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Abstract: Background: Peripheral nerve pathology is frequently encountered in clinical practice
among peripheral nerve and extremity surgeons. One major factor limiting nerve regeneration and
possibly leading to revision surgeries is the development of traumatic or postoperative adhesions and
scarring around nerves. In experimental models, different materials have been studied to limit scar
tissue formation when wrapped around nerves. Methods: A systematic review of studies describing
nerve-wrapping materials in a non-transectional rat sciatic nerve model was performed following the
PRISMA guidelines. Literature describing nerve-wrapping methods for the prevention of peripheral
nerve scarring in rat sciatic nerve models was identified using PubMed and Web of Science, scanned
for relevance and analyzed. Results: A total of 15 original articles describing 23 different materials or
material combinations for nerve wrapping were included. The heterogeneity of the methods used
did not allow a meta-analysis, thus, a systematic review was performed. Out of 28 intervention
groups, 21 demonstrated a preventive effect on scar tissue formation in at least one qualitative or
quantitative assessment method. Conclusions: The analyzed literature describes a variety of materials
from different origins to limit peripheral nerve scarring and adhesions. Thus, a scar-preventive
effect by wrapping peripheral nerves as adhesion prophylaxis seems likely. However, a quantitative
comparison of the studies to identify the optimal material or technique is not possible with the
diversity of used models and study designs. Therefore, further research needs to be performed to
identify the optimal nerve wraps to be used routinely in clinical practice.

Keywords: peripheral nerve injuries; biomaterials; microsurgery; nerve regeneration; nerve scarring;
nerve adhesions

1. Introduction

Peripheral nerve pathology is frequent and poses both a clinical and economic chal-
lenge [1]. Postoperative or traumatic scarring and adhesions around peripheral nerves can
cause debilitating symptoms in affected patients, hindering regeneration and sometimes
leading to further surgical treatment [2]. Scar development is a normal and essential part of
regeneration after peripheral nerve injuries, stabilizing the wound and giving the necessary
tissue structure for axonal sprouting [3]. However, extensive scarring and adhesions may
compress the nerve, impair its essential gliding ability, and can result in fibrosis within
the neural and perineural tissue [4]. This, in turn, leads to decreased nerve perfusion and
impaired regeneration after nerve injury [5,6]. Nerve scarring and adhesions occur in the
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connective tissue around nerve fiber bundles, known as perineurium and epineurium,
and in the connective tissue between the nerve and its surrounding tissues, labeled as
paraneurium [7].

Besides neurolysis and occasionally the provision of additional soft tissue coverage,
effective clinical options for the treatment of primary or secondary nerve scarring are
limited [2,8]. However, since the first clinical reports of positive effects and improved
outcomes after vein wrapping in the surgical treatment of extensive scarring around nerves,
additional research has been performed in this field and further treatment options have
been explored [9].

Numerous methods of wrapping with autologous or bioartificial materials have been
described to improve peripheral nerve regeneration and prevent scar tissue formation. The
underlying idea of this concept is to create a barrier around the nerve which prevents the
formation of extensive scarring and adhesions between the nerve and its surrounding tissue
and preserves the gliding ability of the nerve while allowing the diffusion of nutrients to
the nerve [10]. However, assessing the effects of the material used is challenging when
distinguishing between direct positive influences on nerve regeneration and secondary
positive influences due to limited or prevented scarring. Especially the wrapping of
peripheral nerves with a spacer material placed between the nerve and the surrounding
tissue seems to provide favorable results in limiting peripheral nerve scarring [10]. One
example of this technique is shown in Figure 1, where a synthetic collagen matrix is being
wrapped around a part of a rat’s sciatic nerve.
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Figure 1. In this example for nerve wrapping, a collagen matrix is being wrapped around the sciatic
nerve of a rat to limit scar tissue formation. The matrix is initially placed next to the nerve (A), then
carefully pulled through underneath the nerve (B), and finally wrapped around it (C,D).

While the rat sciatic nerve model is the most popular animal model for peripheral
nerve injury and scarring, various methods are described to induce peripheral nerve
scarring and evaluate outcomes in an experimental setting [11]. A number of studies
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use transection and consecutive epineural sutures for scar induction, while some authors
use less traumatic methods avoiding neurotmesis [11]. However, transection injuries are
significantly more traumatic than other methods of scar induction, comparing materials
tested with different injury types is hardly possible.

