 47.71 ± 6.54 *

PPAR-gamma 1.02 ± 0.05 0.82 ± 0.12 0.51 ± 0.01 # 0.43 ± 0.10 #

FAS 1.01 ± 0.04 0.8 ± 0.15 0.98 ± 0.17 1.04 ± 0.17

LPL 1.02 ± 0.18 7.64 ± 0.92 * 4.4 ± 1.29 # 7.13 ± 1.54 *

FABP4 1.02 ± 0.15 1.84 ± 0.27 1.48 ± 0.29 2.94 ± 0.78 *

Leptin 1.02 ± 0.14 16.16 ± 3.83 * 1.54 ± 0.49 46.16 ± 6.89 *,#

CD206 1.02 ± 0.04 3.63 ± 1.33 * 1.86 ± 0.30 4.07 ± 0.42 *

CD11C 1.05 ± 0.26 7.28 ± 2.46 * 1.43 ± 0.6 14.75 ± 6.05 *

PGC-1 alpha 1.02 ± 0.07 0.74 ± 0.05 0.8 ± 0.08 0.79 ± 0.20

F4-80 1.02 ± 0.07 2.87 ± 1.26 * 1.0 ± 0.14 3.98 ± 0.63 *

CD36 1.00 ± 0.08 2.33 ± 0.57 1.88 ± 0.41 2.07 ± 0.48

ADBR3 1.02 ± 0.18 0.59 ± 0.08 * 0.48 ± 0.13 # 0.32 ± 0.09 #

NEP 1.00 ± 0.01 1.22 ± 0.09 1.37 ± 0.27 1.73 ± 0.27

POP 1.00 ± 0.06 1.33 ± 0.30 1.03 ± 0.16 1.33 ± 0.13

DPP4 1.00 ± 0.03 1.72 ± 0.27 1.70 ± 0.28 1.98 ± 0.50

IDE 1.01 ± 0.09 6.46 ± 0.93 * 4.59 ± 0.97 # 8.33 ± 0.36 *

ACE1 1.03 ± 0.21 2.30 ± 0.57 * 2.06 ± 0.30 # 2.89 ± 0.39 *

β5-Prot 1.01 ± 0.13 2.72 ± 0.31 * 2.02 ± 0.41 # 4.03 ± 0.40 *,#

*, represents statistical significance between diets (SD or HD); #, represents statistical significance between
genotypes. The gene expression levels were normalized with RPL19 as a housekeeping gene. Data were analyzed
using ANOVA two-way and post-test of post-hoc Holm–Sidak. It was considered statistically significant when
p < 0.05. Data are shown as mean ± SEM. n = 5–8.

Table 6. Gene expression levels in adipose tissue from male WT and Nln-/- mice analyzed by RT-PCR,
compared to constitutively expressed cyclophilin A.

Gene WT SD WT HD Nln-/- SD Nln-/- HD

PPAR-alpha 1.24 ± 0.60 29.7 ± 3.71 * 5.28 ± 1.58 # 25.30 ± 5.59 *

PPAR-gamma 1.16 ± 0.41 0.86 ± 0.18 0.51 ± 0.11 # 0.39 ± 0.06 #

FAS 1.10 ± 0.33 0.43 ± 0.04 0.69 ± 0.06 0.55 ± 0.11

LPL 1.09 ± 0.29 23.76 ± 3.41 * 14.45 ± 3.50 # 29.17 ± 6.84 *

FABP4 1.03 ± 0.17 1.52 ± 0.28 1.39 ± 0.21 2.25 ± 0.65 *

Leptin 1.06 ± 0.23 9.09 ± 2.66 * 2.21 ± 0.91 24.11 ± 4.69 *,#

CD206 1.04 ± 0.23 2.99 ± 1.26 * 2.03 ± 0.43 3.04 ± 0.05 *

CD11C 1.03 ± 0.17 6.18 ± 2.28 * 2.20 ± 1.37 12.63 ± 5.55 *
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Table 6. Cont.

Gene WT SD WT HD Nln-/- SD Nln-/- HD

PGC-1 alpha 1.03 ± 0.18 0.58 ± 0.01 1.04 ± 0.23 0.63 ± 0.21

F4-80 1.07 ± 0.27 3.67 ± 1.81 * 1.62 ± 0.17 4.87 ± 1.18 *

CD36 1.04 ± 0.21 1.83 ± 0.34 1.28 ± 0.38 1.57 ± 0.41

ADBR3 1.21 ± 0.55 0.69 ± 0.04 * 0.67 ± 0.07 # 0.34 ± 0.05 #

NEP 1.06 ± 0.26 0.99 ± 0.13 1.34 ± 0.19 1.28 ± 0.04

POP 1.12 ± 0.35 1.30 ± 0.35 1.23 ± 0.12 1.21 ± 0.15

DPP4 1.08 ± 0.29 1.48 ± 0.27 2.16 ± 0.56 1.52 ± 0.19

IDE 1.11 ± 0.31 3.53 ± 0.48 * 2.93 ± 0.43 # 4.31 ± 0.36 *

ACE1 1.00 ± 0.11 1.76 ± 0.51 * 2.09 ± 0.51 # 2.01 ± 0.02

β5-Prot 1.00 ± 0.10 1.82 ± 0.21 * 1.57 ± 0.09 # 2.51 ± 0.07 *,#

*, represents statistical significance between diets (SD or HD); #, represents statistical significance between geno-
types. The mRNA levels were normalized with cyclophilin A as a housekeeping gene. Data were analyzed using
ANOVA two way and post-test of post-hoc Holm–Sidak. It was considered statistically significant when p < 0.05.
Data as shown as mean ± SEM. n = 5–8.

