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Abstract: Non-alcoholic fatty liver disease (NAFLD) is considered the most common chronic liver
disease worldwide, affecting nearly 25% of the global adult population. Increasing evidence suggests
that functional and compositional changes in the gut microbiota may contribute to the development
and promote the progression of NAFLD. 16S rRNA gene next-generation sequencing is widely used
to determine specific features of the NAFLD microbiome, but a complex system such as the gut
microbiota requires a comprehensive approach. We used three different approaches: MALDI-TOF-
MS of bacterial cultures, qPCR, and 16S NGS sequencing, as well as a wide variety of statistical
methods to assess the differences in gut microbiota composition between NAFLD patients without
significant fibrosis and the control group. The listed methods showed enrichment in Collinsella sp.
and Oscillospiraceae for the control samples and enrichment in Lachnospiraceae (and in particular Dorea
sp.) and Veillonellaceae in NAFLD. The families, Bifidobacteriaceae, Lactobacillaceae, and Enterococcaceae
(particularly Enterococcus faecium and Enterococcus faecalis), were also found to be important taxa for
NAFLD microbiome evaluation. Considering individual method observations, an increase in Candida
krusei and a decrease in Bacteroides uniformis for NAFLD patients were detected using MALDI-TOF-MS.
An increase in Gracilibacteraceae, Chitinophagaceae, Pirellulaceae, Erysipelatoclostridiaceae, Muribaculaceae,
and Comamonadaceae, and a decrease in Acidaminococcaceae in NAFLD were observed with 16S NGS,
and enrichment in Fusobacterium nucleatum was shown using qPCR analysis. These findings confirm
that NAFLD is associated with changes in gut microbiota composition. Further investigations
are required to determine the cause-and-effect relationships and the impact of microbiota-derived
compounds on the development and progression of NAFLD.

Keywords: non-alcoholic fatty liver disease; bacterial cultures; gut microbiome; qPCR; metagenome;
16S rRNA

1. Introduction

Nowadays, non-alcoholic fatty liver disease (NAFLD) is considered the most common
chronic liver disease worldwide, affecting nearly 25% of the global adult population [1].
Moreover, the prevalence of NAFLD is expected to increase rapidly in the near future,
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associated with the rise in obesity and aging of the population. There are several important
issues concerning NAFLD that may have a great impact on health and the economic
burden of the disease. First, NAFLD includes a spectrum of clinical and histological
features, ranging from simple steatosis to non-alcoholic steatohepatitis (NASH), with
possible progression to cirrhosis and hepatocellular carcinoma (HCC). Secondly, HCC can
develop de novo in patients with NASH without the absence of liver cirrhosis. However, the
annual cumulative incidence of NASH-related HCC is low (2.6%) compared with viral HCC
(nearly 4%) [2]. Thirdly, it is now well documented that NAFLD is linked to other conditions
common to insulin resistance, such as abnormal lipid levels, metabolic syndrome [3], type
2 diabetes [4], cardiovascular diseases [5], and central nervous system disorders [6]. It is
also associated with an increased risk of developing certain extrahepatic cancers, especially
gastrointestinal (GI) cancers, breast cancer, and gynecological cancers [7].

The other major medical and biological problem is the insufficient understanding of
the morphological and functional basis of NAFLD pathogenesis to predict its course and
outcomes. The pathogenesis of NAFLD is considered complex and includes the interaction
between genetic, metabolic, inflammatory, and environmental factors. Additionally, in-
creasing evidence suggests that functional and compositional changes in the gut microbiota
may contribute to the development and promote the progression of NAFLD [8,9].

Specific consistent microbiome signatures discriminating healthy individuals from
those with NAFLD have been described in human studies. For example, it was demon-
strated that Proteobacteria were consistently enriched in steatosis and non-alcoholic steato-
hepatitis, whereas in cirrhosis, the invasion of oral bacteria (genera Prevotella or Veillonella)
into the distal intestine was observed [10,11]. At the same time, some authors [10] indicate
that metabolic confounding factors for dysbiosis (which are not always considered) are
often present in NAFLD patients; thus, bacterial signatures (genera Clostridium and Lacto-
bacillus) may overlap between NAFLD and metabolic diseases (type 2 diabetes mellitus).
Other factors influencing gut microbiota composition in patients with NAFLD include, but
are not limited to, geographical region, ethnicity, population characteristics, microbiome
sequencing tools, NAFLD diagnostic tools, disease spectrum, drug consumption, and
circadian rhythm. Consequently, these factors should also be considered when planning
the research and adjusted during the data analysis [10].

In our study, we aimed to perform a comprehensive comparative analysis of gut
microbial patterns in patients with NAFLD without significant fibrosis and patients from
the control group. We performed careful patient selection by excluding those suffering
from type 2 diabetes mellitus, impaired glucose tolerance, or arterial hypertension, and
those following restrictive diets. To obtain comprehensive data reflecting microbiota
changes in NAFLD, we used different evaluation methods: bacterial cultures, quantitative
polymerase chain reaction (qPCR), and next-generation sequencing (NGS) of the 16S rRNA
gene (V3–V4). Our study included only Moscow residents, thus minimizing the effect of
geographic region on gut microbiota composition.

2. Results
2.1. MALDI-TOF-MS

A pairwise comparison was made using the Mann–Whitney test for the NAFLD/control
groups. Four bacteria were found to significantly differ between the groups. The results
are presented in Table 1.

Table 1. Mann–Whitney results for MALDI-TOF-MS data.

List of Bacterial Species Adjusted p-Value Abundance

Bacteroides uniformis 0.021 Control
Enterococcus faecium 0.018 Control
Collinsella aerofaciens 0.011 Control

Candida krusei 0.045 NAFLD
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The differences in the identified microorganisms were visualized (Figure 1); a negative
correlation coefficient indicates enrichment in the control group and a positive correlation
coefficient in the NAFLD samples.
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Principal component analysis was performed to check whether the two groups split
into distinct clusters. Based on the visualization of the first two components (Figure 2), we
can say that there was no obvious separation of the groups.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 26 
 

 

 
Figure 2. The first two components of the PCA analysis MALDI-TOF-MS. 

The synthesized data were subjected to a quality check, with a final quality score of 
99%. The resulting table was used to generate the xgboost model (accuracy = 97%). We 
selected the 10 most significant predictors, which are presented in Supplementary Figure 
S2. 

2.2. Real-Time qPCR Analysis 
2.2.1. Data Preprocessing 

In order to increase the amount of data for analysis, we tested whether we could 
combine the PF20, PF21, and FS20 groups (from different collection years and DNA ex-
traction methods, see Section 4). Thus, it was first necessary to ensure that there were no 
differences between the samples (separately for the control and NAFLD). To solve this, 
principal component analysis was used. Based on the graphical representation of the data 
distributions, there were no clear divisions between groups PF20 and PF21. For a more 
accurate analysis, a pairwise comparison of the two groups’ taxa content was carried out 
using the Mann–Whitney test. As a result, the content of Bacteroides sp. in NAFLD patients 
and Clostridium leptum in the controls differed significantly between the PF20 and PF21 
groups. These bacteria were excluded from the subsequent «case-control» analysis. 