This study describes and reviews previously explored methods for nerve wrapping to
prevent scarring around peripheral nerves in the rat sciatic nerve model after peripheral
nerve scarring induction without neurotmesis.

2. Methods

This review was performed in accordance with the “Preferred Reporting Items for
Systematic reviews and Meta-Analyses” (PRISMA) guidelines to ensure transparency and
reproducibility [12].

2.1. Search Strategy

The scientific databases MEDLINE using the PubMed® interface and Web of ScienceTM

were used to identify publications matching the search query “(rat) AND ((peripheral nerve)
OR (sciatic nerve)) AND ((wrap) OR (wrapping) OR (cover) OR (covering) OR (coat) OR
(coating) OR (barrier) OR (space) OR (spacer)) AND ((injury) OR (scar) OR (adhesion) NOT
(transection) NOT (cut))”. The search was completed on 30 September 2022. The reference
lists of studies included in the full-text screening were also searched and 10 additional
publications were identified (citation search).

2.2. Inclusion Criteria

For this systematic review, the inclusion criteria were (1) a rat sciatic model inducing
peripheral nerve scarring and perineural adhesions, (2) nerve coating/wrapping or any
method to install a spacer material between the nerve and the surrounding tissue at the
time of injury, (3) assessment of nerve adhesions/scar formation, and (4) available full text
in English or German.

2.3. Exclusion Criteria

The review excluded studies matching the following criteria (1) nerve cut or transection
injury, (2) other animal species than the rat, (3) non-sciatic nerve models, (4) in-vitro models,
(5) other treatment/prevention methods than spacer material application, (6) no negative
control group (defined as animals with injury but without spacer application), (7) study type
of review/meta-analysis, (8) language other than English or German, and (9) publication
date after September 2022.

2.4. Study Selection

Two independent reviewers scanned the identified studies. First, titles and abstracts
were screened for each included study. Next, full texts were screened for all studies not
excluded in the abstract screening. In case of disagreement, a consensus decision was made
with the support of a senior reviewer. The process is depicted as a flow diagram in Figure 2.

2.5. Data Extraction

The publications included in the final review were analyzed and their data were
extracted and compiled for qualitative synthesis using Microsoft Excel Version 16.77.1
(Microsoft Corporation, Redmond, WA, USA). Tables for comparison of injury, intervention,
assessment, follow-up time, and effect were used to estimate the trend of the results from
the included studies. The used biomaterials were summarized regarding their regenerating
qualities as a second objective. In studies with multiple intervention groups, including
groups with transection injuries, only the groups matching our inclusion criteria were used
for qualitative synthesis.
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Figure 2. Flow diagram illustrating the study screening and selection process performed according
to the PRISMA guidelines [12].

3. Results
3.1. Study Selection

Using PubMed®, 772 studies were identified and 705 studies were found using Web of
ScienceTM. After excluding duplicates, 1198 studies remained. By applying the inclusion
and exclusion criteria, 1175 studies were excluded during the title and abstract screening. By
identifying studies from the references of the retrieved papers (citation search), 10 further
studies were included for full-text assessment. Full-text assessment was performed on
33 studies in total. Of these, 15 studies met the final inclusion criteria and were used for
qualitative synthesis [13–27].

3.2. Study Characteristics

In total, eight different methods of scarring induction were used in all included
studies [13–27], and four studies used a combination of multiple methods [16,21,25,26].
Two studies compared the effects of their investigated prevention method on multiple
scarring techniques [14,18]. Twenty-three different spacer materials and material combi-
nations were investigated [13–27]. The follow-up time until the final scarring assessment
ranged from 4 weeks to 5 months, with most studies evaluating at 6 weeks after the initial
surgery [13–27]. In total, 475 sciatic nerves were assessed in all intervention groups, ranging
from 7 to 42 per study, with a median of 15 assessed nerves per study group [13–27]. Basic
study characteristics are shown in Table 1.
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Table 1. Basic study characteristics of all included studies and their intervention groups. Mul-
tiple intervention groups within the same study are labelled with letters A–D. For commercially
produced wrappers, the production company is depicted in brackets behind the material. Abbr.:
PBS = phosphate-buffered saline, AA = ascorbic acid, HA = hyaluronic acid, PLA = polylactide,
PCL = poly(ε-caprolactone), CMC = carboxymethylcellulose (CMC), PE = phosphatidylethanolamine,
n = number of animals in group, FU = follow-up time in weeks.

