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Abstract: The amygdala contains androgen receptors and is involved in various affective and so-
cial functions. An interaction between testosterone and the amygdala’s functioning is likely. We
investigated the amygdala’s resting-state functional connectivity (rsFC) network in association with
testosterone in 94 healthy young adult women and men (final data available for analysis from
42 women and 39 men). Across the whole sample, testosterone was positively associated with the
rsFC between the right amygdala and the right middle occipital gyrus, and it further predicted
lower agreeableness scores. Significant sex differences appeared for testosterone and the functional
connectivity between the right amygdala and the right superior frontal gyrus (SFG), showing higher
testosterone levels with lower connectivity in women. Sex further predicted the openness and agree-
ableness scores. Our results show that testosterone modulates the rsFC between brain areas involved
in affective processing and executive functions. The data indicate that the cognitive control of the
amygdala via the frontal cortex is dependent on the testosterone levels in a sex-specific manner.
Testosterone seems to express sex-specific patterns (1) in networks processing affect and cognition,
and (2) in the frontal down-regulation of the amygdala. The sex-specific coupling between the amyg-
dala and the frontal cortex in interaction with the hormone levels may drive sex-specific differences
in a variety of behavioral phenomena that are further associated with psychiatric illnesses that show
sex-specific prevalence rates.

Keywords: testosterone; amygdala; frontal cortex; occipital cortex; sex; gender; personality;
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1. Introduction

The amygdalae are small almond-shaped bilateral anatomical structures that are
involved in signaling the emotional salience of events [1,2]. They are major structures of
the limbic system and drive various behavioral functions. Amygdala dysfunctions are
associated with a variety of psychiatric illnesses that show sex-specific prevalence rates [3].
There is some evidence that BOLD-based amygdala activity reveals specific patterns in
women and in men when modulating emotional and stress-related responses [4–7]. The
human amygdala contains androgen receptors [8,9] that may be activated by testosterone,
a steroid hormone involved in emotional and social behavior [10–12]. Testosterone is
associated with social-oriented behavior such as extraversion [13,14]. The administration
of testosterone has been shown to influence emotional and social functions, such as an
increase in selfish behavior [15], a decrease in cognitive reflection in men [16], and changes
in assertiveness [17].

The brain continuously exchanges information among structurally and functionally
linked regions [18]. The temporally dependent neural activation patterns of anatomically
separated regions are assumed to reflect functional communication throughout the brain.
This effect—namely, functional connectivity [19,20]—is likely to play a key role during
complex cognitive processes, but also during rest, as a large amount of spontaneous activity
is highly correlated for multiple regions [21,22]. The amygdala is connected to multiple
regions involved in the regulation of emotional and social information [23–25]. Due to this
strong involvement in emotional and social behavior, the amygdala’s communication and
integration of complex information are of high interest.

There is also evidence that functional connectivity is affected by sex [26–30] as well
as by testosterone [31–34], although none of these studies investigated both the sex- and
testosterone-specific effects of amygdala connectivity at rest. Nevertheless, reports on sex
differences in amygdala activity [35,36], as well as in sex hormone levels [37], suggest that
the functional connectivity of the amygdala is associated with the hormone levels in a
sex-specific manner.

It was shown that testosterone modifies the amygdala’s functional connectivity, es-
pecially with the prefrontal cortex, when performing emotional tasks [38]. Peper and
colleagues [38], in their review, conclude that androgens such as testosterone may decrease
subcortico–cortical connectivity but increase connectivity between subcortical areas. It was
further speculated that testosterone’s impact on behavior is modulated via the cognitive
control of the frontal cortex over the amygdala [39]. Several studies show an association
between testosterone and amygdala–prefrontal cortex coupling. In men, exogenous testos-
terone administration reduces the functional connectivity between the amygdala and the
dorsolateral prefrontal cortex (DLPFC) [40]. In women, decreased connectivity between
the amygdala and orbitofrontal regions after testosterone administration during emotional
tasks is reported [39,41,42]. In addition, endogenous testosterone has shown effects on the
amygdala’s connectivity. While the resting-state functional connectivity (rsFC) between the
amygdala and orbitofrontal regions decreases with higher endogenous testosterone levels
in male adolescents [43], in men, endogenous testosterone was significantly correlated with
the task-based connectivity of the amygdala and the ventrolateral prefrontal cortex in an
emotional approach–avoidance task [44]. Notably, in women, the endogenous testosterone
level was inversely correlated with the coupling of the amygdala and the superior temporal
gyrus [34], and changes in testosterone levels due to competition were associated with
stronger coupling of the amygdala and the orbitofrontal cortex [34].