Table 7. Gene expression levels in adipose tissue from female WT and Nln-/- mice analyzed by
RT-PCR, compared to constitutively expressed RPL19.

Gene WT SD WT HD Nln-/- SD Nln-/- HD

PPAR-alpha 2.75 ± 0.17 12.31 ± 3.74 * 6.25 ± 1.95 # 16.13 ± 1.17 *

PPAR-gamma 0.43 ± 0.10 0.77 ± 0.15 0.63 ± 0.11 0.60 ± 0.06

FAS 0.73 ± 0.07 0.36 ± 0.02 * 0.98 ± 0.08 0.72 ± 0.10 #

LPL 1.07 ± 0.08 4.19 ± 0.55 * 0.56 ± 0.1 4.86 ± 0.37 *

FABP4 0.72 ± 0.04 1.61 ± 0.29 * 0.55 ± 0.14 1.27 ± 0.12 *

Leptin 2.91 ± 0.84 8.02 ± 1.29 * 2.94 ± 0.63 25.44 ± 7.42 *,#

CD206 0.60 ± 0.02 1.98 ± 0.28 * 0.71 ± 0.14 2.28 ± 0.29 *

CD11C 0.84 ± 0.15 2.09 ± 0.34 * 0.62 ± 0.13 4.42 ± 0.68 *

PGC-1 alpha 0.93 ± 0.12 0.57 ± 0.12 0.46 ± 0.11# 0.57 ± 0.07

F4-80 0.26 ± 0.03 1.25 ± 0.08 * 0.45 ± 0.07 1.80 ± 0.23 *

CD36 0.69 ± 0.05 2.18 ± 0.42 * 0.57 ± 0.14 2.45 ± 0.55 *

ADBR3 0.39 ± 0.07 0.91 ± 0.19 * 0.40 ± 0.08 0.36 ± 0.06 #

NEP 0.79 ± 0.10 1.14 ± 0.16 0.90 ± 0.11 1.29 ± 0.11

POP 0.89 ± 0.16 0.96 ± 0.12 0.96 ± 0.10 1.34 ± 0.13

DPP4 0.82 ± 0.21 1.35 ± 0.27 * 0.87 ± 0.12 1.45 ± 0.20 *

IDE 4.85 ± 1.14 5.98 ± 0.65 4.23 ± 0.90 6.96 ± 0.93

ACE1 0.62 ± 0.09 1.15 ± 0.25 * 0.60 ± 0.10 1.45 ± 0.17 *

β5-Prot 1.16 ± 0.11 2.16 ± 0.17 1.92 ± 0.26 3.32 ± 0.44
*, represents statistical significance between diets (SD or HD); #, represents statistical significance between
genotypes. The gene expression levels were normalized with RPL19 as a housekeeping gene. Data were analyzed
using ANOVA two-way and post-test of post-hoc Holm–Sidak. It was considered statistically significant when
p < 0.05. Data are shown as mean ± SEM. n = 5–8.
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Table 8. Gene expression levels in adipose tissue from female WT and Nln-/- mice analyzed by
RT-PCR, compared to constitutively expressed cyclophilin A.

