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Abstract: Background: Since its first report in Wuhan, China, in December 2019, COVID-19 has
become a pandemic, affecting millions of people worldwide. Although the virus primarily affects the
respiratory tract, gastrointestinal symptoms are also common. The aim of this narrative review is to
provide an overview of the pathophysiology and clinical manifestations of gastrointestinal COVID-19.
Methods: We conducted a systematic electronic search of English literature up to January 2023 using
Medline, Scopus, and the Cochrane Library, focusing on papers that analyzed the role of SARS-CoV-2
in the gastrointestinal tract. Results: Our review highlights that SARS-CoV-2 directly infects the
gastrointestinal tract and can cause symptoms such as diarrhea, nausea/vomiting, abdominal pain,
anorexia, loss of taste, and increased liver enzymes. These symptoms result from mucosal barrier
damage, inflammation, and changes in the microbiota composition. The exact mechanism of how
the virus overcomes the acid gastric environment and leads to the intestinal damage is still being
studied. Conclusions: Although vaccination has increased the prevalence of less severe symptoms, the
long-term interaction with SARS-CoV-2 remains a concern. Understanding the interplay between
SARS-CoV-2 and the gastrointestinal tract is essential for future management of the virus.
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1. Introduction

Since the first report in December 2019 in Wuhan, China, coronavirus disease 2019
(COVID-19) spread all over the world, causing more than 758 million cases and 6.85 million
deaths [1].

The clinical course of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)
infection ranges from asymptomatic to a rapidly progressing and life-threatening disease
and is associated with a variety of symptoms [2].

Like other coronaviruses, SARS-CoV-2 infects the gastrointestinal tract, inducing
nausea, vomiting, abdominal pain, and diarrhea [3–5].

Since the COVID-19 occurrence in late 2019, intense research efforts on an unprece-
dented scale have focused on the study of SARS-CoV-2 entry mechanisms and clinical
presentations.

Prior to COVID-19, there were two short-lived pandemics—SARS-CoV-1 in 2002
and MERS in 2012. The first cases of SARS-CoV-1 were detected in China and quickly
spread with a high lethality rate of 11%, resulting in 8422 reported cases and 916 deaths.
Similarly, MERS emerged in Saudi Arabia with a high mortality rate of approximately 37%
and was also traced back to bats. Both viruses caused similar symptoms such as fever,
cough, dyspnea, and atypical pneumonia, as well as affecting the gastrointestinal tract
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with diarrhea being a common symptom. However, MERS had a higher prevalence of GI
symptoms, mortality rate, and need for extreme treatment measures such as mechanical
ventilation compared to SARS-CoV-1. Despite the potential for fecal–oral transmission,
extrapulmonary symptoms were not given much attention due to the short-lived and
localized nature of these pandemics [6,7].

The aim of this narrative review is to compile a selection of relevant papers to summa-
rize the current evidence on the pathophysiology of gastrointestinal SARS-CoV-2 infection,
fecal–oral route transmission, clinical manifestations, and the outcomes of patients with
gastrointestinal symptoms.

2. Materials and Methods

A systematic electronic search of the English literature up to January 2023 was
performed using Medline, EMBASE, Scopus, and the Cochrane Library. The search
strategy used a combination of Medical Subject Headings (MeSH) and keywords as
follows: COVID-19; SARS-CoV-2; gastrointestinal symptoms; intestinal symptoms; gas-
trointestinal infection; intestinal infection; intestinal replication; long COVID; post-acute
COVID syndrome.

Five authors (F.V., N.C., S.M., S.F., E.S.) identified relevant articles by screening the
abstracts. Additional studies were selected after a manual review of the reference list of
the identified studies and review articles. Any discrepancy was resolved by consensus,
referring to the original articles. Out of 4783 citations, 147 relevant articles were selected
and included in the present narrative review.

3. Prevalence of Gastrointestinal Symptoms

Several studies reported gastrointestinal symptoms in patients affected by COVID-19.
Their prevalence in adults is high, with diarrhea, nausea, and abdominal pain being the
most frequent ones (16.5%, 9.7%, 4.5%, respectively) [8]. Anorexia or loss of appetite (1.6%),
vomiting (1.5%), and loss of taste (1.3%) are less common. Increased liver enzymes are
not rare (5.6%) (Table 1) [8]. Prevalences, however, are hardly comparable as different
series do not report all main gastrointestinal symptoms. This likely results from the
different weight attributed by authors to mild and/or infrequent symptoms, which were
not invariably reported.