Author Year Group Scarring Induction Wrapping Material n FU

Baltu et al. [27] 2017 A Epineurectomy Buccal mucosa graft 24 8

Dumanian et al. [13] 1999 A Epineurectomy Free fat grafts 14 8

Finsterbush et al. [26] 1982 A Crush injury, muscle
cauterization

Semirigid 15 mm silicone tube,
cut longitudinally 30 8

Görgülü et al. [14] 1998 A External neurolysis Collagen fibers soaked
with aprotinin 22 6

B Abrasive injury Collagen fibers soaked
with aprotinin 22 6

C External neurolysis Collagen fibers soaked
with PBS 22 6

D Abrasive injury Collagen fibers soaked
with PBS 22 6

Hernandez-Cortes et al.
[25] 2010 A Perineurectomy +

muscle cauterization
Oxidized regenerated cellulose

wrap 40 6

Kikuchi et al. [24] 2020 A Muscle cauterization E8002 wrapping (Kawasumi
Laboratories Inc., Tokyo, Japan) 7 6

B Muscle cauterization
E8002 AA- wrapping

(Kawasumi Laboratories Inc.,
Tokyo, Japan)

7 6

Li et al. [23] 2018 A Crush injury Chitosan conduit 15 12
B Crush injury HA gel 15 12
C Crush injury Chitosan conduit + HA gel 15 12

Murakami et al. [22] 2014 A Chronic constriction
injury by nerve ligation Allogenic vein wrap 30 20

Ohsumi et al. [21] 2005 A
External/internal

neurolysis + muscle
cauterization

Viscous alginate sol 8 6

Okui et al. et al. [16] 2010 A Internal neurolysis +
muscle cauterization Honeycomb poly-lactide film 42 6

B Internal neurolysis +
muscle cauterization Cast poly-lactide film 12 6

Özgenel et al. [20] 2004 A Epineurectomy Human amniotic membrane 12 12

B Epineurectomy Human amniotic membrane +
HA injection 12 12

Petersen et al. [15] 1996 A Internal neurolysis ADCON-T/N gel (Gliatech,
Inc., Cleveland, OH, USA) 9 4

B Internal neurolysis Control gel 9 4

Shintani et al. [19] 2018 A Muscle cauterization PLA/PCL tube 12 6
B Muscle cauterization 1% HA 8 6

Smit et al. [18] 2004 A External neurolysis 1% HA 5 6
B Crush injury 1% HA 7 6

Yamamoto et al. [17] 2010 A Internal neurolysis 1% HA 18 6

B Internal neurolysis CMC-PE hydrogel, low
viscosity 18 6

C Internal neurolysis CMC-PE hydrogel, high
viscosity 18 6
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3.3. Scarring Assessment

Assessing the perineural scar formation with either qualitative or quantitative meth-
ods, 14 studies reported improved outcomes in at least one intervention group [13–24,26,27],
and 1 study reported no significant difference in its only intervention group [25].

For scarring assessment, different approaches were used, including macroscopic eval-
uation (qualitative and quantitative), histological evaluation (qualitative and quantitative),
and biomechanical testing (all quantitative). Eight studies reported quantified macroscopic
scar assessment [14,15,17,19,20,23,24,27], in which twelve of nineteen intervention groups
were reported to have significantly improved results after spacer application and the re-
maining seven not demonstrating a significant effect in this assessment method. All of these
studies used the grading system for adhesions established by Petersen et al. [15], except for
one study with three groups, where a modified system was used [17]. Using histological
or microscopic methods, six studies with eleven groups combined reported quantified
outcomes [15,20,23–25,27], of which eight intervention groups were significantly improved
compared to their control groups. Biomechanical testing was performed in five studies with
nine groups combined [13,17–19,21], in eight of which a significant improvement following
spacer application was observed. Three studies used only descriptive methods for scarring
assessment, all of which reported improved outcomes [16,22,26]. Assessment methods and
overall outcome tendencies are shown in Table 2.