Linear discriminant analysis (with LOOCV cross-validation) was further performed 
to verify the results separately for the NAFLD and control samples. As the predictive abil-
ity of the model was low, we concluded the absence of significant differences between the 
compared groups and combined the groups PF20 and PF21 into one for the further anal-
ysis (the PF group further on). 

Since there were 2–4 significantly different bacteria between samples of the FS20 
group (hereafter referred to as the FS group) and the PF group, and the overall estimate 
of the predictive ability of the LDA model was about 0.7 for both the control and NAFLD, 
the samples isolated using different methods were further analyzed separately. 

2.2.2. Statistical Testing using the Mann–Whitney Test 
A pairwise comparison was conducted using the Mann–Whitney test for 

NAFLD/control samples for groups extracted with two methods. For the PF extraction 
group, Collinsella sp. was significantly more abundant in the control sample (p = 0.04 after 
FDR correction). For the FS extraction group, Fusobacterium nucleatum and Dorea sp. were 
significantly more abundant in the NAFLD sample (p = 0.021 and p = 0.035 after FDR cor-
rection, respectively). 

Figure 2. The first two components of the PCA analysis MALDI-TOF-MS.

The synthesized data were subjected to a quality check, with a final quality score
of 99%. The resulting table was used to generate the xgboost model (accuracy = 97%).
We selected the 10 most significant predictors, which are presented in Supplementary
Figure S2.
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2.2. Real-Time qPCR Analysis
2.2.1. Data Preprocessing

In order to increase the amount of data for analysis, we tested whether we could
combine the PF20, PF21, and FS20 groups (from different collection years and DNA ex-
traction methods, see Section 4). Thus, it was first necessary to ensure that there were no
differences between the samples (separately for the control and NAFLD). To solve this,
principal component analysis was used. Based on the graphical representation of the data
distributions, there were no clear divisions between groups PF20 and PF21. For a more
accurate analysis, a pairwise comparison of the two groups’ taxa content was carried out
using the Mann–Whitney test. As a result, the content of Bacteroides sp. in NAFLD patients
and Clostridium leptum in the controls differed significantly between the PF20 and PF21
groups. These bacteria were excluded from the subsequent «case-control» analysis.

Linear discriminant analysis (with LOOCV cross-validation) was further performed to
verify the results separately for the NAFLD and control samples. As the predictive ability
of the model was low, we concluded the absence of significant differences between the
compared groups and combined the groups PF20 and PF21 into one for the further analysis
(the PF group further on).

Since there were 2–4 significantly different bacteria between samples of the FS20 group
(hereafter referred to as the FS group) and the PF group, and the overall estimate of the
predictive ability of the LDA model was about 0.7 for both the control and NAFLD, the
samples isolated using different methods were further analyzed separately.

2.2.2. Statistical Testing using the Mann–Whitney Test

A pairwise comparison was conducted using the Mann–Whitney test for NAFLD/control
samples for groups extracted with two methods. For the PF extraction group, Collinsella
sp. was significantly more abundant in the control sample (p = 0.04 after FDR correction).
For the FS extraction group, Fusobacterium nucleatum and Dorea sp. were significantly more
abundant in the NAFLD sample (p = 0.021 and p = 0.035 after FDR correction, respectively).

2.2.3. Machine Learning Model

The XGBOOST model was built on the synthesized PCR data to detect significant
bacteria.

The PF group demonstrated 95% model accuracy. The most important predictors were
Ruminococcus sp. (enrichment in the control), Bacteroides sp., and Lactobacillaceae (enrichment
in NAFLD) (see Supplementary Figure S3).

The FS group demonstrated 98% model accuracy. The most important predictors
were Bacteroides sp. (enrichment in the control) and Fusobacterium nucleatum (enrichment in
NAFLD) (see Supplementary Figure S4).

2.2.4. Correlations within Case/Control Groups

Correlations between bacteria and the parameters of age and BMI were calculated for
each sample using Spearman’s method since the data were not normally distributed.

When evaluating the NAFLD group, the PF21+ group containing only NAFLD samples
with increased BMI was combined the NAFLD sample from the PF group (group 1 + 3).
The FS group was evaluated separately. The results obtained are presented below in the
form of correlation matrices (see Supplementary Figures S5–S8).

A number of bacteria showed significant correlations in both samples—both for
patients and for controls (see Table 2).
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Table 2. Bacteria showing similar correlations in the control and NAFLD samples for the PF group
(data represent Spearman’s correlation coefficient).

Control NAFLD

Bacteroides sp.: Oscillibacter sp. −0.45 −0.52
Blautia sp.: Clostridium symbiosum 0.67 0.48

Blautia sp.: Dorea sp. 0.39 0.72
Blautia sp.: Streptococcus sp. 0.41 0.53

Clostridium symbiosum: Dorea sp. 0.31 0.63
Fusobcaterium nucleatum: Veillonella sp. 0.51 0.4

The FS group demonstrated stronger correlations than the PF group (see Supplemen-
tary Figures S7 and S8).

Accordingly, more bacteria showed significant correlations in both the NAFLD and
control samples when analyzing the FS group, including several correlations with age and
BMI (see Table 3).

Table 3. Bacteria showing similar correlations in the control and NAFLD samples for the FS group
(data represent Spearman’s correlation coefficient).

Control NAFLD

Age: Coprococcus sp. −0.3 −0.59
BMI: Enterococcus faecalis 0.61 0.41

BMI: Lactobacillaceae 0.43 0.5
Akkermansia muciniphila: Fusobacterium nucleatum −0.5 −0.39

Bacteroides sp.: Odoribacter sp. 0.77 0.53
Bacteroides sp.: Parabacteroides sp. 0.6 0.62

Bifidobacterium sp.: Blautia sp. 0.38 0.56
Bifidobacterium sp.: Clostridium symbiosum 0.72 0.3

Bifidobacterium sp.: Coprococcus sp. 0.6 0.52
Bifidobacterium sp.: Roseburia sp. 0.67 0.26

Bifidobacterium sp.: Ruminococcus sp. 0.5 0.37
Blautia sp.: Roseburia sp. 0.63 0.43
Blautia sp. Collinsella sp. 0.52 0.61

Blautia sp.: Clostridium symbiosum 0.51 0.47
Blautia sp.: Ruminococcus sp. 0.47 0.5

Blautia sp.: Dorea sp. 0.8 0.64
Clostridium symbiosum: Faecalibacterium prausnitzii 0.68 0.34
Clostridium symbiosum: Fusobacterium nucleatum −0.59 −0.25

Clostridium symbiosum: Oscillibacter sp. 0.51 0.37
Clostridium symbiosum: Roseburia sp. 0.64 0.63

Clostridium symbiosum: Ruminococcus sp. 0.63 0.29
Collinsella sp.: Streptococcus sp. 0.7 0.42