Summarizing these previous studies, endogenous testosterone seems to be associated
with increased coupling of the amygdala with the frontal cortex in men but with decreased
coupling between the amygdala and cortical regions in women. Therefore, an interaction
between sex, testosterone, and functional connectivity is likely, and it can be hypothesized
that testosterone reconfigures neural functional connectivity at rest in a sex-specific manner.
This is specifically of interest as testosterone and amygdala functioning seem to drive social
and affective behavior, albeit potentially differently in women and men. Sex differences
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are further evident in the prevalence rates of neurological and mental disorders (e.g.,
Parkinson’s disease, Huntington’s disease, dyslexia, attention deficit hyperactivity disorder,
autism, depression, anxiety disorder, schizophrenia) [45–48]. However, until now, no direct
comparison of the amygdala’s functional connectivity and its relationship to testosterone
in women and men has been published. Unfortunately, research investigating associations
with hormones often focuses either on female or male samples. Within this research domain,
conclusions that are based on studying one sex only have limited value in understanding the
same phenomena in the other sex [46]. Thus, the interaction of amygdala connectivity with
hormone levels may contribute to sex differences in a variety of behavioral phenomena.

We can only speculate about a sex-specific impact of testosterone on the amygdala’s
functional connectivity. Combining previous reports, however, this is highly expected.
RsFC allows for the revealing of the functional organization of the brain and contributes
to the understanding of sex differences, the coupling between the amygdala and other
brain regions, as well as its association with endogenous testosterone, independent of an
applied task.

Here, we examine the association of functional connectivity strength with testosterone
levels. In particular, the aims of the current study are (1) to assess the rsFC of the amygdala
in healthy young women and men in association with endogenous testosterone, and
(2) to analyze whether women and men express different patterns of rsFC of the amygdala
in association with testosterone. Based on previous findings, we hypothesize that higher
endogenous testosterone levels are associated with increased connectivity of the amygdala
with prefrontal regions in men [44], whereas testosterone is negatively associated with
the connectivity of the amygdala and frontal regions in women [34,39,41]. Furthermore,
as reports indicate an association between testosterone and social-oriented behavior, we
expect that the functional connectivity of the amygdala in association with testosterone
also impacts social-oriented personality traits [13–17].

2. Materials and Methods
2.1. Sample

In 94 students (non-smoking, right-handed), resting-state data and anatomical scans
were assessed (see also [30] for a further description of the sample). Thirteen subjects
were excluded (missing hormone data: n = 1; outliers in hormone data (mean +/−
2 standard deviations): n = 8; sickness: n = 1; scanner movement matching between groups:
n = 3 [49,50]), resulting in a final sample of 81 participants (42 women; see Table 1 for the
sample description and [30]).

The exclusion criteria were any history of psychiatric or neurological disorders, chronic
diseases (e.g., allergic asthma), drug intake, competitive sports, working night shifts,
hormone intake, premenstrual dysphoric disorder, recent or current pregnancy, and any
MR incompatibility. Only naturally cycling women without the use of oral contraception
were included. The cycle length was estimated by tracking at least three previous cycles.
Women with a cycle length of >35 days were excluded.

To increase comparability by decreasing the potential effects of the circadian rhythm,
the measurements were scheduled in the afternoon between 2:30 p.m. and 5:30 p.m.
Participants were asked to refrain from exercise or alcohol consumption (24 h prior to the
measurements), medication, caffeine and drug intake (on the test day), and food and drink
other than water (for two hours before the measurements). Upon arrival, participants
were asked for subjective mood ratings (positive and negative affect scale, PANAS) [51]
and to provide saliva samples for hormone analyses (approximately 15 min after arrival)
(see also [30,52–54]). Furthermore, participants completed questionnaires on personality
(NEO-FFI, [55]) and social gender roles (BSRI, [56]).

This study was approved by the Institutional Review Board of the Medical Univer-
sity of Vienna (project number: 2011/1134). Participants were treated according to the
Declaration of Helsinki (1964). Written informed consent was obtained from all participants.
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Table 1. Sample description.

Women Men

Mean STD Mean STD p-Value

Age 24.31 3.942 24.00 3.052 0.695

Testosterone (pg/mL,
log-transformed) 1.37 0.257 1.86 0.267 <0.001 *

Testosterone (pg/mL) 26.63 17.26 84.45 56.45 <0.001 *

Affect (PANAS, mean scores)
Positive affect 2.63 0.708 2.64 0.625 0.952

Negative affect 1.25 0.355 1.19 0.222 0.362

Personality (NEO-FFI)
Neuroticism 32.83 7.880 28.95 6.177 0.016 *
Extraversion 42.10 6.585 40.82 5.562 0.351

Openness 48.33 6.234 44.15 6.576 0.004 *
Agreeableness 45.98 5.033 41.77 5.029 0.000 *

Conscientiousness 42.07 6.535 40.08 7.727 0.212

Gender roles (BSRI)
Masculinity 92.67 12.491 95.05 13.504 0.412
Femininity 95.14 10.166 90.79 10.931 0.067
Androgyny 0.18 0.979 −0.30 0.974 0.030 +

Note: Negative affect and testosterone raw scores were not normally distributed and were therefore log-
transformed. For negative affect and raw scores of testosterone, Mann–Whitney U tests for independent samples
were used to compare groups. Significant group differences are marked with an *. + indicates results do not
survive correction for multiple comparisons. STD = standard deviation.