3.4. Used Spacer Materials

With 23 different spacer materials or material combinations investigated, this collective
of studies documents various approaches for the spacer technique [14–28]. Classifying bio-
materials in a systematic way is important to identify trends and potentials within groups of
materials. In the literature examining biomaterials used as nerve conduits, these materials
are frequently divided into two large groups: materials of natural and materials of synthetic
origin. These are further divided into subgroups regarding the main components [29].
Since tissue transplants are frequently used to wrap nerves for scarring prevention, but not
as nerve conduits, they will be listed in a separate subgroup in this review. Looking at the
underlying material origin, the spacer materials described in the examined literature can be
divided into four different (sub-)groups, as shown in Table 3. These include tissue-derived
materials, protein-based materials and polysaccharide materials, which are all counted as
natural materials, and materials based on synthetic polymers.

Tissue-derived materials: Baltu et al. described an improved epineural scar density
score after autologous buccal mucosa graft application [27]. After applying free fat grafts
from the rat’s groin region, Dumanian et al. showed a decreased nerve stiffness following
epineurectomy [13].

Furthermore, allogenic vein transplants have been thoroughly investigated as a nerve
wrap beforehand, and Murakami et al. showed reduced epineural scarring in descriptive
histology [22]. Özgenel et al. investigated the use of a human amniotic membrane xenograft
and found improved macroscopic adhesion scores after epineurectomy [20]. In another
group, Özgenel et al. combined the human amniotic membrane with 1% hyaluronic
acid (H.A.) and observed improved results in the adhesion scores and the scar thickness
measurement [20].

Protein-based materials: Using collagen fibers to wrap the nerve and compare the effects
of the proteinase inhibitor aprotinin to phosphate-buffered saline (PBS), Görgülü et al.
found improved adhesion scores in the aprotinin group, but not in the PBS group [14].
ADCON-T/N is a gel composed of porcine gelatin and a polyglycan ester in PBS. The group
treated with the ADCON-T/N gel was observed to have less macroscopic scar formation
than both, the untreated control group as well as another group treated with a control
gel, described by the authors as lacking a specific carbohydrate component [15,30]. While
this, as many others, represents a hybrid between different categories, it was listed in this
category because of gelatin’s main component, collagen.



J. Pers. Med. 2023, 13, 1431 7 of 18

Table 2. Scarring induction and assessment methods of all included studies and their intervention groups. Multiple intervention groups within the same study
are labelled with letters A–D. For commercially produced wrappers, the production company is depicted in brackets behind the material. The right two columns
show the outcomes as assessed in the study with quantitative or descriptive assessment methods. Abbr.: PBS = phosphate-buffered saline, AA = ascorbic acid,
HA = hyaluronic acid, PLA = polylactide, PCL = poly(ε-caprolactone), CMC = carboxymethylcellulose (CMC), PE = phosphatidylethanolamine.

Author Year Group Scarring Induction Wrapping Material Scar Assessment Method Scar Prevention
Quantitative Ass.

Scar Prevention
Descriptive Ass.

Baltu et al. [27] 2017 A Epineurectomy Buccal mucosa graft
Adhesion score

(Petersen et al. 1996 [15]),
epineural scar density score

yes yes

Dumanian et al. [13] 1999 A Epineurectomy Free fat grafts Nerve stiffness yes yes

Finsterbush et al. [26] 1982 A Crush injury, muscle
cauterization

Semirigid 15 mm silicone tube,
cut longitudinally Desriptive histology not described yes

Görgülü et al. [14] 1998 A External neurolysis Collagen fibers soaked with aprotinin Adhesion score
(Petersen et al. 1996 [15]) yes yes

B Abrasive injury Collagen fibers soaked with aprotinin Adhesion score
(Petersen et al. 1996 [15]) yes yes

C External neurolysis Collagen fibers soaked with PBS Adhesion score
(Petersen et al. 1996 [15]) no no

D Abrasive injury Collagen fibers soaked with PBS Adhesion score
(Petersen et al. 1996 [15]) no no

Hernandez-Cortes
et al. [25] 2010 A Perineurectomy +

muscle cauterization Oxidized regenerated cellulose wrap Connective tissue measurement no no

Kikuchi et al. [24] 2020 A Muscle cauterization E8002 wrapping (Kawasumi
Laboratories Inc.)

Adhesion score (Petersen et al.
1996 [15]), optical scar density yes yes

B Muscle cauterization E8002 AA- wrapping (Kawasumi
Laboratories Inc.)