Coprococcus sp.: Clostridium symbiosum 0.58 0.49
Coprococcus sp.: Roseburia sp. 0.63 0.42

Dorea sp.: Clostridium symbiosum 0.58 0.64
Dorea sp.: Collinsella sp. 0.5 0.76

Dorea sp.: Coprococcus sp. 0.5 0.59
Dorea sp.: Odoribacter sp. −0.29 −0.5
Dorea sp.: Roseburia sp. 0.81 0.52

Desulfovibrio sp.: Enterococcus faecalis 0.52 0.45
Enterococcus faecalis: Streptococcus sp. 0.33 0.69

Faecalibacterium prausnitzii: Roseburia sp. 0.39 0.65
Lactobacillaceae: Ruminococcus sp. 0.3 0.77
Lactobacillaceae: Streptococcus sp. 0.71 0.54

Odoribacter sp.: Parabacteroides sp. 0.75 0.8
Roseburia sp.: Streptococcus sp. 0.39 0.58
Ruminococcus sp.: Roseburia sp. 0.52 0.5

Ruminococcus sp.: Streptococcus sp. 0.34 0.71



Int. J. Mol. Sci. 2023, 24, 15272 6 of 24

2.3. NGS

Alpha diversity is a measure of how varied a single sample is, usually taking into
account the number of different species observed. In order to access sample richness
and/or evenness, six alpha diversity indices were calculated: Shannon, Faith, Pielou,
Chao1, Simpson, and Strong (Figure 3). A nonparametric Mann–Whitney statistical test
was used to compare the values. Based on the results, we cannot reject the null hypothesis
that there are no differences between the groups.
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Beta diversity provides a measure of the similarity or dissimilarity of one microbial
composition to another. Eitchison’s distance was used to calculate beta diversity. The
graphs below show the main PCA components (Figure 4), followed by a visualization of
the first two components. The color marker indicates the location of the groups relative to
each other.

We also tested whether the samples cluster using PERMANOVA multivariate analysis
of variance. The results for the two methods were similar, with the groups overlapping for
the most part (Figure 5).

The next step was the latent Dirichlet allocation analysis. The number of topics
for analysis was determined by the point on the graph where the “CaoJuan2009” and
“Arun2010” indicators had the lowest value. For RDP data, the optimal number of topics
was 36 (Figure 6A). Of the topics obtained, #21 and #25 showed the greatest contribution
to the difference of samples in probability (~1.5 times, Figure 6B). It is worth noting that
topics 21 and 25, although showing a numerical difference, did not pass the threshold of
significance (using FDR) when refining the p-value (p-adj > 0.05). Graphs C and D on
Figure 6 show the proportions of probability of bacterial representation in the identified
topics, with Veillonellaceae (bac69, abundance in NAFLD, topic 21) and Ruminococcaceae
(bac10, abundance in control), Muribaculaceae (bac25, abundance in NAFLD), Lachnospiraceae
(bac31, abundance in NAFLD) (topic 25) being the most represented. Graph E represents
the association of each family individually with NAFLD status. Muribaculaceae (bac25,
abundance in NAFLD) and Barnesiellaceae (bac41, abundance in control) showed up at
this stage.
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The same procedure was reproduced for the SILVA data (Figure 7).
In this case, the data themes were divided into 39 topics (Figure 7A). The largest dif-

ferences were shown by topics 15 and 16; however, the topics did not pass the threshold of
significance (p-adj > 0.05). The following families had greater contributions: Lachnospiraceae
(bac17, abundance in NAFLD), Bifidobacteriaceae (bac133, abundance in control; topic 15)
and Oscillospiraceae (bac10, abundance in control), Ruminococcaceae (bac4, abundance in
NAFLD) and Desulfovibrionaceae (bac145, abundance in control) (topic 16). When looking at
the contribution of each family separately, the difference between the samples was evident
for Desulfovibrionaceae and Acidaminococcaceae (bac 59, abundance in control).
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of the 21 topics; (D)—Summary of the 25 topics; (E)—Bacteria contribution to sample distinction.
Different colors on the subfigures (C–E) indicate different bacterial taxa. The dot size on the subfigures
(C,D) reflects the probability value.
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Microbial signatures were further identified using penalty regression. A graphical
representation of the taxa composing the signature and their coefficients is presented in
Figure 8.
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Figure 8A,B graphs confirm the presumed absence of a normal distribution in the data.
The families, Sphingomonadaceae (abundance in NAFLD), Ruminococcaceae (abundance in
control), and Lactobacillaceae (abundance in control), showed the greatest contribution in
the analysis of the RDP results, whereas the families, Acholeplasmataceae (abundance in
NAFLD) and Enterococcaceae (abundance in control) showed the greatest contribution in
the analysis of the SILVA results.

Further, the Mann–Whitney test was used to compare the NAFLD and control samples.
The results, taxonomy, and abundance of the bacteria are presented in Tables 4 and 5.

Table 4. Mann–Whitney results for RDP data (Family).

Domain Phylum Class Order Family Adjusted
p-Value Abundance

Bacteria Firmicutes Clostridia Clostridiales Gracilibacteraceae 0.017 NAFLD
Bacteria Firmicutes Negativicutes Acidaminococcales Acidaminococcaceae 0.034 control
Bacteria Bacteroidetes Chitinophagia Chitinophagales Chitinophagaceae 0.038 NAFLD
Bacteria Planctomycetes Planctomycetacia Pirellulales Pirellulaceae 0.044 NAFLD
Bacteria Firmicutes Erysipelotrichia Erysipelotrichales Erysipelatoclostridiaceae 0.046 NAFLD
Bacteria Bacteroidetes Bacteroidia Bacteroidales Muribaculaceae 0.048 NAFLD
Bacteria Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae 0.048 NAFLD

Table 5. Mann–Whitney results for SILVA data (Family).

Domain Phylum Class Order Family Adjusted
p-Value Abundance

Bacteria Firmicutes Negativicutes Acidaminococcales Acidaminococcaceae 0.035 control
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2.4. Comparative Analysis of Several Assessment Methods

The combination of several assessment methods (PCR, cultures, NGS) and several
statistical tools made it possible to obtain a comprehensive picture and comparison of the
NAFLD and control sample microbiota. Table 6 below lists the taxonomic groups that were
found to be significant for at least two methods of analysis (for example, PCR analysis and
the culture method, or two different statistical analyses within the same methodology).

Table 6. Statistically significant taxonomic groups for several methods of analysis used.