2.2. Saliva Samples

The saliva samples were stored at −20 ◦C at least until shipping to the analysis
laboratory (SwissHealthMed, Aying, Germany), where they were thawed and centrifuged.
To obtain the testosterone concentrations, competitive luminescence immunoassay kits
(LUMI) were used, which have minimal cross-reactivity with other steroid hormones and
achieved reliable measurements (intra-assay CV < 4% and inter-assay CV < 7%). The lower
sensitivity limit of the immunoassay kits was 1.8 pg/mL and the standard curve range
was 1.8–500 pg/mL. Salivary testosterone measures correlate positively with serum-free
testosterone levels and other circulating androgen markers (bioavailable testosterone, total
testosterone) [57,58].

The hormone data were transformed using a log transformation (y = log10(x + 1))
prior to the statistical analyses as they were not normally distributed.

2.3. Data and Statistical Analysis of Behavioral and Hormone Data

For the statistical analyses of the sex differences in age, testosterone levels, PANAS,
NEO-FFI, and BSRI, as well for the regression analyses, IBM SPSS Statistics for Windows,
Version 20.0 (IBM Corp., Armonk, NY, USA) was used. The significance level was set to
p < 0.05. The results were corrected for multiple comparisons (Bonferroni–Holm correc-
tion). To explore the associations of testosterone, functional connectivity and sex with
social behavior, we performed exploratory multiple regression analyses with personality
characteristics impacting social behavior as the dependent variable. Multiple linear regres-
sion analyses (predictors: sex, testosterone, and amygdala connectivity that appeared at
the whole-brain level in association with testosterone, and their interactions; predictors
were centered; forced entry) on personality (NEO-FFI) and social gender roles (BSRI) were
performed to further characterize the impact of testosterone, sex and brain connectivity
on social personality characteristics. As sex and testosterone were highly correlated, we
ran separate analyses for these predictors. Thus, we ran multiple regression models with
(a) sex and amygdala connectivity that appeared at the whole-brain level as predictors and
the NEO-FFI and BSRI scales as the outcome variables; and (b) testosterone and amygdala
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connectivity that appeared at the the whole-brain level as predictors and the NEO-FFI and
BSRI scales as the outcome variables.

2.4. Resting-State Functional Connectivity Analysis
2.4.1. Acquisition and Preprocessing

The resting-state data were acquired using T2*-weighted echo-planar imaging (EPI)
with a 3 Tesla Tim Trio Scanner (Siemens Medical Systems, Erlangen, Germany) with the
following parameters: 167 time points, 23 axial slices with interleaved acquisition, TE/TR
= 38/1800 ms, voxel size 1.5 × 1.5 × 3 mm, bandwidth = 1446 Hz/pixel, 1.8 mm slice
gap. The data were processed using SPM8 (Wellcome Trust Centre for Neuroimaging,
London, http://www.fil.ion.ucl.ac.uk/spm/software/spm8/; accessed on 29 September
2023; MATLAB Version R2012b; MathWorks Inc., Sherborn, MA, USA). Prior to the analyses,
the first four volumes were discarded. The images were corrected for geometric distortions
using field maps. Head movement was corrected via affine registration using a two-pass
procedure (images were first aligned to the initial volume and subsequently to the mean
of all the volumes). Next, the mean EPI image was spatially normalized to the MNI152
template [59], i.e., via the “unified segmentation” approach [60]. The ensuing deformation
was applied to the individual EPI volumes. The images were smoothed (5 mm full-width-
at-half-maximum Gaussian kernel) to improve the signal-to-noise ratio and to compensate
for any residual anatomical variations. The data were processed as follows [30,61]. In
order to reduce the spurious correlations, the voxel time-series were regressed against
the following nuisance variables: (1) six motion parameters (image realignment), and
(2) their first derivatives. All the nuisance variables entered the model as first- and second-
order terms [50]. The data were further band-pass filtered (cut-off frequencies of 0.01 and
0.08 Hz).

2.4.2. Functional Connectivity Analyses

The amygdala volumes (whole left and right volumes), as seed regions, were derived
from the AnatomyToolbox v2.0 [62]. The time courses of all the voxels within each seed
were extracted for each subject and expressed as the first eigenvariate. To quantify the rsFC,
linear (Pearson) correlation coefficients were computed between the seed regions’ time
series and the time series of all the other GM voxels of the brain. The voxel-wise correlation
coefficients of each subject and seed were transformed into Fisher’s Z-scores. These were
subjected to a second-level GLM to test for group differences and the effects of testosterone,
with the factor sex and the covariate testosterone, including non-sphericity correction as
implemented in SPM.