Adhesion score (Petersen et al.
1996 [15]), optical scar density no no

Li et al. [23] 2018 A Crush injury Chitosan conduit
Adhesion score

(Petersen et al. 1996 [15]),
epineurium collagen density

yes yes

B Crush injury HA gel
Adhesion score

(Petersen et al. 1996 [15]),
epineurium collagen density

yes yes

C Crush injury Chitosan conduit + HA gel
Adhesion score

(Petersen et al. 1996 [15]),
epineurium collagen density

yes yes
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Table 2. Cont.

Author Year Group Scarring Induction Wrapping Material Scar Assessment Method Scar Prevention
Quantitative Ass.

Scar Prevention
Descriptive Ass.

Murakami et al. [22] 2014 A
Chronic constriction

injury by nerve
ligation

Allogenic vein wrap Descriptive histology not described yes

Ohsumi et al. [21] 2005 A
External/internal

neurolysis + muscle
cauterization

Viscous alginate sol Biomechanical breaking strength,
descriptive histology yes yes

Okui et al. et al. [16] 2010 A Internal neurolysis +
muscle cauterization Honeycomb poly-lactide film Descriptive histology, descriptive

macroscopic adhesion strength not described yes

B Internal neurolysis +
muscle cauterization Cast poly-lactide film Descriptive macroscopic

adhesion strength not described no

Özgenel et al. [20] 2004 A Epineurectomy Human amniotic membrane
Adhesion score

(Petersen et al. 1996 [15]), scar
thickness measurement

yes yes

B Epineurectomy Human amniotic membrane + HA
injection

Adhesion score
(Petersen et al. 1996 [15]), scar

thickness measurement
yes yes

Petersen et al. [15] 1996 A Internal neurolysis ADCON-T/N gel (Gliatech, Inc.,
Cleveland, OH, USA)

Adhesion score
(Petersen et al. 1996 [15]), scar

area measurement
yes yes

B Internal neurolysis Control gel
Adhesion score

(Petersen et al. 1996 [15]), scar
area measurement

no no

Shintani et al. [19] 2018 A Muscle cauterization PLA/PCL tube

Adhesion score
(Petersen et al. 1996 [15]),

biomechanical breaking strength,
descriptive histology

yes yes

B Muscle cauterization 1% HA

Adhesion score
(Petersen et al. 1996 [15]),

biomechanical breaking strength,
descriptive histology

no no

Smit et al. [18] 2004 A External neurolysis 1% HA Biomechanical breaking strength yes yes
B Crush injury 1% HA Biomechanical breaking strength yes yes
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Table 2. Cont.

Author Year Group Scarring Induction Wrapping Material Scar Assessment Method Scar Prevention
Quantitative Ass.

Scar Prevention
Descriptive Ass.

Yamamoto et al. [17] 2010 A Internal neurolysis 1% HA
Adhesion score, biomechanical

breaking strength, descriptive scar
area measurement

no yes

B Internal neurolysis CMC-PE hydrogel, low viscosity
Adhesion score, biomechanical

breaking strength, descriptive scar
area measurement

yes yes

C Internal neurolysis CMC-PE hydrogel, high viscosity
Adhesion score, biomechanical

breaking strength, descriptive scar
area measurement

yes yes
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Table 3. Used biomaterials and their according groups. Abbr.: PBS = phosphate-buffered saline,
PLA = polylactide, PCL = poly(ε-caprolactone), CMC = carboxymethylcellulose (CMC), PE = phos-
phatidylethanolamine.

Biomaterial Material Type Origin

Buccal mucosa graft

Tissue-based

Natural

Fat graft

Vein graft

Human amniotic membrane

Collagen fibers + aprotinin

Protein-based

Collagen fibers + PBS

ADCON-T/N gel (gel composed of gelatin and a
carbohydrate polymer in PBS)

ADCON-T/N control gel

Oxidized regenerated cellulose wrap

Polysaccharide-based

CMC-PE hydrogel

Hyaluronic acid (gel)

Alginate sol

Chitosan

Silicone

Synthetic Polymer Synthetic
PLA

PLA-PCL

E8002 (PLA-based membrane with L-ascorbic acid)