Table 1. Gastrointestinal symptoms in adult and pediatric patients.

Adult Patients Pediatric Patients

Diarrhea 16.5% 19.0%
Nausea/vomiting 11.2% 19.7%

abdominal pain 4.5% 20.3%
Anorexia 1.6% 10%

Data reported in two recent meta-analyses by Shehab [8] and Bolia [9] for adults and children, respectively.

In the pediatric population, the incidence of gastrointestinal symptoms is higher
compared to adults [9]. A recent meta-analysis reported a higher prevalence of nau-
sea/vomiting (19.7%) and abdominal pain (20.3%) but not diarrhea (19.08%) [9]. However,
wide variations have been described in different series [10].

The relationship between gastrointestinal symptoms, mortality, and more severe
systemic disease presentation is debatable. Available evidence suggests that the overall
presence of gastrointestinal symptoms is not associated with increased mortality rates
(OR = 0.88; 95% CI 0.71–1.09; p = 0.23). The same applies to individual symptoms, such as
diarrhea (p = 0.96), nausea/vomiting (p = 0.46), and abdominal pain (p = 0.3) [11].

A recent meta-analysis correlating the incidence of gastrointestinal symptoms with
severe presentation in adults showed that abdominal pain (OR = 2.70, 95% CI 1.17–6.27,
p = 0.02), but not diarrhea, nausea, or vomiting, is associated with aggressive disease [12].
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In the pediatric population, the presence of diarrhea significantly correlates with
more severe clinical course (OR 3.9, 95% CI: 1.80–8.73; p < 0.01). This is not the case for
nausea/vomiting and abdominal pain [9].

The persistence of gastrointestinal symptoms for more than two weeks after discharge
is also high, as 3.23% of patients reported nausea, 3.19% vomiting, and 4.12% prolonged
diarrhea, while the persistence of abdominal pain was 1.68% [13].

Gastrointestinal bleeding (GIB) was reported in 2% of COVID-19 patients, respec-
tively, 1% for upper GI and 1% for lower GI [14]. The most common causes were ulcers
(25.3%), erosive/ulcerative diffuse damage (16.1%), and petechial/hemorrhagic gastropa-
thy (9.2%) in upper gastrointestinal bleeding. Ischemic colitis was reported in one-third
of patients with lower gastrointestinal bleeding [15]. Again, some differences have been
reported in different cohorts [4]. The presentation with GIB however represents a negative
prognostic factor, as reported by a recent systematic review comparing the outcomes of
808 COVID-19 patients with GIB and 18,179 non-GIB COVID-19 patients. The overall in-
cidence of GIB was 0.06%, with GIB patients showing a higher death rate than non-GIB
patients (25.4% vs. 16.4%, p < 0.001) [4].

4. Gastrointestinal Infection

Respiratory droplets are the main route of transmission of SARS-CoV-2 [16], but
SARS-CoV-2 RNA was also detected in fecal samples [17–20].

Direct evidence of fecal–oral transmission is still lacking, but emerging evidence
supports the hypothesis [21,22]. SARS-CoV-2 RNA has indeed been detected in anal
swabs and stool samples in over 50% of infected patients [23–25]. RNA levels in the
stools ranged from 102 to 105 copies/mL, but in several reports fecal shedding exceeded
107 copies/mL [23,26–28]. This is in line with nasopharyngeal fluids concentration
(105–1011 copies/mL) [27,28]. SARS-CoV-2 concentration in stool samples peaks 2 to
3 weeks after symptom onset [25,29], and, as reported in a small German cohort, the
RNA load in fecal specimens reflects what is found in sputum in 86% of cases (6 of
7 patients) [23]. Live SARS-CoV-2 was also observed in the feces of COVID-19 patients,
confirming potential fecal–oral transmission [30]. However, despite being easily detected
by electron microscopy [31], SARS-CoV-2 isolation from stools is difficult [32].

Recent evidence suggests that viral variants show different gastrointestinal infectiv-
ity. Reduced viral replication of Omicron BA.1 and BA.2 variants compared with the
B.1.617.2/Delta variant was reported in studies carried out in organoids [33].

The persistence of the virus in stools is significantly longer (median 22 days, interquar-
tile range 17–31 days) than in respiratory (18 days, 13–29 days; p = 0.02) and serum samples
(16 days, 11–21 days; p < 0.001) [25]. Polymerase chain reaction detected viral RNA in fecal
samples of patients with no detectable virus in respiratory tract specimens [19,25,34].