Whole-group analyses (women and men; n = 81) of the testosterone associations were
conducted in conjunction with the main effect of the amygdala’s (positive and negative)
functional connectivity to restrict the analyses to only those regions that are significantly
connected with the amygdala. Sex differences (men vs. women and women vs. men) in the
pattern of the covariate testosterone were assessed in conjunction with the main effect of
the amygdala (positive or negative rsFC) and masked with the main effect of the covariate
testosterone for each sex. We determined the conjunctions between (1) sex differences in the
pattern of the covariate testosterone with the association of the rsFC of the amygdala (t-tests
between women and men) and (2) the main effect of the rsFC of the amygdala for each
sex (testosterone x sex 1 vs. sex 2 ∩ amygdala). This conjunction-based approach tests for
(a) sex differences in the pattern of the association between testosterone and the rsFC of the
amygdala and (b) restricts the analyses in association with testosterone to regions that have
significant functional connectivity with the amygdala. In addition to this, the conjunction
was masked with the effects of testosterone in each sex (correlations for sex 1 or sex 2). This
approach (a) restricts the analyses to regions that are significantly functionally connected
with the amygdala and (b) shows whether the rsFC is associated with testosterone within
women or men [30].

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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The results were thresholded at the cluster level of FWE p < 0.05 (cluster-forming
threshold at the voxel level p < 0.001) [30]. For illustration purposes and to assess the direc-
tion of the sex differences in the correlations of testosterone and the rsFC, the correlation
coefficient of the rsFC of the amygdala with regions that appeared to be significant at a
whole-brain level were extracted and further investigated.

2.5. Functional Characterization

To characterize the functions of the specific brain regions derived in the current
analyses, we used the BrainMap database, which includes metadata of published functional
neuroimaging experiments with coordinate-based results [63]. We used the metadata of
functional neuroimaging experiments in BrainMap to identify the behavioral phenomena
underlying the occurring regions. Importantly, this characterization reveals the behavioral
domains and paradigm classes in which the regions of interests are typically involved.
Thus, instead of basing our interpretation and discussion of the resulting brain regions on a
few previous, manually selected studies that report on this region, we systematically tested
across the published literature the tasks and paradigms that have been used when the
respective region has been reported to be activated. Metadata categories in the BrainMap
database that classify every single experimental contrast according to the “behavioral
domain” (e.g., emotion, cognition, or perception) and “paradigm class” (e.g., flanker
task, mental rotation tasks, or reward tasks) [64] were included (see http://brainmap.
org/taxonomy/overview.html, accessed on 29 September 2023, for the complete list of
behavioral domains and paradigm classes). The forward- and reverse-inference approaches
were calculated for the analyses, as described previously [65,66]. The forward-inference
approach determines the probability of observing activity in a brain region when a mental
process is present. Thus, we tested whether the conditional probability of activation given
a particular task P(Activation|Task) was higher than the baseline probability of activation
P(Activation). The baseline denotes the probability of finding an (random) activation from
BrainMap in the region of interest. Significance was tested using a binomial test (p < 0.05,
corrected for the false discovery rate (FDR)). Additionally, the reverse-inference approach
tests the probability of the presence of a mental process given knowledge of activation
in a particular region of interest. This likelihood P(Task|Activation) can be derived from
P(Activation|Task) as well as P(Task) and P(Activation) using Bayes’ rule. Significance was
assessed by means of a chi-square test (p < 0.05, corrected for multiple comparisons).

2.6. Voxel-Based Morphometry (VBM) Analysis

To exclude the potential effects between testosterone and the amygdala volume, we
performed a structural covariance analysis. A high-resolution anatomical image with a
T1w-MPRAGE sequence (3-D Magnetization Prepared Rapid Gradient Echo: 160 sagittal
slices, TR = 2300 ms, TE = 4.21 ms, 1 × 1 × 1.1 mm resolution, flip angle 9◦, inversion
time 900 ms) was acquired from each participant. The anatomical scans were preprocessed
with the VBM8 toolbox (dbm.neuro.uni-jena.de/vbm) in SPM8 using standard settings
(DARTEL normalization, spatially adaptive non-linear means denoising). Within a unified
segmentation model [60], the images were corrected for bias-field inhomogeneities. The
brain tissue was classified into gray matter, white matter and cerebrospinal fluid, adjusted
for any partial volume effects and spatially normalized to the Montreal Neurological
Institute (MNI) template. The segmented images were non-linearly modulated to adjust
them to the amount of expansion and contraction, which was applied during normalization.
We computed the volume of the left and right amygdala by integrating the (non-linearly)
modulated voxel-wise gray matter probabilities for each subject. Age was included as a
nuisance variable. As we did not multiply the segmented images by the linear components
but rather modulated the images by the non-linear components only, the calculated gray
matter volume represents the amount of gray matter corrected for the individual brain
size (see also [30] for the VBM analysis). We performed a structural covariance analysis to
test for potential effects between testosterone and the amygdala volume. Furthermore, we

http://brainmap.org/taxonomy/overview.html
http://brainmap.org/taxonomy/overview.html
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tested for sex differences in the correlations of testosterone with the left or right amygdala
volume. Statistical significance was evaluated at p < 0.05 and Bonferroni-corrected for
multiple comparisons.