Gene WT SD WT HD Nln-/- SD Nln-/- HD

PPAR-alpha 3.29 ± 1.21 9.66 ± 0.38 * 5.67 ± 1.75 17.35 ± 1.48 *

PPAR-gamma 0.97 ± 0.29 1.16 ± 0.26 0.66± 0.14 1.04 ± 0.23

FAS 0.90 ± 0.05 0.33 ± 0.05 * 1.13 ± 0.34 0.71 ± 0.12 #

LPL 11.91 ± 2.98 24.08 ± 2.29 * 3.94 ± 1.87 26.48 ± 6.07 *

FABP4 1.30 ± 0.55 1.97 ± 0.34 0.94 ± 0.21 1.53 ± 0.22 *

Leptin 2.60 ± 0.71 7.34 ± 0.45 * 2.70 ± 0.59 16.71 ± 3.36 *,#

CD206 0.97 ± 0.09 2.31 ± 0.25 * 0.81 ± 0.24 3.03 ± 0.63 *

CD11C 1.56 ± 0.13 2.61 ± 0.42 * 0.85 ± 0.16 6.06 ± 1.31 *

PGC-1 alpha 1.53 ± 0.11 0.98 ± 0.19 0.69 ± 0.16# 1.27 ± 0.47

F4-80 0.86 ± 0.13 2.05 ± 0.30 * 0.70 ± 0.17 3.09 ± 0.38 *

CD36 1.51 ± 0.28 2.66 ± 0.47 * 0.63 ± 0.19 3.35 ± 0.84 *

ADBR3 1.18 ± 0.60 1.57 ± 0.31 0.51 ± 0.07 0.61 ± 0.11 #

NEP 1.20 ± 0.18 1.33 ± 0.20 1.36 ± 0.17 1.91 ± 0.42

POP 1.49 ± 0.38 1.33 ± 0.19 1.48 ± 0.07 2.36 ± 0.67

DPP4 0.99 ± 0.19 1.70 ± 0.34 * 1.00 ± 0.09 2.19 ± 0.68 *

IDE 4.93 ± 0.85 4.56 ± 0.86 5.60 ± 0.79 7.22 ± 2.47

ACE1 0.95 ± 0.06 1.38 ± 0.30 * 0.99 ± 0.01 1.88 ± 0.51 *

β5-Prot 2.13 ± 0.47 2.05 ± 0.21 1.49 ± 0.27 3.25 ± 0.72
*, represents statistical significance between diets (SD or HD); #, represents statistical significance between
genotypes. The mRNA levels were normalized with cyclophilin A as a housekeeping gene. Data were analyzed
using ANOVA two way and post-test of post-hoc Holm–Sidak. It was considered statistically significant when
p < 0.05. Data as shown as mean ± SEM. n = 5–8.

Increased gene expression in Nln-/- male animals fed a HD, compared to WT male
animals also fed a HD, was observed for leptin and ß5-Prot (Tables 5 and 6). Reduced
gene expression in HD-fed Nln-/- male animals, compared to WT male animals that were
also fed HD, was observed for PPAR gamma and ADBR3; these were the same genes
downregulated in SD-fed Nln-/- animals (Tables 5 and 6). In Nln-/- female animals HD-fed,
an increase in the expression of FAS and leptin was observed, compared to WT female
animals that were also fed HD (Tables 7 and 8). In HD-fed Nln-/- female animals, a
reduction in the expression of ADBR3 was observed, compared to WT female animals
that were also fed HD (Tables 7 and 8). Therefore, similar results were largely observed
using either RPL19 or cyclophilin A as the reference housekeeping gene (Tables 5–8). The
variation observed in the expression levels could be related to cyclophilin/RPL19 ratios.
These results are in accordance with previous evidence, suggesting that both RPL19 and
cyclophilin could be used as housekeeping genes for sex-unbiased human and mouse gene
expression profile [71,72].

3. Discussion

The major finding presented here was that male and female Nln-/- animals fed a HD,
have both higher food intake and body mass gain compared to WT animals HD-fed. A
higher increase in the gene expression of leptin was observed in male and female Nln-/-

animals fed a HD, compared to WT animals HD-fed. Secretion of leptin is well known
to regulate the appetite and food intake, which helps to control body weight [73]. In
obesity, despite an increment in leptin expression and secretion, the control of food intake
and appetite by leptin is largely reduced due to leptin resistance, which seems related
to alteration of class I cytokine leptin-receptor mediated signal transduction and leptin
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transport across the blood-brain barrier [74]. Crosstalk between cytokine receptors and G-
protein coupled receptors, including to the beta-2 adrenergic receptor, have been previously
described [75,76]. InPeps have been previously shown to modulate signal transduction of G-
protein coupled adrenergic receptors [62,64]. However, further experiments are necessary
to characterize the possible involvement, and the molecular mechanisms of action, of
InPeps and neuropeptides, substrates or products of Nln, in the leptin resistance of animals
fed a HD. These data suggest the physiological participation of Nln in energy homeostasis
in a model of diet-induced obesity.

Despite their genotype or gender, animals fed HD gained more body mass while
ingesting smaller amounts of food, compared to animals that were fed SD; similar re-
sults were observed in a previous study using a similar diet-induced obesity model with
sweetened condensed milk and multivitamin complex addition [69]. The relatively short
period of time these animals were fed either with SD or HD may have impacted the low
body mass gain of WT animals HD-fed, compared to SD-fed WT animals. The WT mouse
strain employed herein may also have impacted the low body mass increment observed, as
previously reported [77–79]. It has been previously shown that substrate utilization and
thermogenesis significantly change following ingestion of different types of carbohydrates
in young healthy lean male volunteers [80]. Therefore, the carbohydrate composition of the
diet should be expected to have critical outcomes for energy and macronutrient balance in
rodents as well. Indeed, distinct proteins, carbohydrates and lipids have different metabolic
roles in energy homeostasis, and because of that, it has been suggested that diets of similar
overall energy content, but with different macronutrient distribution, distinctively modify
the appetite, metabolism and thermogenesis [81]. Ingestion of sweetened condensed milk
that contains 53% sucrose, and causes a rapid increase in plasm insulin levels, induces en-
ergy storage as fat in the adipose tissue, which is directly associated with the development
of obesity [82,83]. Moreover, micronutrients may also exacerbate obesity-related metabolic
consequences, impairing insulin signaling and dysregulating glycemic control; vitamins A,
B1, B6 and B12, as well as selenium and zinc, have been reported to be low in the plasma
of obese individuals [84,85]. Nln-/- mice were shown herein to be even more sensitive
than WT mice to obesity induced by a HD; Nln-/- male and female animals fed a HD
ingested more food and gained more body mass than WT animals fed HD. That could occur
through distinctive InPeps and neuropeptides, both in central and peripherical tissues,
that differentially modulate the complex macromolecular interaction network responsible
for gene expression and protein–protein interactions controlling energy balance and stor-
age [47–50,73]. In fact, the peptidome of Nln-/- mice also have been previously determined,
showing alteration in the relative concentration of InPeps in soleus and gastrocnemius
muscles, liver, and epididymal adipose tissue [16], and also of neuropeptides such as
Met-enkephalin and octapeptide in the brain [17]. Previously, THOP1-/- male and female
mice were shown to gain less body weight than WT control mice, both fed a similar HD [28].
Specific InPeps identified in the adipose tissue of HD-fed THOP1-/- mice were suggested
to participate in the observed obesity-resistance phenotype [28]. The molecular mechanism
was suggested to involve the physical interaction between InPeps and specific microRNAs,
which would lead to an alteration in controlling the expression of genes involved in energy
metabolism [28]. Therefore, a differential profile of InPeps and neuropeptides in Nln-/-