NGS 16S qPCR Culture

Collinsella sp.
Enrichment in control (discovered
in 38–48% of samples, content less

than 0.5%)

Statistically significant taxon
according to the

Mann–Whitney method
(PF group)

Enrichment in control
(discovered in 38–48% of

samples, content less than 0.5%)

Fusobacterium nucleatum
Not presented—discovered in

2 patients (content less
than 0.05%)

Statistically significant taxon
according to the

Mann–Whitney method
(FS group)

An important taxon in
XGBoost analysis:

PF group—#7
FS group—#2

Enrichment in NAFLD

Not presented

Acidaminococcaceae

An important taxon in the latent
Dirichlet distribution

analysis (SILVA)
An important taxon in Linear

Discriminant Analysis
(SILVA, RDP)

Statistically significant taxon
according to the Mann–Whitney

method (SILVA, RDP)
Enrichment in control

Not analyzed Not presented—discovered only
in 1 patient

Bifidobacteriaceae

An important taxon in the latent
Dirichlet distribution

analysis (SILVA)
Enrichment in control

An important taxon in
XGBoost analysis
Bifidobacterium sp.

(#4, PF group)
Enrichment in NAFLD

Important taxa in XGBoost
analysis: Bifidobacterium

adolescentis (#1)
Bifidobacterium longum (#2)

An important taxon in Principal
Component Analysis:

Bifidobacterium adolescentis
Enrichment in control

Enterococcaceae

An important taxon in Penalty
Regression analysis (SILVA)

An important taxon in Linear
Discriminant Analysis

(SILVA, RDP)
Enrichment in control

(Discovered in 17–21% of samples,
content less than 0.5%)

E. faecalis—discovered only in
3 patients (content less than 0.1%)

Statistically significant taxon
according to the

Mann–Whitney method
(PF2020 group): E. faecalis

Enrichment in NAFLD

Statistically significant taxon
according to the Mann–Whitney

method Enterococcus faecium
An important taxon in

XGBoost analysis:
Enterococcus faecium (#5)
Enrichment in control
An important taxon in

XGBoost analysis:
Enterococcus faecalis (#4)
Enrichment in control



Int. J. Mol. Sci. 2023, 24, 15272 11 of 24

Table 6. Cont.

NGS 16S qPCR Culture

Lachnospiraceae

An important taxon in the latent
Dirichlet distribution analysis

(SILVA, RDP)
Enrichment in NAFLD

Important taxa in XGBoost
analysis (PF group):

Dorea sp. (#8)
Roseburia sp. (#9)

Statistically significant taxon
according to the

Mann–Whitney method
Dorea sp. (FS group)

All family representatives
analyzed (Blautia sp., Dorea

sp., Roseburia sp.) are enriched
in NAFLD

Not presented—discovered only
in 1 patient

Lactobacillaceae
An important taxon in penalty

regression analysis (RDP)
Enrichment in control

Statistically significant taxon
according to the

Mann–Whitney method
(PF20 group)

Enrichment in NAFLD

An important taxon in
XGBoost analysis:

Lactobacillus plantarum (#3)
Lactobacillus delbrueckii (#6)

An important taxon in Principal
Component Analysis:

Leuconostoc lactis
Enrichment in control

Muribaculaceae

An important taxon in the latent
Dirichlet distribution

analysis (RDP)
Statistically significant taxon

according to the Mann–Whitney
method (RDP)

Enrichment in NAFLD

Not analyzed Not presented

Oscillospiraceae

An important taxon in the latent
Dirichlet distribution

analysis (SILVA)
Enrichment in control

Important taxa in XGBoost
analysis (PF group):

Ruminococcus sp. (#1)
Faecalibacterium prausnitzii (#7)

All family representatives
analyzed (Faecalibacterium
prausnitzii, Oscillibacter sp.,

Ruminococcus sp.) are enriched
in control

Not presented

Ruminococcaceae

An important taxon in the latent
Dirichlet distribution analysis

(SILVA, RDP)
An important taxon in penalty

regression analysis (RDP)
Enrichment in control (RDP), in

NAFLD (SILVA)

An important taxon in
XGBoost analysis:

Ruminococcus sp. (#1,
group PF)

Enrichment in control

Not presented—discovered only
in 1 patient

Veillonellaceae

An important taxon in the latent
Dirichlet distribution

analysis (RDP)
Family—Enrichment in NAFLD
Veillonella sp.—slight enrichment
in control (content less than 0.5%)

Statistically significant taxon
according to the

Mann–Whitney method
(group PF21)
Veillonella sp.

Enrichment in control

Not presented—discovered only
in 3 patients

3. Discussion
3.1. Single Method Results

According to recent research, the gut–liver axis contributes significantly to the patho-
genesis and development of NAFLD. Moreover, there are changes in the composition
of the intestinal microbiota of NAFLD patients. Various mechanisms correlating the gut
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microbiota with NAFLD have been proposed, including dysbiosis-induced dysregulation
of endothelial barrier function, which allows the translocation of bacterial metabolites and
cell wall components to systemic circulation, leading to inflammation [12].

In this research, we determined the differences in gut microbiota composition be-
tween NAFLD patients and a control group using MALDI-TOF-MS analysis of cultivated
microorganisms, qPCR of selected taxa, and 16S NGS sequencing.

One feature of NAFLD patients determined through the culture method was increased
abundance of Candida krusei (Mann–Whitney test, p < 0.05). It was demonstrated that abun-
dance of Candida yeasts in the gut microbiome may be associated with the pathogenesis
of NASH via fructose-dependent endogenous alcohol and triglyceride synthesis [13]. Ac-
cordingly, in this study, the serum levels of triglycerides in NAFLD patients were increased
compared with controls.

MALDI-TOF-MS analysis also showed the abundance of Bacteroides uniformis, Ente-
rococcus faecium, and Collinsella aerofaciens in the gut microbiome of the control group. It
was shown that the members of Bacteroides are the main acetic acid-producing bacteria [14],
and increased Collinsella sp. abundance may impact human epithelial cell proliferation
and improve intestinal barrier integrity via short-chain fatty acid (SCFA) production [15].
Several studies have shown that SCFAs affect the progression of NAFLD [16,17]. Therefore,
several Bacteroides strains, including B. uniformis, have been proposed as novel probiotics
(pre-clinical trials) to reduce BMI and triglyceride levels [18]. Likewise, enhanced immune
defense mechanisms in macrophages and dendritic cells and reduced gut inflammatory
signals were observed after oral consumption of Bacteroides uniformis CECT 7771 in high-fat
diet treated mice, which showed less hepatic fat deposition compared with the control
group [19]. Exposure to probiotics, prebiotics, or synbiotics has been shown to improve
the liver histology in murine models of NAFLD. Further knowledge about the interactions
between dysbiosis, environmental factors, and diet and their influence on the gut–liver axis
is required to improve the treatment of NAFLD and related diseases [20].

For qPCR data, three taxa were significantly different between the NAFLD and control
samples. Collinsella sp. Was significantly more abundant in the control sample (PF group).
Fusobacterium nucleatum and Dorea sp. were enriched in NAFLD (FS group). Collinsella sp.
colonizes mucosal surfaces [21] and produces vitamin B6 [22]. It may also produce butyric
acid [23], but its role and content in NAFLD is controversial [24–26]. Similarly, the data on
the content of Dorea sp. in the gut microbiota of NAFLD patients are contradictory [27–31],
though more evidence suggests its abundance in NAFLD. Less conflicting data can be found
concerning the Fusobacterium nucleatum, a gut opportunistic pathogen causing chronic
inflammation [32]. Its association with NAFLD has also been previously shown [33,34].