3. Results
3.1. Sample Description

The women and men did not differ in age, positive or negative affect (PANAS) (see
Table 1), nor in the resting-state movement parameters (DVARS, FD, RMD, all ps > 0.689).
The men had significantly higher testosterone levels than the women (t(79) = 8.401,
p < 0.001, d = 1.868), whereas the women had higher scores for neuroticism (t(79) = 2.456,
p = 0.016, d = 0.546), openness (t(79) = 2.936, p = 0.004, d = 0.653), and agreeableness
(t(79) = 3.760, p < 0.001, d = 0.836) (Figure 1).
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Figure 1. Personality (NEO-FFI) and gender role (BSRI) values separately for women and men.
Significant sex differences appeared for neuroticism, openness, and agreeableness (marked with
an *). (Neuro = neuroticism, Extra = extraversion, Open = openness, Agree = agreeableness,
Cons = conscientiousness, Masc = masculinity, Fem = femininity, Andro = androgyny).

3.2. Amygdala rsFC and Testosterone: Whole Group

Across the whole group, higher testosterone levels were associated with stronger
functional connectivity between the right amygdala and the right middle occipital gyrus
(MOG) (as shown in Figure 2A, Table 2). The functional decoding of the right MOG linked
this region with visual perception of shape and spatial cognition (behavioral domain,
forward inference) and overt naming, mental rotation and visual distraction and attention
(paradigm classes, forward inference) (Figure 2B). For the reverse-inference approach,
attention emerged additionally.
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behavioral domains (graphs in the upper panel) and paradigm classes (graphs in the lower panel) for
the cluster in the MOG showing a significant rsFC with the amygdala in association with testosterone.

Table 2. Connectivity of the right amygdala.

t Value X Y Z Macroanatomical Location

(A) rsFC of the right amygdala in
correlation with testosterone

Whole group (n = 81)
Cluster 1 (k = 98)

4.29 38 −82 14 R Middle occipital gyrus
4.16 34 −74 10
3.91 42 −86 10 R Middle occipital gyrus

(B) rsFC of the right amygdala in
correlation with testosterone

Men (n = 39) > women (n = 42)
Cluster 1 (k = 86)

4.90 24 6 62 R Superior frontal gyrus
4.29 20 8 58
3.83 28 −2 62

Note. Resting-state functional connectivity (rsFC) of the right amygdala. (A) rsFC of the right amygdala in
association with testosterone (whole group, women and men). (B) Sex differences in the correlation between
testosterone and the rsFC of the right amygdala. k = cluster size, R = right.

3.3. Amygdala rsFC and Testosterone: Men vs. Women

The men and women differed in the relationship of testosterone and the functional
connectivity of the right amygdala with the right posterior superior frontal gyrus (SFG)
(as shown in Figure 3A, Table 2). In women, lower testosterone levels were associated
with increased rsFC between the amygdala and the right SFG. No significant association,
albeit the reverse pattern (higher testosterone levels going along with increased rsFC), was
seen for men. No significant effects were seen for the left amygdala. Functional decoding
revealed an association between the cluster in the right posterior SFG and the behavioral
domains of spatial cognition, motion perception, working memory and action inhibition
as well as the paradigm class of mental rotation (forward inference) (Figure 3B). For the
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reverse-inference approach, additionally, the behavioral domain of action execution and
the paradigm classes of n-back and saccades appeared.
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Figure 3. (A) We found a significant negative correlation of testosterone with the resting-state
functional connectivity (rsFC) between the right amygdala (AMY, green) and the right superior
frontal gyrus (SFG, red) in women (red dots, red line) (marked with an *). Higher testosterone levels
were associated with decreased rsFC of the amygdala and the SFG. In men (blue dots, blue line),
no significant association was seen (log-transf. = log-transformed). (B) Likelihood ratio for the
forward-inference approach for the significant behavioral domains (graph in the upper panel) and
paradigm classes (graph in the lower panel) for the cluster in the SFG showing sex differences in the
association between testosterone and the rsFC of the amygdala.

3.4. Exploratory Regression Analyses: Impact on Social Behavior

Multiple regression analyses with the predictors sex, rsFC (right amygdala—right
MOG) and rsFC (right amygdala—right SFG) revealed the following results. Significant
effects appeared for sex on openness (model R2 = 0.150, p = 0.029, β = 0.305, p = 0.006)
and on agreeableness (model R2 = 0.171, p = 0.014, β = 0.381, p = 0.001). No other effects
appeared for the other NEO-FFI scales (all ps > 0.111). For social gender roles, no significant
models appeared (all ps > 0.243).