could be driven its distinctive metabolic routes during the diet-induced obesity model used
herein, which should be relevant to the different phenotype of Nln-/- animals characterized
herein.

Leptin, the product of the obese (ob) gene [86], is a key adipocyte-secreted hormone
for energy balance, and is involved in obesity development [87–89]. Leptin circulates in
blood and acts on the brain to regulate food intake and energy expenditure [89]. The body
weight-reducing effects of leptin were not seen augmented by enhanced thermogenesis,
suggesting that leptin has effects on body temperature regulation, by opposing torpor
bouts and by shifting thermoregulatory thresholds; the central pathways behind these
effects are largely unexplored [90]. Leptin-deficient ob/ob mice have fully functional brown
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adipose tissue, and leptin treatment could not increase thermogenesis both in WT and
leptin ob/ob mice [91]. Therefore, leptin in parallel to the effects of other cytokines alters
centrally regulated thresholds of thermoregulatory mechanisms [91]. Future experiments
investigating Nln-/- and WT animals, fed either SD or HD, should shed light on the possible
contribution of Nln and InPeps to thermoregulation [66,92–96].

Gene expression can be correlated with increased confidence to protein expression [97],
and strong linear correlations were previously observed between plasma leptin, leptin se-
cretion, and leptin mRNA levels [98]. Therefore, the relative abundance of several mRNAs
was evaluated herein using both RPL19 and cyclophilin A as housekeeping genes, to gain
molecular insights into the diet-induced obese phenotype observed for Nln-/- animals [99].
The higher increase in the leptin hormone gene expression could be one of the most relevant
for the obese phenotype of Nln-/- animals. Thus, considering the RPL19 housekeeping
gene as a reference, while leptin gene expression increased approximately sixteen times
in male WT animals fed HD, it increased approximately forty-six times in male Nln-/-

animals, compared to their respective control animals fed SD. In WT female animals fed
HD leptin gene expression increased eight times, while in female Nln-/- animals fed HD
leptin gene expression increased approximately twenty-five times compared to control
animals fed SD, considering the RPL19 housekeeping gene as a reference. Leptin levels
increase when fat mass increases to suppress appetite until weight is lost [89]. However,
leptin resistance can occur to increase the predisposition of individuals to diet-induced
obesity, which in turn contributes to a further increase in leptin levels and aggravation of
existing leptin resistance in a vicious cycle [100]. Several mechanisms are related to leptin
resistance, including (1) structural changes to the leptin hormone itself, (2) its transport
across the blood-brain barrier, (3) the misfunctioning of the leptin-receptor and signal
transduction through the JAK–STAT signaling pathway [74]. Neurotensin, which was the
first neuropeptide characterized as a substrate for Nln [2,3,22,23], has several functions,
including the control of food intake and energy balance, possibly through the regulation of
gut lipid absorption and fat homeostasis [24]. Neurotensin is also one of the peptides that
mediate the hypothalamic action of leptin on feeding [101,102]. Unbalanced neurotensin
metabolism in Nln-/- fed HD could significatively impact the leptin-sensitive neural cir-
cuitry, causing leptin resistance, considering that neurotensin is a well-known substrate of
Nln [1,103]. Further investigations need to be conducted to determine possible changes in
hypothalamic neurotensin levels, both in WT and Nln-/- animals fed either SD or HD. In
addition, leptin resistance in Nln-/- and WT animals fed HD under the present diet-induced
obesity model, with sweetened condensed milk and multivitamin complex addition, also
need to be investigated.

The expression of additional genes related to energy metabolism was also modified.
That includes a reduction in ADBR3 expression observed in both Nln-/- male and female
animals HD-fed, compared to WT animals also fed a HD. The decrease in ADBR3 levels
could generate an increase in lipid content, due to a decrease in lipolysis mediated by adren-
ergic receptor stimulation. Thus, the gain in adipose tissue mass observed in HD-fed Nln-/-

animals could also involve reduced lipolysis. The adipose tissue expression of ADBR3 was
higher in THOP1-/- male animals fed a HD, which distinctively from Nln-/- were resistant
to diet-induced obesity [28]. Interestingly, the involvement of THOP1 metabolizing InPeps
that modulates adrenergic signaling transduction has been well documented [62,64]. These
data suggest that Nln and THOP1 could be involved in the metabolism of InPeps within
adipose cells, modulating the adrenergic signaling transduction and energy balance.