Polysaccharide-based materials: Hyaluronic acid gel is part of eight investigated groups
of the included studies, representing the most-used material in this cohort [17–20,23,25].
While it was investigated in combination with other materials in three groups, it was also
tested on its own in five groups, showing a positive effect in four of these [17–19]. As
mentioned above, it is described to have positive results in combination with a human
amniotic membrane graft [20]. Another combination is hyaluronic acid with a chitosan
conduit, showing a lower scar collagen density than the control group as described by Li
et al. [23]. In this study, the chitosan conduit is also investigated on its own. While both
the chitosan conduit and the HA show positive influences when applied individually, the
best results are achieved after combining both [23]. As the only included study describing
no improved results in any intervention group after spacer application, Hernández-Cortés
et al. tested the effects of oxidized regenerated cellulose and evaluated scar formation
using quantitative connective tissue measurement [25]. Ohsumi et al. examined a viscous
alginate sol as a spacer material, which by resulting in a lower biomechanical breaking
strength demonstrated scarring prevention, further supported by descriptive histology [21].
Two gels of different viscosities made by combining Carboxymethylcellulose (CMC) with
the phosphoglyceride phosphatidylethanolamine (PE) were investigated by Yamamoto
et al. and demonstrated to have positive effects in both versions. However, the group
treated with the lower viscosity gel showed less scarring in the macroscopic evaluation and
in breaking strength testing [17].

Materials based on synthetic polymers: Finsterbush et al. investigated the use of a
longitudinally cut silicone tube, showing lower scar tissue formation than the control group
in descriptive histology [26]. Three additional studies examined the effects of polylactide
(PLA) in different forms [16,19,24]. Kikuchi et al. presented superior effects of E8002, a
PLA-based membrane with ascorbic acid, over the control group in adhesion scores and
optical scar density, but the same membrane without ascorbic acid did not show improved
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outcomes [24]. A PLA film with a honeycomb texture demonstrated better results in
descriptive histological and adhesion strength analysis, which was not the case for the
same film in a cast texture as examined by Okui et al. [16]. Shintani et al. found improved
adhesion scores, biomechanical breaking strength, and descriptive histological results after
applying a conduit made of PLA and poly(ε-caprolactone) [19].

4. Discussion

Of 28 included intervention groups, 21 (75%) demonstrated a preventive effect on scar
development after spacer material application in at least one qualitative or quantitative
described endpoint. With 8 different scar induction methods and various outcome measures
used to assess the effect of 23 different spacer materials, the overall heterogeneity of the
described sample is high. Even though inclusion criteria for this systematic review were
set tightly to increase comparability, a quantitative analysis was not possible.

Overall, the enormous efforts in testing a variety of used materials suggest that the
technique of spacer material application around peripheral nerves to prevent perineural
adhesions is promising, and results might be attributable to the technique as well as to the
used material. Nerve wrapping might be a feasible technique to prevent extensive adhesion
and scar formation after peripheral nerve injury. However, the current literature does not
allow a conclusion on the relative significance of the material selection compared to the
independent impact of the surgical technique itself. Nevertheless, feasible wrapping mate-
rials need to have certain basic properties to be suited for this indication. Biocompatibility
plays a key role, and in future clinical settings, different aspects of patient-personalized
material selection must be considered. The goal is to provide an effective mechanical barrier
against adhesion formation between the nerve and the paraneural tissue and at the same
time create an optimal environment for nerve perfusion, mobility, and nutrition and, thus,
nerve regeneration [29].

Biocompatibility may vary from the animal model to the human model. Some materi-
als, like silicone, might show favorable outcomes in animal studies with a limited follow-up,
but lead to complications in clinical application [26,31,32]. Adverse reactions, as observed
in some materials, run contrary to the goals of placement [31,33,34]. Furthermore, the size
and diameter of the wrapping material are essential to avoid iatrogenic constriction or
overfitting, possibly reducing the desired effects [35,36].