Multiple regression analyses with the predictors testosterone, rsFC (right amygdala—
right MOG) and rsFC (right amygdala—right SFG) revealed the following results. Testos-
terone had a significant effect on agreeableness (model R2 = 0.169, p = 0.015; β = −0.385,
p = 0.001), with higher testosterone levels indicating lower scores for agreeableness (see
Figure 4). No other effects on the NEO-FFI scales appeared (all ps > 0.244). No significant
models for social gender roles appeared (all ps > 0.482).

Please see Tables S1 and S2 in the Supplementary Material for further details on the
exploratory regression analyses.

3.5. VBM Analysis

No significant correlation occurred between the gray matter volume of the left or right
amygdala and the testosterone levels in women and men (all ps > 0.134).
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4. Discussion

The aim of the current study was to examine whether sex differences in the amygdala’s
functional whole-brain connectivity are associated with testosterone levels and whether the
rsFC strength is further associated with social personality traits. Sex differences are evident
in various cognitive and emotional domains, as well as in mental health issues, including the
diverging prevalence rates of neurological and mental disorders in women and men (e.g.,
Parkinson’s disease, Huntington’s disease, dyslexia, attention deficit hyperactivity disorder,
autism, depression, anxiety disorder, schizophrenia) [45–48]. Likewise, sex differences
appear in testosterone expression [53,67–69], as well as in the expression of the androgen
receptor [70], which may contribute to mental or neurological disorders with sex-specific
prevalence rates [71,72]. Assessing the sex-specific association between testosterone and
the amygdala’s network is therefore of high interest.

4.1. Testosterone and Functional Connectivity of the Right Amygdala

In accordance with previous findings [44], our results show that the testosterone levels
are associated with the amygdala’s functional connectivity. Across women and men, we
observed a positive association between testosterone and the functional connectivity of
the right amygdala with the right middle occipital gyrus (MOG). The right hemisphere
is dominant for visuospatial attention and memory (for a review on lateralization, see,
e.g., [73]), testosterone seems to mediate lateralization [74,75], and the lateralization of
the right occipital lobe during visual attention is further associated with testosterone [74].
Notably, in contrast to our previous study assessing the association of the amygdala’s
connectivity with cortisol [30], the amygdala’s connectivity in association with testosterone
is right-lateralized, whereas for cortisol it mainly seems left-lateralized.

Assessing the functional connectivity in the “resting brain” has the advantage of
exploring group differences independent of an employed task, which might be affected
by group differences in performance. We therefore relied on functional decoding analyses
via indirect inferences for the interpretation of specific functions of the occurring clusters
showing the rsFC with the amygdala (MOG, SFG). These functional decoding analyses of
the brain areas provide the opportunity to further characterize the respective regions in a



J. Clin. Med. 2023, 12, 6501 11 of 18

quantitative manner. Thus, our use of the BrainMap database augments the interpretation
of the neuroimaging outcomes. Based on this functional characterization analysis and
the forward-inference approach, the observed part of the MOG in the current study is
involved in the paradigm class of visual attention and the behavioral domain of spatial
cognition, amongst others. Indeed, it was shown that exogenous testosterone enhances
attention in men [76], and also performance in mental rotation tasks in women [77] and
men [78], as well as the amygdala’s activation during spatial navigation [77]. Increased
testosterone is further associated with visual attention [79,80]. These results align with
the outcome of our study. Our data further revealed lower agreeableness scores with
higher testosterone levels. Associations between personality traits and testosterone are
reported frequently [13,14,81]. Metzger and Boettger, for instance, reported changes in
assertiveness after testosterone therapy in transgender men [17]. It was also shown that
testosterone administration increases selfish behavior in economic decisions [15]. Taken
together, these results indicate that higher testosterone levels go along with less exter-
nal social orientation but higher self-focus. Focused behavior and attention induced by
testosterone might trigger increased emotional awareness in relation to spatial cognition,
which is reflected in the enhanced coupling of the amygdala and the MOG in our study. It
seems that, in general, testosterone increases the linkage between emotional salience and
spatial processing. In addition, the association between mental rotation and the testosterone
levels disappears after mental rotation training in women and men [82], suggesting that
testosterone rather increases the emotional salience of cognitive processing than improving
performance per se.