The differences in gut microbiota composition between NAFLD patients and the con-
trol group were also shown through NGS data analysis. For both databases, a decrease
in the levels of Acidaminococcaceae members was shown in the NAFLD group. Decreased
prevalence of Acidaminococcaceae is associated with a decrease in SCFA synthesis (va-
leric and propionic acids), and as a consequence, with the disturbance in the cholesterol
metabolism [35]. The NAFLD group demonstrated increased prevalence of Gracilibacter-
aceae and Erysipelatoclostridiaceae, which has been reported in earlier observations [36], as
well as an increased prevalence of Chitinophagaceae (all observations for the RDP database).
The increase in Gracilibacteraceae family members is associated with pathological status and
systemic inflammation [37]. The Chitinophagaceae family has been previously reported to be
related to liver diseases and their progression [38].

3.2. Cross-Method Comparative Analysis

The combination of several assessment methods (qPCR, cultures, NGS) and several
statistical tools made it possible to obtain a comprehensive picture of the gut microbiota in
NAFLD and controls and to perform the comparison between samples. In the “Compar-
ative analysis of several assessment methods” section above, Table 6 lists the taxonomic
groups that were found to be significant for at least two methods of analysis (for exam-



Int. J. Mol. Sci. 2023, 24, 15272 13 of 24

ple, PCR analysis and the culture method, or two different statistical analyses within the
same methodology).

Thus, when comparing the microbiota of NAFLD and conditionally healthy pa-
tients, the most interesting representatives are Collinsella sp. (enrichment in controls),
Lachnospiraceae (and in particular Dorea sp.; enrichment in NAFLD), Oscillospiraceae (enrich-
ment in controls), and Veillonellaceae (enrichment in NAFLD; and in particular Veillonella
sp.—enrichment in controls). It is worth noting that Veillonellaceae is associated with signifi-
cant fibrosis in non-obese subjects [39].

The families, Bifidobacteriaceae, Lactobacillaceae, and Enterococcaceae (particularly Ente-
rococcus faecium and Enterococcus faecalis), were also found to differ significantly between
the groups, although their relative abundance either in the NAFLD or control groups was
dependent on the method of analysis. In relation to international practice, it is gener-
ally accepted that the genus, Bifidobacterium, and the family Bifidobacteriaceae, are rather
associated with NAFLD [40–43]. The family, Lactobacillaceae [28,42] and the genus Lactobacil-
lus sp. [30,44], were also more common among NAFLD patients, although contradictory
data are also published [40]. Concerning the family, Enterococcaceae, there are mainly
mentions of an increase in family members and in particular, in the genus, Enterococcus,
in NAFLD [42,45]. Thus, the above representatives of the microbiota are indeed impor-
tant in the context of NAFLD, but further studies are needed to establish their use for
diagnostic purposes.

3.3. Bacterial Correlations

In addition to the analysis of association between the content of certain gut microbiota
taxa and NAFLD, we assessed the correlations of various bacterial taxa with each other. In
the “qPCR results” section above, Tables 2 and 3 list all the commonly found associations for
both samples within each isolation method. Moreover, we found the general correlations
reproducible between isolation methods for one or for both samples (control and/or
NAFLD). Table 7 presents these correlations as well as the published data demonstrating
the general dynamics for the detected pairs (there were no articles devoted specifically to
the analysis of correlations between different bacteria).

Table 7. Matching correlations for the PF and FS groups. (Data represent Spearman’s correlation
coefficient).

PF Control FS Control PF NAFLD FS NAFLD References

Bacteroides sp.: Parabacteroides sp. 0.35 0.6 0.46 0.62 [46–48]
Blautia sp.: Clostridium symbiosum 0.67 0.51 0.48 0.47 -

Blautia sp.: Dorea sp. 0.39 0.8 0.72 0.64 [29,46,49,50]
Dorea sp.: Clostridium symbiosum 0.31 0.58 0.63 0.64 -

Dorea sp.: Collinsella sp. 0.43 0.5 0.32 0.76 [51–53]
Lactobacillaceae: Streptococcus sp. 0.43 0.71 0.4 0.54 [54–56]

Blautia sp: Collinsella sp. 0.34 0.52 -
Collinsella sp.: Streptococcus sp. 0.34 0.7 [57,58]

Fusobacterium nucleatum: Veillonella sp. 0.51 0.49 [59,60]
Odoribacter sp.: Parabacteroides sp. 0.39 0.75 [61,62]
Bifidobacterium sp.: Collinsella sp. 0.35 0.78 [24,58,63,64]

Blautia sp.: Streptococcus sp. 0.53 0.52 [54,65,66]

For the culture method, there were no significant matching bacteria correlations be-
tween the control and NAFLD samples (so that at least one Spearman’s coefficient was more
than 0.5). However, when pooling culture data to the same taxonomic levels as those used
in qPCR, weak (>0.3) correlations were found between PCR and culture data for two taxa,
Enterobacteriaceae and Enterococcus faecalis, in both samples (control and NAFLD). Besides,
for both culture (control and NAFLD) and qPCR (control), a weak positive correlation
was observed between these taxa. The increase in some specific groups of conditionally



Int. J. Mol. Sci. 2023, 24, 15272 14 of 24

pathogenic and harmful bacteria, including Enterobacteriaceae and Enterococcus faecalis, has
been associated with chronic tissue inflammation [67]. Numerical data are presented in
the Table 8.

Table 8. Matching correlations for qPCR and culture method.

Control NAFLD

qPCR E. faecalis—Culture E. faecalis 0.41 0.33
qPCR Enterobacteriaceae—Culture Enterobacteriaceae 0.38 0.48

qPCR Enterobacteriaceae—qPCR E. faecalis 0.43 0.08
Culture Enterobacteriaceae—Culture E. faecalis 0.35 0.32

It should be noted that in contrast to molecular biological methods, the culture method
is capable of evaluating only viable organisms, which can lead to a difference in verdicts.
This property is both an advantage, since the method provides unique information about
a sample, and a disadvantage, since it imposes strict requirements on the conditions for
biomaterial collection and storage. Another limitation is that only a small fraction of the
gut microbiota can be cultivated, even within the same family. In addition, the culture
method can only conditionally be called quantitative, since its accuracy is within the order
of magnitude (due to the tenfold dilutions used).

The 16S NGS method is best applied at the family level, with at least 150–200 reads
per taxon in the sample to avoid statistical bias for groups with low representation (i.e.,
about 1% of the total bacterial count in this study, with 19,000 reads per sample). This is
a valuable explanatory method; however, due to the complexity of the preparation and
analysis stages, this technique has limitations in the accuracy of quantitative assessment.