The gene expression of several endopeptidases (NEP, POP, DPP4, IDE and ECA1),
and that of the proteasome ß5-Prot subunit, was evaluated herein. Despite NEP and POP,
modulation of DPP4, IDE, ECA1 and ß5-Prot subunit expression were observed herein.
In Nln-/- male animals fed SD, an increased expression of IDE, ECA1 and ß5-Prot sub-
unit was observed. These data suggesting that, in the absence of Nln, a compensatory
expression of IDE, ECA1 and ß5-Prot subunit expression occurred. In parallel, the ex-
pression of IDE and proteasome ß5-Prot subunit was observed both in WT and Nln-/-
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male animals fed HD, considering the relative expression to both RPL19 and cyclophilin
A. Interestingly, previous data suggest that THOP1 expression was not altered in Nln-/-

animals, and vice–versa [16,17,28,29]. IDE predominantly metabolize peptides inside the
cells [104], similarly to Nln [6,8,26,27] and THOP1 [25,65], corroborating previous sugges-
tions that the intracellular peptide metabolism is modulated under a diet-induced obesity
model [14,25,28–30,63,65,105,106]. DPP4 and ACE1 gene expression increased WT and
Nln-/- female animals fed HD, considering both RPL19 and cyclophilin A as housekeeping
genes. Both DPP4 and ACE1 metabolize peptides on the extracellular milieu [107,108],
suggesting that in females, conversely to males, the extracellular peptide metabolism plays
a major role in diet-induced obesity. Interestingly, DPP4 preferentially degrades peptides
containing an alanine or proline at the penultimate position (P1 position), which includes
the glucagon-like peptide-1 (GLP-1) [109,110]. Physiologically, GLP-1 is known to control
body weight gain inhibiting appetite and delaying gastric emptying, and GLP-1 synthetic
orally-active receptor agonist semaglutide has now been used to control type-2 diabetes
and obesity [111–114]. DPP4 inhibition has shown protective effects against type 2 diabetes
and several metabolic disorders, including obesity [109]. Therefore, an increased DPP4
gene expression directly correlates with the increased body weight gain of WT and Nln-/-

females fed HD presented here. These data corroborate the significant role of intracellular
and extracellular peptide metabolism in diet-induced obesity. The extent to which the mito-
chondrial absence of Nln plays a relevant role in the metabolic alterations of these animals
needs to be investigated [9]. Gender differences on peptide metabolism also deserve further
attention, particularly in a diet-induced obesity condition.

Previous studies on the characterization of Nln-/- fed SD showed a greater sensitivity
to insulin, shown by increased AKT phosphorylation in muscle and adipose tissue but
not in the liver [16]. Here, male Nln-/- animals fed HD showed a statistically significant
reduction in insulin sensitivity compared to Nln-/- animals fed SD. Moreover, Nln-/- female
animals HD-fed showed high insulin levels compared to WT female animals fed either SD
or HD, whereas no alteration of this parameter was observed for male animals, regardless
of their genotype and diet. These data were in agreement with enhanced blood glucose
uptake of HD-fed Nln-/- female animals, compared to HD-fed WT animals. Metabolic
differences between males and females have been reported, demonstrating that female
mice express higher contents of the glucose transporter (GLUT4) in white adipose tissues
than males [115]. Glycemic regulation occurs through several mechanisms, including the
participation of the GLUT4 transporter and insulin secretion, whose deficiency can generate
insulin resistance evolving to type 2 diabetes [116–118]. Further experiments are necessary
to investigate the molecular mechanism related to the lack of higher insulin sensitivity of
Nln-/- male animals fed HD, which could be related to the alteration of insulin receptor
signal transduction pathways.

The distinctive peptide profiles of WT and Nln-/- in the brain, adipose and liver
tissues have been previously shown, suggesting that Nln can metabolize bioactive peptides
both inside and outside the central nervous system [16,17]. One of the peptides identified
in the liver of Nln-/- was named Ric4 (LASVSTVLTSKYR), and was shown to decrease
blood glycemia, following either intraperitoneally or oral administration to WT mice [119].
Therefore, it was suggested that Ric4 contributes to the enhanced glucose uptake and
insulin sensitivity observed in Nln-/- [119]. Pep19, identified by means of conformational-
sensitive antibodies targeting G-protein coupled receptors [120,121], induced uncoupling
protein 1 expression in both white adipose tissue and 3T3-L1 differentiated adipocytes [96]
Oral administration of Pep19 into diet-induced obese Wistar rats or Swiss mice significantly
reduces whole body weight and the size of adipocytes [95,96]. THOP1 was also shown to
play a key role in the metabolism of peptides regulating energy expenditure [28]. However,
while Nln-/- mice were shown herein to be more susceptible to diet-induced obesity,
THOP1-/- mice were resistant to diet-induced obesity after being fed a HD for 24 weeks [28].
It has been suggested that the distinctive subcellular localization of Nln and THOP1 drives
their biological significance [6], which, together with their biochemical specificities, could
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be of importance to the phenotype differences observed in diet-induced obesity. Taken
altogether, these data corroborate the suggestion that both oligopeptidases THOP1 and Nln
play key roles in regulating energy metabolism, possibly through InPeps and neuropeptide
metabolism. Further investigations are necessary to understand the molecular basis of the
distinctive diet-induced obesity phenotype of Nln-/- and THOP1-/- animals.

In conclusion, the present report suggests that Nln plays a key physiological function
in regulating energy metabolism.