Several studies have shown the presence of SARS-CoV-2 in epithelial cells of both the
small and large intestines, as demonstrated by intestinal biopsies [17,35,36]. Additionally,
the transcription of subgenomic SARS-CoV-2 mRNA (sgmRNA) indicates active viral
replication in the intestine, as sgmRNA is only transcribed in infected cells and not packaged
into virions [23]. Intestinal organoids primarily secrete SARS-CoV-2 apically [37], which
may explain viral excretion in feces.

Although evidence suggests that the gut is an active site of SARS-CoV-2 replication, it
is still unclear whether the virus present in feces is directly infectious. While viral RNA
may be shed in fecal specimens, the presence of viral ribonucleic acid does not necessarily
imply the presence of live transmissible virus [38]. Therefore, while direct and indirect data
support the hypothesis that SARS-CoV-2 actively infects human intestinal epithelial cells,
further research is needed to determine whether the virus in feces is directly infectious.

5. SARS-CoV-2 Structure and Interaction with the Host

SARS-CoV-2 is a single-stranded β-coronavirus, with 29.9 kb RNA genome and an
envelope with spikes on the surface (Figure 1) [39]. It shares up to 80% of the gene sequence
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with other pathogenic members of the coronavirus family, such as SARS-CoV-1 and Middle
East Respiratory Syndrome coronavirus (MERS-CoV) [40].
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Figure 1. SARS-CoV-2 structure. SARS-CoV-2 is a single-stranded β-coronavirus. Two-thirds of
viral RNA, in the first open reading frame (ORF 1a/b), encodes for 16 non-structural proteins (NSP).
The remaining viral genome expresses accessory proteins, interfering with the host innate immune
response, and four structural proteins (S, E, N, M).

Two-thirds of viral RNA, in the first open reading frame (ORF 1a/b), translates two
polyproteins, encoding for 16 non-structural proteins (NSP). The remaining viral genome
expresses accessory proteins, interfering with the host innate immune response, and struc-
tural proteins. The four essential structural proteins include the spike (S) glycoprotein,
small envelope (E) protein, nucleocapsid (N) protein, and matrix (M) protein [41]. Pro-
teins M, E, and S form the viral envelope [42]. The N protein is structurally bound to the
viral RNA and is involved in viral replication [43], while the M protein plays a role in
determining the shape of the viral envelope [43].

Open reading frames encoding nine accessory proteins (3a, 3b, 6, 7a, 7b, 8, 9b, 9c, and
10) and two polyproteins (pp1a and pp1ab) are also present in the genome [44].

Polyproteins pp1a and pp1ab, but not accessory proteins, are involved in viral replica-
tion [44].

SARS-CoV-2 interacts with target cells through envelope spike glycoprotein which
binds the angiotensin-converting enzyme 2 (ACE2) receptor of the host (Figure 2) [41]. The
binding affinity for the human ACE2 receptor is 10–20 times stronger for SARS-CoV-2 than
for its predecessor SARS-CoV-1 [45]. After binding ACE2 receptors, the transmembrane
serine protease 2 (TMPRSS2) mediates the cleavage of the spike glycoprotein, regulating
the internalization of the virus into target cells [46]. The two subunits, S1 and S2, favor the
binding of the virus to the cell and the fusion between the two cellular membranes [46].

Two proteolytic events are however needed to activate SARS-CoV-2. The first is the cut
in the specific cleavage site between the S1 and S2 domains, which is recognized by various
proteases, including TMPRSS2 [46] and furin [47,48]. The second cleavage site is within the
S2 domain and allows the exposition of the fusion peptide, which enables membrane fusion.
This second cleavage can be either performed by TMPRSS2 on the surface of the host cell or
by lysosomal proteases, such as cathepsin L in the endolysosomes [49]. Following the entry
into the cell, the virus is uncoated and replicates using the host replication system [42].
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Figure 2. Main entry route of SARS-CoV-2 in gastrointestinal tract. The spike protein of SARS-CoV-2
binds angiotensin-converting enzyme 2 (ACE2) receptors. Priming by TMPRSS2, TMPRSS4 (or other
proteases such as FURIN) leads to endocytosis. The virus is uncoated, genomic RNA is released, and
viral proteins are synthesized using the host replication system.

6. Route of Gastrointestinal Infection

The exact route of infection is still undefined, but the virus likely reaches the gut after
being swallowed.