In contrast, the qPCR method is highly effective for individual quantitative assessment
of the microbiota, especially at the level of species and genera. However, it is not an
exploratory analysis since it is not able to fully assess the diversity of the community. qPCR
is especially recommended in the case of organisms with low representation since it is able
to reliably detect and quantify 1–10 genomes of an individual taxon against a total bacterial
count of up to 108 in the reaction.

Thus, it is necessary to evaluate the data on the representation of various taxonomic
groups by the maximum number of available methods, since each one can explain a separate
aspect of the observed clinical picture and partially compensate for the disadvantages of
the other methods.

4. Materials and Methods
4.1. Cohort Description

The study was conducted in accordance with the guidelines of the Declaration of
Helsinki and was approved by the Institutional Ethics Committee of the National Medical
Research Center for Therapy and Preventive Medicine (protocol No 03-04/20, 28 April
2020; No. 03-07/21, 18 March 2021).

All data were obtained from a prospective cohort of NAFLD patients from the Clinical
and Diagnostic Division of the National Medical Research Center for Therapy and Preven-
tive Medicine between March 2020 and December 2021, for whom the inclusion criteria for
this study were met. Healthy volunteers comprised the control group.

The NAFLD cohort inclusion criteria were as follows: age from 18 to 75 years, Fatty
Liver Index (FLI) of 60 or greater, as well as ultrasound findings consistent with fatty liver
(see below), and a signed informed consent form. For the control group, the following
inclusion criteria were applied: age from 18 to 75 years, absence of fatty liver disease, sensu
FLI values < 60 and ultrasound data, and a signed informed consent form.

Participants with excessive ethanol consumption (>7 and >14 beverages per week for
females and males, respectively) were excluded from the study. Other exclusion criteria
were as follows: causes of secondary hepatic fat accumulation (medication, Wilson’s
disease, viral infections, starvation, or parenteral nutrition); pregnancy and breastfeeding;
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a history of bariatric surgery, liver cirrhosis and/or hepatocellular carcinoma; extrahepatic
malignancy(s) within the last 5 years; morbid obesity; type 1 or 2 diabetes mellitus; chronic
obstructive pulmonary disease; bronchial asthma; acute infectious diseases; exacerbation
of chronic non-communicable diseases (within four weeks prior to participation in the
study); chronic kidney disease stage IIIB or more severe (GFR < 30 mL/min/1.73 m2);
following restrictive diets; and individuals about to undergo or recovering from a surgical
or otherwise medical procedure. Similar exclusion criteria were applied to the control group.

All participants underwent interviewing, physical examination, collection of blood
and stool samples, and ultrasound examination of the abdominal cavity. All the above-
mentioned procedures were carried out on the same visit.

The initial sample consisted of 199 subjects. Of these, 155 had NAFLD and 44 belonged
to the control group. The main characteristics of the participants are presented in Table 9.

Table 9. The main characteristics of the study subjects.

Parameter NAFLD Patients
(n = 155)

Controls
(n = 44)

Sex: female, n (%) 91 (58.7) 34 (77.3)
Age, years, median (IR) 52 (44–60) 47 (36–51.8)

BMI, kg/m2, median (IR) 30.5 (28.1–33.8) 23.4 (21.5–26.4)
Normal weight (BMI < 25 kg/m2), n (%) 11 (7.1) 26 (59.1)

Overweight (25 ≤ BMI < 30 kg/m2), n (%) 56 (36.1) 17 (38.6)
Obesity (BMI ≥ 30 kg/m2), n (%) 88 (56.8) 1 (2.3)

Waist circumference, cm, median (IR) 101 (93–109) 79.5 (70.4–89.8)
Hip circumference, cm, median (IR) 111.5 (105–120) 99 (94.8–103.5)

Epicardial fat, mm, median (IR) 11 (8–35) 7.5 (4.3–9.8)
Platelet count, 109/L, median (IR) 236 (202–278) 233 (205–255)

FLI, median (IR) 74 (60.8–91.3) 11 (5.5–32.5)
ALT, IU/L, median (IR) 24 (17–37) 14 (10–24)
AST, IU/L, median (IR) 21 (17–26) 18 (15.5–23)
GGT, IU/L, median (IR) 30 (20.3–49.8) 17 (13–30)

Total bilirubin, mg/dL, median (IR) 13 (10–18) 11.6 (8.8–14.1)
Glucose, mmol/L, median (IR) 5.7 (5.3–6.3) 5.3 (5.03–5.8)

Total cholesterol, mg/dL, median (IR) 5.4 (4.6–6.3) 5.3 (4.5–6.5)
Triglycerides, mg/dL, median (IR) 1.44 (1.03–2.04) 0.92 (0.68–1.3)

Fibrinogen, g/L, median (IR) 3.8 (3.4–4.2) 3.5 (3.2–4.0)
CRP, mg/L, median (IR) 1.8 (0.9–3.3) 0.88 (0.43–1.7)

Creatinine, µmol/L, median (IR) 75 (69–87) 70 (63.3–79.8)
Uric acid, µmol/L, median (IR) 5.8 (4.9–7.0) 4.6 (4.0–5.9)
Insulin, µIU/mL, median (IR) 11.7 (8.2–15.2) 6.3 (4.9–8.1)

HOMA-IR > 2.7, n (%) 86 (55.4) 7 (15.9)
TyG, median (IR) 4.7 (4.6–4.9) 4.6 (4.4–4.8)

Fibrotest, median (IR) 0.16 (0.10–0.22) 0.12 (0.08–0.21)
The presented values denote frequency (%) or median (interquartile range). BMI: body mass index; FLI: fatty
liver index; ALT: alanine aminotransferase; AST: aspartate aminotransferase; GGT: gamma-glutamyl transferase;
CRP: C-reactive protein; HOMA-IR: homeostasis model assessment of insulin resistance; TyG: triglyceride
glucose index.

Human stool samples were donated by the patients and healthy volunteers who
signed informed consent, in accordance with the local ethics committee. Immediately after
delivery, the stool samples were frozen at −80 ◦C until use.

4.2. Microbial Identification using MALDI-TOF-MS

For relevant analysis, the investigated and the control groups were matched for age
and BMI, and cleared of outliers (see Section 4.6.3 Data filtering). The characteristics of the
resultant groups are presented in Table 10.
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Table 10. Baseline characteristics of patients for MALDI-TOF-MS analysis.

Control Group (n = 38) NAFLD Group (n = 38)

Age, years
Average ± SD

[min; max]

46 ± 8.6
[34; 65]

50.3 ± 8.5
[34; 67]

BMI, kg/m2

Average ± SD
[min; max]

26.8 ± 3.1
[23.3; 33.9]

27.3 ± 2.4
[23.6; 33.6]

Sex, male, n (%) 46 50

Fecal samples were used for the cultivation of various microorganisms. 1 g aliquots of
each sample were homogenized and resuspended in 9 mL of sterile 0.9% saline solution.
From the obtained solution, a series of subsequent dilutions of the suspension in saline was
prepared until a dilution of 10−9 was reached. The suspension aliquots were cultivated
on a set of selective media (Supplementary Table S1) and incubated at 37 ◦C for 24–48 h
in anaerobic and aerobic conditions, respectively. Each type of microbial colony was char-
acterized macroscopically and microscopically and identified through mass spectrometry
with MALDI-TOF MS, using the MALDI Biotyper system with Microflex (Bruker Daltonics
Inc., Billerica, MA, USA). The preparation of the samples was carried out according to the
standard procedures for the isolation of proteins, which were mainly ribosomal. The mass
spectra were analyzed within a range of 2000 to 20,000 m/z. The MALDI Biotyper ver-
sion 3.0 library and the MALDI Biotyper version 3.0 software were used for identification
considering the scores 1.5–1.7 for the genus level and scores > 2 for the species level.