4. Materials and Methods
4.1. Animals

Male and female WT C57BL6/N mice, eight-weeks-old, were obtained from the central
animal facility of the University of São Paulo Medical School, São Paulo, SP, Brazil. Male
and female Nln-/- mice (on the C57BL6/N genetic background), eight-weeks-old, were
obtained from the local animal facility from the Pharmacology Department, Biomedical
Science Institute, University of São Paulo, São Paulo, SP, Brazil. Both animal facilities have a
certificate of quality in biosafety granted by the Brazilian National Technical Commission of
Biosafety from the Ministry of Science, Technology and Innovation. A full detailed descrip-
tion of Nln-/- mice generation and genotyping procedures was previously described [16,17].
All animals lived and shared the same environment, and the same persons maintained
them during the entire experimental process. The mice were maintained in individually
ventilated cages (Ventilife, ALESCO, São Paulo, SP, Brazil), in groups of 3–5 animals per
individually ventilated cages, at 22 ◦C, under standardized conditions, with an artificial
12 h dark–light cycle, with ad libitum access to chow and drinking water. The experiments
started with eight-week-old animals and were conducted for an additional seven weeks.

All experimental procedures involving animals were previously approved by the
Committee on Ethics in the Use of Animals of the Biomedical Sciences Institute, University
of São Paulo, São Paulo, SP, Brazil, under number 4112010621, in accordance with the pre-
cepts of Law 11,794 of 8 October 2008, with Decree 6899 of 15 July 2009, as well as with the
rules issued by the Brazilian National Council for the Control of Animal Experimentation
(CONCEA, Brazil). Animals were maintained at the animal facility of the Department of
Pharmacology, located in the Biomedical Sciences I, University of São Paulo, Capital.

4.2. Mice Genotyping

The animals used for the experiments had their genotypes analyzed and confirmed
using conventional polymerase chain reaction (PCR), as previously described [16]. DNA
samples were extracted from mice tails (3 mm), which were digested overnight at 55 ºC
with 50 µL of 100 mM Tris-buffer, pH 7.4, containing 5 mM EDTA, 200 mM NaCl, 0.2% SDS
containing and 80 µg of proteinase K (Sigma, São Paulo, Brazil). The PCR genotyping assays
used the following oligonucleotide sequences: pNlnF3 (5′ CGCCTCCTGCACCTACCA 3′);
pNlnwtR3 (5′ ATTTGCCAGGTTAAGAGATCG 3′), which generated fragments of 629 bp
for the WT mice; and the pNlnkoR2 (5′ CGTGTCCTACAACACACACTCC 3′), which
generated a 312 bp fragment for the Nln-/- mice. Briefly, 2 µL of DNA extracts (1:10), 3 µL
10x PCR Buffer (100 nM Tris-HCl, pH 8.3; 500 mM KCl, 15 mM MgCl2; 0, 01%), 1 µL 50 mM
MgCl2, 1 µL of 5 mM dNTP, 0.5 µL of each primer (10 µM) and 0.2 µL of 5 U/µL TaqDNA
polymerase (all PCR reagents were from Thermo Fisher, São Paulo, SP, Brazil), were added
for a 30 µL of PCR reaction solution. The reactions were conducted in a conventional
thermal cycler under the following conditions: 95 ◦C for 5 min, 40 cycles of 95 ◦C for
30 s, 60 ◦C for 30 s, 72 ◦C for 30 s, and the reaction was completed after incubation at
72 ◦C for 5 min. The reaction products were submitted to electrophoresis in a 2% agarose
gel, containing the dye Syber Safe (Thermo Fisher, São Paulo, SP, Brazil), visualized and
photographed in the ChemiDoc MP Imaging System (BioRad, Hercules, CA, USA). Mice
genotyping shows the presence of a 629pb band in WT animals, which was absent in
Nln-/- animals. Conversely, a 312pb band was present in Nln-/- animals and absent in WT
animals.



Int. J. Mol. Sci. 2023, 24, 15190 15 of 22

4.3. Diet-Induced Obesity

The diet-induced obesity model used herein was previously described [69]. Briefly,
groups of eight-weeks old WT and Nln-/- animals (n = 5–8) were offered ad libitum
either standard chow (SD) or high-fat diet chow supplemented with sweetened condensed
milk [70] containing AIN-93 multivitamin complex (HD) [69]. The SD composition was
carbohydrate, 70%; protein, 20%; fat, 10% (3.8 Kcal/g; Nuvilab CR1, Nuvital Nutrientes
S.A., Colombo, PR, Brazil). The HD composition was carbohydrate, 27.44%; protein,
13.55%; fat, 59% (5.3 Kcal/g; Rhoster, Araçoiaba da Serra, SP, Brazil); supplemented ad
libitum with sweetened condensed milk (53% sucrose, 15% lactose, 23% fat, 9% protein;
3.25 Kcal/g; Moça, Nestlé, São Paulo, SP, Brazil), and 1% of AIN-93 multivitamin and
minerals complex (vitamins: A, 4.00 IU/g; D3 (added), 1.00 IU/g; E, 78.80 IU/g; K (as
menadione), 0.75 ppm; thiamine hydrochloride, 6.00 ppm; riboflavin, 6.50 ppm; niacin,
30.00 ppm, pantothenic acid, 16.00 ppm; folic acid, 2.10 ppm; pyridoxine, 5.80 ppm; biotin,
0.20 ppm; B12, 28.00 mcg/kg; choline chloride, 1,250.00 ppm. minerals: calcium, 0.50%;
phosphorus, 0.31%; potassium, 0.36%; magnesium, 0.05%; sodium, 0.13%; chlorine 0.20%;
fluorine, 1.00 ppm; iron, 39.00 ppm; zinc, 35.00 ppm; manganese, 11.00 ppm; Copper,
6.00 ppm; iodine, 0.21 ppm; chromium, 1.00 ppm; molybdenum, 0.14 ppm; selenium,
0.22 ppm; Rhoster, Araçoiaba da Serra, SP, Brazil).