In vitro studies show that SARS-CoV-2, like other enveloped viruses, loses infectivity
after 10 min incubation in gastric fluid [50]. Nonetheless, this route of transmission is
possible as other viruses, such as influenza virus, despite being vulnerable to digestive
juices, retain infectivity when protected by highly viscous mucus [51].

The glycosylation of the S protein is a further mechanism by which other coronaviruses
survive the adverse milieu of the stomach and bile-salt-containing duodenal juice [52]. The
mechanism may be shared by SARS-CoV-2.

Indirect evidence deriving from in vitro models of other coronaviruses suggests that
fasting or fed state modulate infectivity. Indeed, MERS rapidly loses infectivity in simulated
fasting state, low pH gastric fluid, but not after 2 h of exposure to fed-state condition [53].

It has also been hypothesized that chronic H. pylori infection leading to atrophic gas-
tritis and intestinal metaplasia could facilitate SARS-CoV-2 intestinal infection by reducing
stomach acidity [54,55]. H. pylori also increases the expression of ACE-2 receptors in the
GI tract [56]. Clinically, a strong correlation between the occurrence of abdominal pain
(19.4% vs. 2.6%, p = 0.007) or diarrhea (32.3% vs. 9.1%, p = 0.006) and H. pylori infection
has been reported in COVID-19 patients [57].

Similarly, proton pump inhibitor-induced hypochloridria could favor SARS-CoV-2
intestinal infection [58], but available data are conflicting. Patients on PPI had significantly
higher requirement for oxygen therapy, intensive care unit admission, and invasive venti-
lation than patients not taking PPI (fully adjusted OR (aOR): 2.39; 95% CI: 1.08–5.10) in a
post hoc analysis from a nationwide Korean cohort [5]. Conversely, several meta-analyses
did not confirm these early reports [59,60].

7. Gastrointestinal Tract–Virus Interaction

Lungs are the primary route of SARS-CoV-2 infection, but ACE2 receptors, an 805 amino
acids-, type I cell-surface glycoprotein [61], are highly expressed also on the brush border
of the enterocytes [62,63]. The ACE2 receptor is detected by immunofluorescent staining
also in the glandular cells of the stomach and colon [17]. Viral RNA has been detected also
in the esophageal mucosa, but the lack of viral nucleocapsid protein staining suggests a
low viral load [17]. This is in keeping with low ACE2 expression in squamous esophageal
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epithelial cells. ACE2 receptors are minimally expressed by enteroendocrine cells, Paneth
cells, and goblet cells [61,64–66].

Under physiological conditions, ACE2 receptors in the gastrointestinal tract are associ-
ated with the amino acid carrier B0AT1, which regulates the homeostasis of tryptophan,
and thus stimulates the production of mechanistic target of rapamycin (mTOR)-dependent
antimicrobial peptides from Paneth cells [67,68].

Besides ACE2 receptors, other molecules may play a role in SARS-CoV-2 infection. It
has been demonstrated that TMPRSS2 is highly expressed in the gastrointestinal tract [50],
not only in enterocytes [50] but also in intestinal goblet [69] and Paneth cells (Figure 2) [70,71].
Other serine proteases of the same family, such as TMPRSS4, are also highly expressed in
mature enterocytes and potentially favor SARS-CoV-2 infection [50]. An additive effect of
the two enzymes has been documented, suggesting synergic effect resulting from distinct
cellular and subcellular localization of the two proteases [50].

The protease furin, widely present in the stomach, small bowel, and colon [72], also
enables the S protein to separate into two pinching structures [73]. Although furin sig-
nificantly increases the cleavage of the S protein, promoting SARS-CoV-2 infectivity and
spread, its presence is not essential [74].

In addition to proteases, other alternative entry molecules, such as neuropilin-1 (NRP1),
have been identified [75]. The expression of NRP1 in the small bowel has been reported on
both human biopsies and organoids [76,77]. Following protease cleavage of the S protein
into S1 and S2, a polybasic Arg-Arg-Ala-Arg carboxyl-terminal sequence on S1 binds
NRP1 [75,78]. The role of NRP1 is less clear than ACE2 receptors, but the protein might
mediate SARS-CoV-2 infection in ACE2-negative cells [77] and possibly explain different
disease behavior in adults and children [76].

Recent studies suggest a possible interaction between the SARS-CoV-2 S protein
and the cluster of differentiation (CD) 147 binding site [79], possibly through cyclophilin
A-mediated regulation of ACE2 receptors [80], but conflicting results have also been pub-
lished [81].