4.2. Sex Differences

We observed a negative association between testosterone and the functional connec-
tivity between the right amygdala and right SFG (dorsolateral prefrontal cortex, DLPFC)
exclusively in women. The SFG cluster overlaps with the premotor cortex [83]. A positive
association between its activation and the testosterone levels during pain stimulation in
men [84], and its functional connectivity to the amygdala [85,86], were previously reported.
Our results are also in line with previous studies reporting the decreased coupling of the
amygdala with cortical regions in women with higher testosterone [34,39,41]. In men, the
findings are controversial, with a stronger coupling between the amygdala with cortical
regions and endogenous testosterone [44] but the opposite effect with exogenous testos-
terone [40]. Additionally, we previously reported a similar sex-specific pattern for the
association between cortisol and amygdala–SFG coupling [30]. It was speculated that
testosterone’s impact on social and emotional behavior is modulated via the cognitive
control of the frontal cortex over the amygdala [39]. Indeed, some evidence shows that
the functional connectivity between the frontal cortex and the amygdala is associated with
testosterone (e.g., [40,44,87]). Our data indicate that this association differs between women
and men for the SFG.

The forward-inference approach of the functional decoding analyses revealed the
involvement of the SFG cluster in executive functions such as the behavioral domains of
working memory and action inhibition, which was reported previously [83]. Thus, in men,
testosterone might induce higher cognitive control of the amygdala via the frontal cortex,
whereas in women, testosterone might reduce the cognitive inhibition of the amygdala’s
functions. Experimental studies of neuromodulation support this notion. Transcranial
direct current stimulation (tDCS) applied to the frontal cortex can decrease the amygdala’s
activity [88] and, thereby, may additionally increase a flow experience in men [88]. Thus,
decreased amygdala activation modulated by the frontal cortex may lead to more focused
and controlled behavior in men. It needs to be further elucidated whether and how tDCS
impacts testosterone levels or is modulated by hormonal levels, whether this effect is also
seen for the superior lateral regions, and whether similar effects can be observed in women.
There is systematic evidence that sex and sex hormones impact the effects of non-invasive
brain stimulation such as tDCS [89,90]. Although testosterone is known to impact the
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activity and connectivity of brain regions (e.g., [91,92]), it needs to be elucidated in more
detail which effects it has on treatments such as brain stimulation. Although an impact of
lateral frontal cortex activation on amygdala activation is assumed, individual testosterone
fingerprints might be significant, contributing biomarkers that impact the outcomes of, e.g.,
brain stimulation. Notably, although we relied on analyzing sex differences in the functional
connectivity of the resting brain, independent of an applied task, the forward-inference
approach of the behavioral decoding analysis showed an association of the occurring SFG
cluster with a sex-sensitive paradigm class—namely, mental rotation—and the behavioral
domain of spatial cognition. There is evidence that women and men differ in the strategies
employed to solve mental rotation tasks [93]. Women tend to use analytic strategies,
whereas men rely on holistic strategies [94], which is also reflected in diverging neural
activation patterns [95]. Additionally, sex hormones seem to be differently associated with
task performance in women and men. It seems that, in men, testosterone levels predict
better task performance in a mental rotation task, which was not observed in women. In
women, evoking gender stereotypes predicted a lower task performance, although this
was not associated with testosterone levels [96]. Moreover, there is some evidence that
testosterone affects mental rotation performance in women and men differently. While
men exhibit the best performance at medium levels of testosterone, women perform best
at high levels [71,82]. Taken together with our results, and considering the psycho–bio–
social approach [96], the connectivity between the frontal cortex and amygdala might drive
opposite effects in women and men, and it might decrease cognitive, frontal control of the
amygdala in women while increasing it in men. Hence, testosterone might modulate the
cognitive control mechanisms of the frontal cortex over the amygdala differently in women
and men. Whether the levels of testosterone and neural functional connectivity impact
these behaviors in women and men in a sex-specific manner remains to be tested.

4.3. Future Directions and Limitations

While we aimed to assess sex differences, we should emphasize that the similarities
across women and men are high and the differences between the sexes are more subtle [97].
The exploration of the small effect sizes of the mean differences is nevertheless necessary
to improve knowledge of sex-specific processes, patterns, and sex-sensitive disorders, in-
cluding diagnoses and treatments, and to further enable sex-sensitive neuroscience and
precision medicine in the future. The current results suggest future clinical opportunities to
optimize and personalize medicine and to provide and choose the best intervention avail-
able for each individual. Furthermore, the associations between individual testosterone
profiles, the brain’s functional organization, and treatments such as brain stimulation, psy-
chopharmacological treatments, or psychotherapeutic interventions need to be investigated
in more detail in the future to further improve and advance targeted therapies.