Tissue-based spacer materials were used in four of the included intervention
groups [13,20,22,27]. Nerve wraps based on tissue and nerve covering techniques us-
ing transplanted tissue have been researched for decades, with cases of clinical application
reported for different grafts and flaps [9,37–41]. Additional soft tissue coverage or wrap-
ping with compatible tissues, like veins, shows promising results and is current practice
as a last resort in clinical practice [8]. Their use comes with advantages including high
biocompatibility, favorable biodegradation and no additional purchasing costs in the case
of autologous transplants. Especially the vein graft has been well-researched from different
perspectives in pre-clinical and clinical models [9,22,42–49]. Human amniotic membrane
wrapping is described as an option in treatment for recurrent compression neuropathies
due to its high biocompatibility and previously reported success in scar prevention [50,51].
Fat grafts or flaps are described as a successful salvage option in recurrent compression
neuropathies [37,38,41]. While buccal mucosa has not been researched in larger-scale
clinical application studies, it generally fulfills the criteria of biocompatibility and glide
apparatus preservation. In general, tissue-based materials are well-researched in peripheral
nerve surgery and frequently achieve significantly improved scar prevention and treat-
ment results; some are already in clinical use. On the other hand, depending on the exact
material, several aspects, including origin, donor site morbidity, availability, cost, and
potential adverse reactions, must be considered individually for each patient [33]. While
veins are frequently used due to their easy grafting and limited donor site morbidity, it
is unclear if one of these materials produces superior outcomes regarding scarring and
adhesion prevention.
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Four groups used protein-based spacer materials to prevent peripheral nerve scarring,
including collagen, cellulose, and gelatin [14,15,25]. Collagen has previously been described
in clinical applications for nerve wrapping after peripheral nerve surgery [52–55]. Next
to promising results in clinical testing, animal models have confirmed several positive
effects of collagen, including immunomodulation [56], neuroregeneration [47,57–59], and
pain alleviation after peripheral nerve injury [53,60]. Several collagen-based nerve wraps
and conduits are available on the market and approved for in-patient use, bringing this
technique from bench to bedside. Petersen et al. tested the effect of ADCON-T/N gel and
the effect of a control gel without one specific carbohydrate component [15]. The basis
for this gel is gelatin, largely composed of collagen, combined with a polyglycan ester
in PBS [30]. While the control gel did not show scar preventive effects, ADCON gel has
been demonstrated to have preventive effects on adhesion formation in tendon injuries
and spinal peridural fibrosis additionally to peripheral nerves [15,30,61]. However, case
reports of patients experiencing cerebrospinal fluid leaks after the use of the ADCON gel
led to the suspension of its use in spinal surgery [62]. This is one example of materials
that produce favorable outcomes in an experimental setting but might not be suitable for
frequent clinical use, as conditions in humans differ.

The group of polysaccharide-based wrapping materials includes five used materials
in the investigated studies. Although Hernández-Cortés et al. did not show an effect in
preventing perineural adhesions using a cellulose-based wrapping material [25], cellulose
has been examined with positive results in other research, including use around nerves and
tendons to prevent adhesions [63–65]. Improved oxygen and glucose diffusion through
cellulose conduits to nerves has been demonstrated [66,67]. Supporting the promising
literature, Yamamoto et al. showed perineural adhesion prevention after using a CMC-PE
gel [17]. Similarly, Urano et al. demonstrated improved neuroregeneration after CMC-
PE application in an animal model of chronic nerve compression [68]. Hyaluronic acid
gel is used in four of the included studies and shows scar preventive effects in three of
them [17–19,23]. It has been described as a scar-preventive agent on its own after peripheral
nerve injuries in previous studies [69,70]. Hyaluronic acid gel seems to show the best
results when combined with other methods, as Li et al., Özgenel et al., and others have
shown [20,23,71–73]. Another representative of the polysaccharide group is alginate, which
is already under promising investigation as both a hydrogel and a conduit material in
peripheral nerve research [74]. Due to its biochemical and biomechanical properties, it
works well as a mechanical barrier to adhesion formation [74]. Last, chitosan, a polysaccha-
ride naturally found in arthropod shells, has been broadly researched in peripheral nerve
surgery [75]. Li et al. described its scar-preventive effects on its own and combined with
hyaluronic acid [23]. As a conduit and in crystalline form, chitosan prevents epineural scar
formation [76]. Its immunomodulatory properties seem to create a favorable regenerative
environment after peripheral nerve injury. Therefore, chitosan was investigated clinically
in its use to protect coaptation sites of peripheral nerves [75,77].