A small Italian case series [82] suggested that VEGF through CD147 may trigger
gastrointestinal ischemia in SARS-CoV-2, as reported in other conditions [83]. However,
validation in larger series is needed.

Protease-mediated membrane fusion represents the usual SARS-CoV-2 entry route in
the host cell. An alternative option has recently been advocated, consisting of endocytosis
resulting from SARS-CoV-2 binding to ACE2 receptors followed by S protein cleavage by
cathepsin L [49] expressed in a variety of tissues including the gastrointestinal tract [84,85].

8. Gastrointestinal Damage, Inflammation, and Symptoms

SARS-CoV-2 is responsible for direct and indirect damage of the gastrointestinal
system and symptoms (Figure 3).

SARS-CoV-2 induces syncytia formation in human enteroids [50]. Independently of
other viral components, the S protein induces cell fusion in vitro [50]. Syncytia formation is
cytopathic, resulting in loss of integrity of the intestinal barrier, and favors cell-to-cell viral
spread and immune-response evasion [50]. Epithelial damage is also related to reduced
expression of tight junction marker genes, such as ZO-3 and CLDN1 [86].

In vivo intragastric inoculation with SARS-CoV-2 reduces cell proliferation and in-
creases apoptosis of intestinal epithelial and goblet cells in an animal model of SARS-CoV-2
infection [87]. Other in vitro studies on Caco-2 cells confirmed viral replication but did
not report cytopathic effects [88]. It should also be considered that data from in vitro
models using tumoral cell lines with different protein expression need confirmation in
human biopsies.

Duodenal biopsies collected during upper endoscopy in a small case series of COVID-19
patients with GI symptoms were characterized by villous blunting and increased intraep-
ithelial lymphocytes [89]. This supports the view that intestinal damage is mediated by
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the immune response, more than by direct viral damage, and may explain the lack of
cytopathic effect reported in some models.
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consisting of intestinal epithelial cells and tight junctions, is also affected by the infection. SARS-CoV-2
induces immune activation, resulting in increased levels of cytokines and leukocytes.

The enhanced migration of immune cells to the intestinal mucosa during SARS-CoV-2
infection is in line with a study using mass cytometry [36]. Reduced dendritic cells in
the lamina propria were also reported [36] but not in studies using mass cytometry in
postmortem tissue samples [90].

Infection likely triggers innate immune response in the intestine through the recogni-
tion of pathogen-associated molecular patterns (PAMPs), as reported in the lung, leading
to recruitment of immune cells and favoring adaptative response [91,92].

SARS-CoV-2 infection increases the expression of proinflammatory genes such as
IL-1b, IL-6, CCL2, CCL3, CCL5, and CXCL10 in human small intestinal epithelial cells
derived from pluripotent stem cells [86]. The S1 spike protein stimulates IL-6 and IL-8
secretion in CACO-2 human intestinal epithelial cells [93]. Some studies also reported an
increased release of intestinal IL-18 [94,95]. Interestingly, elevated IL-18 levels correlate
with disease severity [95,96].

In vitro, intestinal epithelial cells were reported to produce type III interferon (IFN)
in response to SARS-CoV-2 infection, leading to less effective viral replication [97]. Other
studies on IFN-III had opposite findings [37].

SARS-CoV-2 infection induces the inflammatory response in the gut [98], in turn
increasing the likelihood of intestinal symptoms. COVID-19 patients with diarrhea have
higher concentrations of fecal calprotectin (FC) compared to patients without diarrhea
(123.2 ± 58.8 vs. 17.3 ± 4.8, p < 0.001) [98]. Interestingly, FC levels significantly correlate
with serum IL-6 (p < 0.001) but not with C-reactive protein [98].

The pathogenic role of SARS-CoV-2 on enterocytes is indirectly supported by plasma
citrulline concentrations [99]. The molecule is almost exclusively produced by enterocytes
and is not incorporated into proteins, thus representing a biomarker of small bowel en-
terocyte mass and function [100]. The accepted citrulline cutoff level for the diagnosis of
the short bowel syndrome (<20 µmol/L) has been found in 61.5% of patients from a small
cohort, and 15.4% had concentrations below 10 µmol/L [99], suggesting severe intestinal
damage. Correlation of low citrulline levels with digestive symptoms (62.5% vs. 20%,
p = 0.05) and PCR (84.5 vs. 13.5 mg/L, p = 0.03) was also present [99].
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High concentrations of serotonin (5-HT) were documented in COVID-19 patients
with diarrhea compared to those who did not present with the symptom, or healthy con-
trols [101]. The role of 5-HT in regulating GI motility and inflammation is well known [102],
but its involvement in SARS-CoV-2-associated diarrhea is undocumented.