4.4. Measuring Animals Body Mass, Food, and Water Consumption

Weekly, WT and Nln-/- animals were individually weighed on a conventional digital
scale. The body mass week gain from male or female mice, WT or Nln-/-, fed SD or HD was
determined. After the seven weeks on either SD or HD, the final body mass of the animals
(male or female, WT or Nln-/-) was subtracted from the initial body mass to estimate the
total body mass gain along the seven weeks of the experiments. The consumption of SD or
HD was measured per ventilated cages (3–5 animals were housed per ventilated cage), using
a conventional digital scale. The calculated chow (food) and/or sweetened condensed milk
consumption of each mouse was estimated by dividing the total amount consumed per
ventilated cage, by the number of animals that were housed in that specific cage (from
3–5 animals per ventilated cage). Every week the unconsumable SD or HD remaining in the
cages was weighed using a conventional digital scale, and the remaining weight value was
subtracted from the initial amount offered. The volume of water ingested was monitored
using an appropriate conical graduated tube. Every week the volume of undrinked water
was measured using an appropriate conical graduated tube, and the remaining volume
value was subtracted from the initial volume offered. The above measurements allowed to
closely estimate the amount of SD, HD and water ingested. The total calories consumed
were calculated by multiplying 3.8 Kcal/g of ingested food for the animals fed SD, or by
multiplying 8.55 Kcal/g of ingested food (corresponding to the sum of 5.3 Kcal/g of chow
+ 3.25 Kcal/g of the sweetened condensed milk) for the HD animals. At the end of seven
weeks, animals were anesthetized with isoflurane and euthanized by cardiac puncture.
Tissue samples from the liver, inguinal, retroperitoneal and gonadal adipose tissues, as
well as the gastrocnemius muscle, were collected, weighed and stored in a freezer at −80◦C
until use. The tissue wet mass value was corrected by the total body mass of the animals,
using the following equation: tissue mass × 100/body mass of the live animal.

4.5. Glucose Tolerance Test (GTT) and Insulin Tolerance Test (ITT)

Mice were previously submitted to fasting for 12 or 4 h for GTT or ITT measurements,
respectively. For GTT, blood samples were collected from the tail at 0, 15, 30, 45, 60 and
90 min, after the intraperitoneal (i.p.) administration of a glucose 2 g/kg solution in Milli-Q
water. For TTI, after the injection of 0.75U/kg of insulin blood samples from the tail were
collected at 0, 4, 8 12 and 16 min. For both GTT and ITT, blood glucose was measured using
a glucose meter Accu-Check Performa (Roche, São Paulo, SP, Brazil).
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4.6. Plasma Insulin Measurements

Plasma insulin was determined in blood samples from WT and Nln-/- animals, col-
lected by cardiac puncture. The quantitative evaluation of insulin was performed in plasma
by enzyme-linked immunosorbent assay (ELISA), using the insulin dosage kit for mice,
according to the manufacturer’s instructions (EMD Millipore, St. Louis, MO, USA).

4.7. Real-Time PCR (qRT-PCR)

Real-time PCR (qRT-PCR) experiments, as previously described [28], were performed
from total RNA extracted from retroperitoneal adipose tissue, to determine the expres-
sion levels of distinctive mRNAs (Table 9): peroxisome proliferator activated receptor
gamma (PPAR-gamma), peroxisome proliferator activated receptor alpha (PPAR-alpha),
fatty acid synthase (FAS), lipoprotein lipase (LPL), leptin, CD36 molecule (CD36), peroxi-
some proliferator-activated receptor gamma coactivator 1-alpha (PGC 1 alpha), mannose
receptor (CD206), integrin alpha X (CD11C), adhesion G protein-coupled receptor E1
(F4/80), fatty acid-binding protein 4 (F4), adrenergic receptor beta 3 (ADBR3), neprilysin
endopeptidase (NEP), angiotensin I converting enzyme (ACE1), prolyl oligopeptidase
(POP), insulin degrading enzyme (IDE), dipeptidyl peptidase 4 (DPP4), proteasome sub-
unit beta 5 (Prot-β5). Tissues were quickly removed, frozen in liquid nitrogen and stored
in a −80◦C freezer until use. Samples were homogenized, and total RNA was extracted
using Trizol (Trizol® Products Life Technologies, São Paulo, SP, Brazil). Total RNA integrity
was verified by 1% agarose gel electrophoresis. cDNAs were synthesized from 2 µg of total
RNA, using the cDNA High-Capacity kit (Thermofisher, Waltham, MA USA). Sample dilu-
tion curves were performed for assay standardization, in order to determine the efficiency
of amplification of messenger RNAs (mRNAs) of target genes. The quantitative PCR assay
was performed using Sybr Green Master Mix (Applied Biosystems, Waltham, MA, USA)
with 100 nM of primer and 20 ng of cDNA and the runs performed in the QuantStudio
3 equipment (Applied Biosystem, Thermofisher, Waltham, MA, USA). The expression of
mRNAs of interest was normalized by the expression of the reference mRNA and expressed
as relative values using the “2ddCt” method, as previously described [28]. Both RPL19
and cyclophilin (Table 9) were used as housekeeping genes for internal relative controls, as
previously suggested [71]. Target gene expression levels of WT animals were compared to
Nln-/-, fed either SD or HD.