4.3. Real-Time qPCR Quantification of Bacterial DNA
4.3.1. Study Group

The overall qPCR study population included 83 patients diagnosed with NAFLD
and 49 volunteers from the control group. Samples were chosen according to their DNA
concentration and total DNA yield required for the correct setting of the study. Two
different fecal DNA extraction methods were used in this study: QIAamp Fast DNA Stool
Mini Kit (FS) and QIAamp PowerFecal DNA Kit (PF) (Qiagen, Venlo, The Netherlands).
Four patient groups were categorized based on the year of collection and the method of
extraction (refer to Table 11). Within each group, the control and test groups were carefully
matched in terms of age and BMI, while also excluding any outliers (see Section 4.6.3 on
data filtering). The details of these groups are outlined in Table 12.

Table 11. Baseline characteristics of groups for qPCR analysis.

Group PF20 Group FS20 Group PF21 Group PF21+

Collection year 2020 2020 2021 2021

Extraction
method PF FS PF PF

Samples NAFLD and
Control

NAFLD and
Control

NAFLD and
Control NAFLD

Peculiarities - - -
Higher BMI,

mostly women
(see Table 12)
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Table 12. Baseline characteristics of samples for qPCR analysis.

Control Group NAFLD Group

Subgroup # 1
(n = 23)

2
(n = 14)

3
(n = 15)

1
(n = 19)

2
(n = 14)

3
(n = 19) 4

Age, years
Average ± SD

[min; max]

46.2 ± 8.1
[32; 64]

47.2 ± 11
[31; 64]

45.3 ± 9.7
[30; 64]

52.9 ± 7.6
[35; 65]

51.8 ± 9.1
[36; 65]

47.7 ± 8.7
[34; 62]

50.3 ± 10.1
[27; 70]

BMI, kg/m2

Average ± SD
[min; max]

27.7 ± 3.2
[22.7; 33.2]

24.6 ± 3.9
[19; 34]

25.3 ± 2.1
[21.5; 28.8]

28 ± 2.7
[22.5; 33.2]

27.3 ± 3.4
[21; 32]

26.7 ± 2
[23.5; 30.1]

34.2 ± 4.1
[29.5; 46.1]

Sex, male, n (%) 87 71.4 53.3 42.1 71.4 57.9 13.5

4.3.2. PCR Reaction

A DNA amount of the Lactobacillaceae, Enterobacteriaceae families; genera Bacteroides
sp., Bifidobacterium sp., Ruminococcus sp., Coprococcus sp., Oscillibacter sp., Veillonella sp.,
Odoribacter sp., Dorea sp., Blautia sp., Streptococcus sp., Desulfovibrio sp., Roseburia sp.,
Collinsella sp.; species Faecalibacterium prausnitzii, Fusobacterium nucleatum, Akkermansia
muciniphila, Clostridium leptum, Clostridium symbiosum, Enterococcus faecalis, was evaluated
using corresponding primers and TaqMan probes (Supplementary Table S2). All primer
sets were evaluated for their specificity and sensitivity in real-time PCR using DNA isolated
from strains (Center for Strategic Planning, Moscow, Russia) and purified bacterial DNA
from the Leibniz collection (DSMZ, Leibniz, Germany). Standard curves were obtained for
each primer set using serial 1:10 dilutions (from 106 to 1 copy of 16S rRNA gene in reaction)
of measured purified bacterial DNA from the aforementioned collections. The data were
cross-validated using ddPCR QX200 (Bio-Rad, Hercules, CA, USA). Corresponding slope
and interception factors were calculated for each standard curve using standard sample
concentrations expressed in genome copies/µL.

Prior to the qPCR experiment, the samples’ DNA concentration was determined
fluorometrically on the Qubit® 4.0 Fluorometer (Thermo Fisher Scientific, Waltham, MA,
USA) using the Qubit® dsDNA BR Assay Kit. Each sample was then diluted in sterile
purified water to a concentration of 1.0 ng/µL. Those diluted aliquots were used in real-
time qPCR assays and were stored at 4 ◦C between plate runs to preserve the samples
from degradation. All samples were checked for sufficient total bacterial DNA amount by
amplification of the 16S rRNA V4 region using universal primers.

All qPCR reactions were carried out using the 5× PCR Master Mix (Center for Strategic
Planning) containing hot-start Taq-polymerase and 17.5 mM MgCl2, under the conditions
recommended by the manufacturer, with 400 nM of each primer and TaqMan probe in a
volume of 25 µL. 96-well optical-grade PCR plates sealed with optical sealing tape (Bio-Rad)
were used. Sterile water served as the no template control. Each plate contained reactions of
one qPCR assay to minimize threshold-dependent biases. All PCR runs contained 5-point
series of the standard sample 10-fold dilutions, which were used to set a correct threshold
in each plate (~10% of the control sample end fluorescence to ensure the same cycles for
the standard samples in all plates).

The qPCR program: 95 ◦C—15 min, 45 cycles: (95 ◦C—15 s, 60 ◦C *—30 s) on CFX96
Touch™ (Bio-Rad).

4.4. Preparation of DNA Libraries and Sequencing

DNA extraction was conducted on samples from patients, as shown in Table 13.
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Table 13. Baseline characteristics of groups for NGS analysis.

Control Group (n = 29) NAFLD Group (n = 29)

Age, years
Average ± SD

[min; max]

45.6 ± 8.1
[31; 64]

51 ± 8.2
[34; 65]

BMI, kg/m2

Average ± SD
[min; max]

27.3 ± 2.9
[22.9; 33.2]

27.5 ± 2.5
[22.5; 33.2]

Sex, male, n (%) 79 48

DNA was extracted using QIAamp® PowerFecal Kit (Qiagen) according to the manu-
facturer’s instructions. A dsDNA HS Assay Kit and Qubit® 4.0 fluorometer (Thermo Fisher
Scientific) were used to measure the DNA concentration, and the quality of isolated DNA
was analyzed through electrophoresis in 1% agarose gel.