Intestinal inflammation is associated with severe systemic disease as fecal calprotectin
levels were increased in patients with abnormal chest X-ray findings [103].

Active intestinal inflammation in vivo in COVID-19 patients is supported by high
fecal levels of the pro-inflammatory IL-8 and low fecal levels of anti-inflammatory IL-10
compared to controls [104]. Fecal IL-23 levels were high in patients with severe COVID-19
disease [104].

SARS-CoV-2-specific IgA antibodies were high in patients with severe disease [104].
Their clinical importance is unclear, as a longitudinal study showed that IgA and IgM
antibodies rapidly decay, but not IgG antibodies, which are detectable up to 105 days after
symptom onset [105].

The role of adaptative immune response in GI symptoms has been reported by several
studies. COVID-19 patients with diarrhea have increased CD3+ and higher CD4+ T cell
counts compared to patients without diarrhea. As CD8+ T cell counts were lower in the
diarrhea group, the CD4/CD8 ratio was increased. High counts of CD19+ B cells and low
CD16+CD56+ natural killer (NK) cells were also reported in diarrhea [106].

9. SARS-CoV-2 and Gut Microbiota Alteration

Gut microbiota changes have been linked to gastrointestinal symptoms. Several stud-
ies investigated gut microbiota through 16S rRNA gene-amplified sequencing in COVID-19
patients [107]. Antibiotic-naïve patients with COVID-19 showed higher concentrations of
opportunistic pathogens, including Actinomyces viscosus, Clostridium hathewayi, and
Bacteroides nordii, compared to controls (Figure 4). A recent meta-analysis of 16 stud-
ies confirmed a significant reduction in alpha diversity in COVID-19 patients compared
to controls (standardized mean difference, SMD = −0.78; 95% CI, −1.25 to −0.31) [107].
Changes persisted after recovery (SMD = −1.14; 95% CI, −1.60 to −0.68) [107]. Depletion
of beneficial symbiotic bacterial strains was observed in patients on antibiotics [108].
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Figure 4. Gut microbiome alterations in COVID-19. In healthy individuals, Faecalibacterium praus-
nitzii, Eubacterium and Roseburia are the prevalent strains of gut microbiome. These bacteria show
anti-inflammatory properties and produce SCFA. In patients affected by COVID-19, a depletion of
symbionts and an increase in opportunistic pathogens were described. Gut dysbiosis observed during
COVID-19 infection persists after SARS-CoV-2 clearance.
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Interestingly, a small study comparing microbiota dysregulation in patients affected by
H1N1 influenza A and COVID-19 identified specific microbial signatures in the two diseases,
with H1N1 displaying lower diversity and different overall microbial composition [109].

Gut microbiota alterations influence the metabolism of several compounds and nega-
tively affect infection rates and symptoms. Reduced gut microbiome metabolism of tryp-
tophan was reported in patients with COVID-19 and GI symptoms [110]. Tryptophan is
absorbed by the intestinal epithelial cell B0AT1/ACE2 transporter and indirectly regulates
the expression of antimicrobial peptides [111]. It may be anticipated that SARS-CoV-2-
binding intestinal ACE2 receptors might reduce tryptophan absorption and ultimately
modify the microbiota [112].

Analysis of the bacterial function in 66 antibiotics-naïve COVID-19 patients and
70 controls showed that patients with severe disease are characterized by significant
(p < 0.001) impairment of short-chain fatty acid (SCFA) and L-isoleucine biosynthesis that
persists over 30 days after recovery [113]. The reduction in SCFA and L-isoleucine signifi-
cantly correlated with disease severity and levels of inflammation-related proteins such as
CXCL-10, NT-proB-type natriuretic peptide, and C-reactive protein (p < 0.05). This reflects
a functional modification of intestinal microbiome. However, in vitro studies aimed at the
evaluation of the anti-inflammatory effects of butyrate led to contrasting results [114,115].
In vivo butyrate supplementation studies to improve symptoms have not been carried out.