This study has several limitations. The sample size is relatively small to run sex
comparisons. Future studies should increase the sample sizes with available hormone data
to guarantee robust and generalizable results. Naturally cycling women throughout the
menstrual cycle were investigated (22 women were tested in the luteal phase, 15 during the
follicular phase and 5 during ovulation). However, we did not analyze the data according
to the phase of the menstrual cycle. For exploratory reasons, we compared the three groups
regarding the testosterone levels and did not find any group differences (all ps > 0.174).
However, we cannot exclude that the diverging progesterone and estrogen levels may
interact with the reported findings regarding the testosterone effects (cf., [80]). Within
the central nervous system, testosterone is aromatized to estrogens [98], and it cannot be
excluded that increased levels of estradiol further exert effects on the brain’s functional
architecture. The current study cannot assess this association as we do not have data
on estradiol in men. Furthermore, the enzyme 5alpha-dehydrogenase, which converts
testosterone into the more active form dihydro-testosterone, shows a higher affinity for
progesterone than for testosterone [99]. Thus, high levels of progesterone during the luteal
phase would, e.g., lead to less active testosterone [80,93]. The complex interaction of
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testosterone and progesterone remains to be elucidated, as it potentially could explain
the divergent effects of testosterone on performance in women and men [71,82]. Future
studies should also investigate the interaction of sex hormones within the central nervous
system across the hormonal transition phases throughout the lifespan and the potential
impact they have on the observed patterns. In this vein, also endocrine disorders such as
polycystic ovary syndrome (PCOS) and its association with functional connectivity and
testosterone should be considered. One of the characterizations of PCOS, which is the most
common endocrine disorder in women of reproductive age, is hyperandrogenism [100].
To investigate the association between the functional connectivity of the amygdala and
testosterone levels in women diagnosed with PCOS would be of high interest to further
elucidate the effects that testosterone exerts on the brain’s functional organization.

The current results revealed the influence of testosterone on the functional organi-
zation of the brain in women and men, and thus, they contribute to the understanding
of sex differences independent of specific task demands. The rsFC has the advantage of
assessing sex differences, the coupling between the amygdala and other brain regions, as
well as its association with endogenous testosterone, independent of an applied task. In
contrast, functional task-based data might induce sex-specific differences, which further
can be associated with confounding variables. The amygdala is strongly involved in so-
cial behavior [4–7] and in networks associated with the regulation of affective and social
information [23–25], and it contains androgen receptors [8,9] that might be activated by
testosterone. The coupling of the amygdala with the frontal regions has been reported to
differ between men and women (e.g., [40–42]). Testosterone is known to impact behavior
and to vary with task demands, which is associated with sex differences [52,53]. There
is evidence that testosterone impacts and regulates the function and organization of the
brain (e.g., [91,92]). Thus, it might be that testosterone reconfigures functional networks in
a sex-specific manner. Sex differences have been reported in the performance of various
tasks, such as some tapping verbal, or visuospatial abilities (e.g., [96]). These sex differences
might further be affected by confounding variables such as gender stereotypes [96,101] or
time limits [102]. The functional organization of the brain seems to be dynamic, associated
with endogenous and exogenous sex hormones (e.g., [103–105]), and related to further
confounding variables such as stress, social behavior, environment, or genotype [106,107].
Testosterone seems to affect variables such as risk-taking behavior, aggression, and sexual-
ity (e.g., [10,108]), which might further be associated with confounding variables such as
socio-economic background. This complex interplay needs to be systematically elucidated
to establish individual fingerprints and to further improve and advance individualized
treatments for disorders affecting the brain’s architecture. To understand the underlying
mechanisms, preclinical studies are relevant. In animals, task demands can modify the ex-
pression of androgen receptors in the amygdala, which further seems to be associated with
social behavior [106]. We can only speculate on the sex-sensitive expression of androgen
receptors due to environmental demands, although it might be that social and cognitive
challenges differently impact the expression of androgen receptors in the central nervous
system. In general, more integrative research is needed in the future, combining task-based
and resting-state functional data with the assessment of additional variables that might
impact the constructs under investigation, to further enhance the reliability and validity of
the current results. Additionally, we want to acknowledge that additional confounding
variables such as age or socio-economic status might impact the sex-sensitive dynamics
that we observed between testosterone and functional connectivity.

5. Conclusions

The resting-state functional connectivity of the amygdala with the MOG and SFG
is associated with the testosterone levels and partly differs between women and men.
The levels of testosterone are positively associated with amygdala–MOG coupling and
further predict the agreeableness scores across women and men. Sex predicts the openness
and agreeableness scores, and the levels of testosterone are negatively correlated with the
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functional connectivity of the amygdala and the SFG exclusively in women, whereas this
association trends toward positive, although not significant, in men. This SFG cluster is
involved with working memory, action inhibition, and spatial cognition. The data might
indicate that the cognitive control of the amygdala via the frontal cortex depends on the
testosterone levels in a sex-specific manner. The coupling between the amygdala and the
frontal cortex in interaction with the hormone levels may drive sex-specific differences in a
variety of behavioral phenomena.
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with the right MOG and the right SFG, and their interactions (IA), as predictors of social behavior.
Table S2. Multiple linear regressions (standardized beta coefficients) for testosterone (testo), resting-
state functional connectivity (rsFC) of the right amygdala with the right MOG and the right SFG, and
their interactions (IA), as predictors of social behavior (NEO-FFI, BSRI).
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