DNA libraries were prepared using PCR amplification with gene-specific primers for
the V3–V4 regions of 16S rRNA. The following processes were performed in accordance
with Illumina instructions. The quality of the prepared libraries was analyzed on the
Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA) using the High Sensitivity
DNA kit (Agilent Technologies). A Qubit dsDNA HS Assay Kit and Qubit® 4.0 fluorometer
were used to measure the DNA concentration. A MiSeq Reagent Kit V2 Nano was used
to prepare the DNA for sequencing; then, the samples were sequenced using the Illumina
MiSeq platform (Illumina, San Diego, CA, USA) according to the manufacturer’s protocol,
using reagents for double-ended reading and a read length of at least 250 bp. The amount
of PhiX Control v3 was not less than 1%.

4.5. Metagenome Data Processing and Analysis

The Quantitative Insights in Microbial Ecology 2 (QIIME2), version 2022.2.0, was
used to analyze and process the obtained sequencing reads [68]. Using Cutadapt plugin
implemented in the QIIME2 toolkit, we excised the remnant primers (flanking the V3–V4
region), which could result as a contaminant after automatic Illumina post-processing [69].
Then, using DADA2 [70], reads were trimmed, filtered, overlapped, and combined into
similarity cohorts to create a table of all amplicon sequence variants (ASVs) found within
every sample. These were followed by actual and relative ASV abundances. Then, we
generated a midpoint-rooted phylogenetic tree with the FastTree plugin [71], using the
prior multiple alignment of ASVs produced via MAFFT [72]. After that, we performed
the ASVs classification step via two Naïve Bayes classifiers from the scikit-learn library.
These were trained on the reference databases of 16S rRNA: SILVA (v.138.99) and RDP
(v.11.5). The obtained classification tables were merged with ASV abundance data, and the
next analysis was conducted on the family taxonomy level. Rarefaction curves displayed
asymptotic behavior per group, indicating that a 19,000 sampling depth was sufficient to
avoid sampling errors (Supplementary Figure S1).

4.6. Statistical Analysis
4.6.1. Software

All calculations were performed using R programming language (v 4.2.1) with data
processing environment Rstudio 2022.02.3 (build 492).

4.6.2. Data Conversion

(1) MALDI-TOF mass spectra profiles and the PCR data of every sample were trans-
formed in accordance with the following rule:

- all zero elements were retained,
- non-zero elements were converted using a formula (Formula (1)):



Int. J. Mol. Sci. 2023, 24, 15272 19 of 24

vij = log10 xij (1)

where xij—original non-zero value located in the i-th row, in the j-th column, vij—converted
non-zero value.

(2) Custom normalization was performed for the 16S NGS data for the sparse taxa
(after aggregation to the family level). This step was necessary to avoid sampling biases in
the abundance of sparsely inhabited family groups. With the goal of minimizing sampling
effects, low abundance taxonomic groups were ranked according to the following rule: all
values in the ASV frequency table below 31 were replaced with 0; those from 31 to 99 were
replaced with 75, and those from 100 to 149 were replaced with 125. Values outside these
ranges remained unchanged. The NGS data were transferred to the phyloseq format (using
the R package “phyloseq”). This package uses a specialized S4 class system to store all
related the data as a single experiment-level object, which simplifies information exchange
and analysis reproduction.

4.6.3. Data Filtering

To exclude the influence of age, sex, and BMI on the differences in microbiome compo-
sition, the samples for each analysis were balanced according to these parameters. Two
techniques were implemented to check the balance of covariates: principal component anal-
ysis (PCA) using the “factoextra” package, and nonparametric preprocessing for parametric
causal inference using the “MatchIt” package [73] in R. First, samples with abnormal values
were identified using PCA, and the position of healthy and diseased groups relative to each
other (based on their BMI, age, and sex) was also assessed. For the calculations, we used
the prcomp() R function of the “factoextra” package with the default parameters). Then,
using the “CEM” method (coarsened exact matching) from the “MatchIT” package, the
parameters were averaged between the groups by removing the outliers. Selected samples
are presented in the subsequent analysis.

4.6.4. Exploratory and Statistical Data Analysis
Mann–Whitney Test

A nonparametric Mann–Whitney test was performed with the “stats” library for
bacterial content using all three methods (culture, NGS, and qPCR) and NGS alpha diversity
data. CoDA transformation was chosen for the analysis of NGS data. To control the false
discovery rate, all obtained p-values were corrected according to the Benjamini–Yekutieli
procedure. The “stats” library was also used to implement this step. CoDA transformation
was chosen for the analysis of NGS data and the alpha diversity for NGS data was also
evaluated using the same statistical criterion.

Principal Coordinate Analysis

The principal components values and total scatter proportion of the original data were
calculated using the prcomp() function of the “factoextra” library with default parameters
for qPCR and MALDI-TOF data. The ordinate() function of the “phyloseq” library was
used for NGS data. The first two components were visualized on the graph to compare the
control and NAFLD groups.

Permutational Multivariate Analysis of Variance

PERMANOVA analysis of variance using the “vegan” package was performed. The
result was achieved by separating the sum of squares for components within and between
clusters using the centroid concept. We used this method to compare people from the
control group and people with NAFLD, and to test the hypothesis that centroids and group
variance are equivalent for all studied groups.
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Latent Dirichlet Distribution Analysis

Latent Dirichlet distribution analysis was applied to detect differences between groups
that were not in separately represented taxa, but in groups of bacteria that had tendencies
to occur together (similar functions or inducing external factors). The FindTopicsNumber
function in the “ldatuning” package in R was used to select the number of groups. The
“MicrobiomStat” package was used to identify significant groups, specifying the p-value
refinement using FDR methodology and a significance threshold of α = 0.05.

Penalized Regression

Microbial signatures in cross-sectional studies were identified using the “coda4microbiome”
package. The model performs variable selection through penalty regression on the set of all
pairwise logarithmic relationships of the binary trait (control and NAFLD). The analysis
was performed with default parameters. The results were expressed as a (weighted) balance
between the two taxon groups.

Simulated Data Synthesis

Synthetic data were used to increase the accuracy of the machine learning model. This
technique is often used to keep the data confidential [74]; the same approach to increase
the predictors for the correct construction of the model was utilized. The “R synthpop”
package was used to implement this step.

Machine Learning Model

The model was created using the “H2O” package, and the results were interpreted
using the DALEX package. The data were divided into test and training samples as a
70/30 ratio.

Correlation Scores

The correlation for the sample was estimated using the cor() function of the “stats”
package; Spearman’s method was used to calculate it as data do not have a normal distri-
bution. The results of the function were visualized using the “corrplot” package.

5. Conclusions

We used three independent methods (MALDI-TOF-MS, qPCR, and 16S NGS sequenc-
ing) to assess the differences in gut microbiota composition between NAFLD patients and a
control group. The most interesting observations included enrichment in Collinsella sp. and
Oscillospiraceae for the control samples and enrichment in Lachnospiraceae (and in particular
Dorea sp.) and Veillonellaceae in NAFLD. The families, Bifidobacteriaceae, Lactobacillaceae, and
Enterococcaceae (particularly Enterococcus faecium and Enterococcus faecalis), were also found
to be important members of gut microbiota in NAFLD, but require further investigation
due to the discrepancy of results in the analytical methods that were used.
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