Some of the role of microbiota on SARS-CoV-2 outcomes is indirectly supported by the
finding that the genus Collinsella, producing ursodeoxycholate and other secondary bile
acids, was negatively correlated with mortality in a Japanese cohort [116]. The underlying
rationale resides in the reduced farnesoid X receptor signaling with consequent down-
regulation of ACE2 receptor transcription, which decreases susceptibility to SARS-CoV-2
in vitro, in vivo, and in human lungs and livers perfused ex situ [117].

10. Chronic GI Tract Diseases and SARS-CoV-2

The mechanisms by which SARS-CoV-2 affects the gastrointestinal tract of healthy
subjects are still largely unclear, more so considering that the host–virus bidirectional
relation may modify both the course of infection and the preexisting disease.

ACE2 and TMPRSS2 are overexpressed in inflammatory bowel disease (IBD) pa-
tients [118–120]. However, cytoplasmic and membrane ACE2 are significantly higher in
ulcerative colitis (UC) compared to healthy controls. In Crohn’s disease (CD), the difference
is observed only in the membrane [118]. Moreover, colonic ACE2 expression is lower in
CD than in UC (p < 0.0001) [121].

Increased expression of ACE2 and TMPRSS2 in inflamed versus non-inflamed colonic
and ileal segments has been reported by some authors [122] but not by others [118], casting
doubt on the modulation of receptor expression induced by active disease.

Moreover, circulating components of the alternative renin–angiotensin system, ACE2
and angiotensin (1–7), were increased in a small series of patients with IBD [123], possibly
playing a protective role against SARS-CoV-2 infection [124].

Potentially clinically relevant differences have been reported for other proteins in-
volved in the infection. TMPRSS2 is overexpressed in IBD [118,122,125], while furin levels
are significantly lower in colonic specimens of UC patients versus controls [126]. The clinical
relevance of these findings is at best debatable as clinical databases, including SECURE-
IBD [127], Dutch [128], and Danish [129] series, did not report increased COVID-19 severity
in IBD patients. Furthermore, the incidence rate of COVID-19 is not increased in IBD
patients undergoing immunomodulant therapy [130].

Differences in relevant epithelial protein expression are present in other chronic dis-
eases. ACE2 is overexpressed in the stomach of patients with chronic gastritis [54,55,131]
and underexpressed in eosinophilic esophagitis and gastroenteritis [132]. However, to our
knowledge, no association with outcome has been reported [133–135].
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Overall, poor general conditions, resulting from concomitant disease, are by far more
relevant in worsening clinical course and outcome than the expression of receptors or the
existence of immune-related illnesses [136].

11. Gastrointestinal Symptoms and Long COVID

COVID-19 is associated with long-term gastrointestinal symptoms, persisting in up
to 8.4% of patients at 3 months and in 6.6% at 6 months [137]. Schmulson proposed new
criteria for defining post-COVID-19 functional gastrointestinal disorders (FGID) as follows.
Patients should not meet the criteria for FGID before COVID-19, symptoms should fulfill
Rome IV criteria and persist after the resolution of acute SARS-CoV-2 infection [138].

The alterations underlying the development of post-infective FGID are still unde-
fined but likely reside in persistent subclinical inflammation, increased intestinal per-
meability, and microbiota changes. It is known that irritable bowel syndrome (IBS)
may develop after an acute infection (e.g., Campylobacter, Shigella, Salmonella, Giardia,
Noroviruses) [139–141], and the same might apply to SARS-CoV-2.

A 6-month prospective study in post-acute COVID-19 syndrome reported high levels
of Ruminococcus gnavus and Bacteroides vulgatus and low levels of Faecalibacterium
prausnitzii. Butyrate-producing bacteria showed significant inverse correlations with
occurrence of the syndrome [142], but it is unclear whether modifications of the intestinal
flora precede or are caused by long COVID.

As far as gut permeability is concerned, the concentration markers, such as the
fatty acid binding protein 2, were higher in COVID-19 patients compared to controls
(p = 0.0013) [143]. Zonulins and cadherins are also likely involved [144,145].

Incomplete viral clearance or persistence of viral antigens is an additional mechanism
triggering symptoms, and it appears that the S1 protein alone is sufficient to stimulate the
production of inflammatory cytokines in vitro [93]. Patients with persistent viral shedding
in the stool were more likely to report nausea (aOR = 1.61, CI 95% = 1.09–2.39), vomiting
(3.20, 1.11–9.21), and abdominal pain (2.05, 1.09–3.86) but not diarrhea (1.10, 0.63–1.91) [146].
Moreover, the presence of SARS-CoV-2 antigens in the colon was documented 257 days
following diagnosis, in the absence of ongoing fecal shedding [147].