Table 9. Sequences of primers used in RT-qPCR experiments.

Gene Sequence Amplicon (bp) Access Number

Peroxisome proliferator activated
receptor gamma (PPAR-gamma)

Fwd: ATCTTAACTGCCGGATCC
Rev: CAAACCTGATGGCATTGTGAG 102 NM_001127330.2

Peroxisome proliferator activated
receptor alpha (PPAR-alpha)

Fwd: TGCAATTCGCTTTGGAA
Rev: CTTGCCCAGAGATTTGAGGT 118 NM_011144.6

Fatty acid synthase (FAS) Fwd: GATTCGGTGTCTGCTGTC
Rev: CATGCTTTAGCACCTGCTGT 95 NM_007988.3

Lipoprotein lipase (LPL) Fwd: GTCTGGCCACTGGACAAA
Rev: CCCACTTTCAAACACCCAAA 122 NM_008509.2

Leptin Fwd: CCAGGATGACACCAAAACCCT
Rev: TGAAGTCCAAGCCAGTGACC 107 NM_008493.3

CD36 molecule (CD36) Fwd: GATTGGTTGAGACCCCG
Rev: GCTCCACACATTTCAGAAGGC 174 NM_001159558.1

Peroxisome proliferator-activated
receptor gamma coactivator 1-alpha

(PGC 1 alpha)

Fwd: AAGGGCCAAACAGAGAG
Rev: AGTAAATCACACGGCGCTCTT 63 NM_008904.3
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Table 9. Cont.

Gene Sequence Amplicon (bp) Access Number

Mannose receptor (CD206) Fwd: TGTGTTCAGCTATTGGACGC
Rev: CGGAATTTCTGGGATTCAGCTTC 133 NM_008625.2

Integrin alpha X (CD11C) Fwd: CTGGATAGCCTTTCTTCTGCTG
Rev: GCACACTGTGTCCGAACTCA 113 NM_021334.3

Adhesion G protein-coupled receptor
E1 (F4/80)

Fwd: AACATGCAACCTGCCACAAC
Rev: TTCACAGGATTCGTCCAGGC 110 NM_010130.4

Fatty acid-binding protein 4 (FABP4) Fwd: CGCAGACGACAGGAAGGT
Rev: TTCCATCCCACTTCTGCAC 77 NM_024406.3

Ribosomal protein L19 (RPL19) Fwd: CAATGCCAACTCCCGTCA
Rev: GTGTTTTTCCGGCAACGAG 102 NM_009078.2

Adrenergic receptor, beta 3 (ADBR3) Fwd: ACCCTGATGATCGACATGTTCC
Rev: GCCATAGTGAGGAGACAGGG 129 NM_013462.3

Neprilysin (NEP) Fwd: CCTGAACTTTGCCCAGGTGT
Rev: GCGGCAATGAAAGGCATCTG 148 NM_001289462.1

Angiotensin I converting enzyme
(ACE1)

Fwd: ACCCTAGGACCTGCCAATCT
Rev: CGTGAGGAAGCCAGGATGTT 164 NM_207624.5

Prolyl oligopeptidase (POP) Fwd: GGGTGCTCCGACACTAAACA
Rev: GACGGGTACTGGATGTCGTC 98 NM_011156.3

Insulin degrading enzyme (IDE) Fwd: GTCCATGTTCTTGCCAGGGA
Rev: TTCACGAGGGGAAACAGTGG 161 NM_031156.3

Dipeptidyl peptidase 4 (DPP4) Fwd: GACGGCAGAGGAAGTGGTT
Rev: CGCTTGCTATCCACAAATCCC 134 NM_010074.3

Proteasome subunit beta 5 (Prot-β5) Fwd: CCAAACTGCTCGCTAACATGG
Rev: GTTCCCCTCGCTGTCTACG 119 NM_011186.1

Ribosomal protein L19 (RPL19) Fwd: CAATGCCAACTCCCGTCA
Rev: GTGTTTTTCCGGCAACGAG 102 NM_009078.2

Cyclophilin A Fwd: TATCTGCACTGCCAAGACTGAGT
Rev: CTTCTTGCTGGTCTTGCCATTCC 127 NM_008907.2

4.8. Statistical Analyses

The data obtained were analyzed for statistical significance using the GraphPad Prisma
6 software (GraphPad Inc.; San Diego, CA, USA), and were presented as mean ± standard
error of the mean (SEM). Differences were determined by a non-parametric t-test for inde-
pendent samples and the two-way ANOVA test for statistical analyses of 2 or more groups
followed by the Holm–Sidak post-hoc test. p values < 0.05 were considered statistically
significant for all analyses.
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