While silicone was described in earlier studies to prevent perineural scar formation
and improve neural regeneration, its use has increasingly become unpopular [26,78]. Al-
though silicone is biocompatible, its non-biodegradability poses clinical use problems,
potentially leading to increased fibrosis [31,34]. Today, silastic tube cuffing is even used as
a scarring induction method in experimental models [11]. Contrarily, polylactide generally
is well-biodegradable [79]. Okui et al. investigate it in a honeycomb and a cast morphology,
reporting superior results in the honeycomb and frequent dislocation in the cast morphol-
ogy [16]. It can be modified using different other materials, as described by investigated
studies with poly(ε-caprolactone) or ascorbic acid [19,24]. Clinically, adverse reactions,
including inflammatory responses and delayed biodegradation, have been mentioned
in combination with PLA- poly(ε-caprolactone) [34]. Ascorbic acid, on the other hand,
has been preclinically observed to accelerate Wallerian degeneration and improve neural
regeneration [80,81].
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As indicated by the positive effect of the described studies, nerve wrapping appears
to have a preventive effect on scar and adhesion formation around peripheral nerves.
However, it remains unclear which materials are optimal for this purpose. While the
concept per se seems to have the desired effect, further studies are needed in order to
elaborate on the strengths and weaknesses of different materials. While some materials are
already approved for clinical use, future comparative research needs to be conducted on
their effects in order to optimize their indication in the sense of personalized treatments
based on each patient’s individual case [10].

As illustrated by some of the investigated materials, biocompatibility is essential for
the safe application of nerve-wrapping materials, and long-term effects need to be explored
before widespread clinical use [10,15,26,31,34,62]. Attention should also be brought to the
intraoperative technique of applying nerve wraps. If they are wrapped around the nerve
too tightly, this can lead to adverse effects creating increased scar formation and hindering
nerve regeneration [82].

Besides nerve wrapping, various essentially different approaches for the prevention of
perineural adhesion formation have been explored. These range from local and systemic
pharmaceutic interventions, like intraperitoneal verapamil injection [83], over cellular
applications to external radiation and frequently show promising results [84–87]. However,
the sheer quantity of research on wrapping spacers and mostly positive results indicates
that the effect of wrapping the nerve should not be underestimated. From a practical
viewpoint, the success of external radiation and repetitive pharmaceutical interventions,
both described as scar-prevention methods, are highly patient-dependent and not easy or
economical to administer. Considering the enormous amount of tested spacer materials,
refining the spacer technique will be an increasingly big part of the research process in
the future.

Görgülü et al. described the combination of collagen fibers as a wrapping material in
combination with aprotinin acting as a pharmaceutic anti-scarring agent [14]. The combi-
nation of wrapping materials with bioactive agents has been used to improve peripheral
nerve regeneration and prevent nerve adhesions in research. This includes drugs limiting
fibroblast activity and suppressing inflammatory responses [83,86–89]. Furthermore, differ-
ent bioactive agents, including drugs and mesenchymal stem cells, can be used to improve
nerve regeneration and create a favorable environment for neurite outgrowth [28,90–92].
Four studies included in this systematic review compared hybrid models, adding different
agents to wrapping materials, with the use of only one of the components [14,20,23,24].
Favorable results in using these hybrid models suggest that they will be a future refine-
ment enhancing the positive effects of spacer application for the prevention of peripheral
nerve adhesions.

In this study, several limitations exist: (1) by excluding transection injuries to homoge-
nize results, potential candidates were left out; (2) the heterogeneity of scarring induction
and assessment methods makes direct comparisons barely possible; and (3) all investigated
studies use the rat sciatic nerve model which is frequently used. However, it is not optimal
in mimicking human peripheral nerve physiology and pathology [93,94]. Therefore, the
direct translation of positive effects from the animal model to humans can be limited and
requires thorough investigation before the clinical implementation of wrapping materials
in patients. Mainly, the heterogeneity in injury types and, in some cases, the lack of dis-
tinction between primarily aiming for improved nerve regeneration or decreased scarring
introduces difficulties in the comparison of results and thus slows a transition to systematic
clinical testing.

5. Conclusions

Our systematic review of different methods for peripheral nerve wrapping demon-
strates that most of the literature describes positive effects on preventing peripheral nerve
adhesions and scarring by applying a biocompatible spacer material in the animal model.
The existing wrapping materials have to be evaluated using standardized and comparative
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animal models to filter out the most promising candidates before a transition from bench to
bedside can be made.
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