Patients who have received the bivalent vaccine for COVID-19, which combines
two different vaccine types, may experience different outcomes compared to those who
have received the monovalent vaccine, which contains only one type of vaccine. While
both vaccines have been shown to be effective in preventing COVID-19 infection, post-
bivalent vaccine patients may have a higher level of protection against certain strains of the
virus [148]. Additionally, post-bivalent vaccine patients may experience a different side-
effect profile than monovalent vaccine patients due to the different types of vaccines used
in the combination. However, further research is needed to fully understand the differences
between these two vaccine types and their impact on patients’ health. Ultimately, regardless
of the type of vaccine received, vaccination remains a critical tool in the fight against the
COVID-19 pandemic. In addition to the potential differences in vaccine effectiveness
and side-effect profiles, there may also be differences in the gastroenterology symptoms
experienced by patients who have received bivalent versus monovalent vaccines. Some
studies have suggested that COVID-19 infection can lead to gastrointestinal symptoms
such as nausea, vomiting, and diarrhea. While the vaccines themselves do not typically
cause these symptoms, it is possible that post-bivalent vaccine patients may experience
a different gastrointestinal symptom profile due to the different types of vaccines used
in the combination. However, more research is needed to fully understand the potential
differences in gastrointestinal symptoms between these two vaccine types. Regardless, it is
to know that long-hauler symptoms are less in people infected with Omicron who have
received the bivalent vaccine [149–151].
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12. Conclusions

SARS-CoV-2 infection dramatically changed the worldwide health scenario. Following
the initial impact characterized by acute severe infection and high mortality rate, the virus
is now becoming endemic due to massive vaccination campaigns and disease-induced
antibodies. We will thus be facing a long-term interaction with the SARS-CoV-2 virus, with
increased prevalence of less aggressive symptoms.

Epidemiological and clinical data indicate that in the first phase of epidemics, gas-
trointestinal symptoms were frequent, occurring in up to one-third of patients. The figure
will increase as the virus becomes endemic.

The rapid global spread of this new, highly aggressive virus prompted fast sharing of
biomedical knowledge. This often resulted in redundant information and the publication
of review articles sometimes reporting unconfirmed or questionable data.

The present narrative review provides an updated overview of SARS-CoV-2 gas-
trointestinal infection and symptoms and the pathophysiological mechanism of intestinal
damage. This may prove of some use for physicians treating SARS-CoV-2 patients in
clinical practice. However, most hard information derives from preclinical/in vitro studies,
whereas clinical and epidemiological studies are mainly retrospective, underpowered, lack
reliable protocols, and the length of follow-up is necessarily short.

Thus, major questions regarding the interaction of SARS-CoV-2 and the GI tract are
still unanswered. It is unclear how the virus survives in the gastric environment, which
cell types are primarily infected in vivo, and to which extent preexisting intestinal disease
modifies susceptibility, clinical course, and prognosis. Similarly, the long-term effects of
post-acute COVID-19 syndrome are still to be determined, but it is likely that, as after
other infections, post-infective functional disorders may develop. The results of well-
designed ongoing studies are needed to answer these questions and provide reliable insight
into the GI effects of SARS-CoV2 infection. The bivalent COVID-19 vaccine, combining
two different vaccine types, offers a higher level of protection against new virus strains
compared to the monovalent vaccine. It is presently undefined whether the two vaccine
types or Omicron-derived new virus strains are associated with changing prevalence or
severity of side effects or differences in the profile of gastrointestinal symptoms.

In conclusion, gastrointestinal symptoms associated with SARS-CoV-2 infection are
usually mild and self-limiting. Symptomatic treatment may be needed in case of nausea
and vomiting. Rehydration associated to mild diet may prove useful in some patients with
diarrhea, while loperamide and other anti-diarrheal drugs are likely best avoided as in
other gastrointestinal infections.

Clinical trials using dietary modification, probiotics, prebiotics, and fecal microbiota
transplantation are underway to determine their effectiveness in the treatment of acute
COVID-19 and possibly enhance the effectiveness of SARS-CoV-2 vaccines [152–158]. Only
long-term clinical data and future research shall provide better insight into the complex
bidirectional interaction between the virus and the alimentary tract in healthy patients and
those with preexisting gastrointestinal diseases.
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