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Abstract: Background and Objectives: Literature reviews are foundational to understanding medical
evidence. With AI tools like ChatGPT, Bing Chat and Bard AI emerging as potential aids in this
domain, this study aimed to individually assess their citation accuracy within Nephrology, comparing
their performance in providing precise. Materials and Methods: We generated the prompt to solicit
20 references in Vancouver style in each 12 Nephrology topics, using ChatGPT, Bing Chat and Bard.
We verified the existence and accuracy of the provided references using PubMed, Google Scholar, and
Web of Science. We categorized the validity of the references from the AI chatbot into (1) incomplete,
(2) fabricated, (3) inaccurate, and (4) accurate. Results: A total of 199 (83%), 158 (66%) and 112 (47%)
unique references were provided from ChatGPT, Bing Chat and Bard, respectively. ChatGPT provided
76 (38%) accurate, 82 (41%) inaccurate, 32 (16%) fabricated and 9 (5%) incomplete references. Bing
Chat provided 47 (30%) accurate, 77 (49%) inaccurate, 21 (13%) fabricated and 13 (8%) incomplete
references. In contrast, Bard provided 3 (3%) accurate, 26 (23%) inaccurate, 71 (63%) fabricated and
12 (11%) incomplete references. The most common error type across platforms was incorrect DOIs.
Conclusions: In the field of medicine, the necessity for faultless adherence to research integrity is
highlighted, asserting that even small errors cannot be tolerated. The outcomes of this investigation
draw attention to inconsistent citation accuracy across the different AI tools evaluated. Despite some
promising results, the discrepancies identified call for a cautious and rigorous vetting of AI-sourced
references in medicine. Such chatbots, before becoming standard tools, need substantial refinements
to assure unwavering precision in their outputs.

Keywords: literature review; nephrology references; ChatGPT; Bing Chat; Bard AI; accuracy;
personalized medicine; precision medicine

1. Introduction

The digital era has brought about transformative changes in various aspects of our
lives, with the medical field being no exception [1,2]. Within the vast expanse of medical
literature, scholars, clinicians, and medical professionals rely heavily on evidence-based
studies to formulate decisions, guidelines, and recommendations for patients [3]. Literature
reviews play an instrumental role in this process, often serving as the cornerstone to under-
standing the ever-expanding universe of medical evidence [4]. However, while the volume
of information is expanding, so is the need for efficient tools to extract relevant knowledge.
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The growing number of published articles has led to a substantial increase in the
references that physicians and researchers must stay updated with. As of 2020, there
were over 30 million articles indexed in PubMed alone, with an estimated addition of
a million entries each year [5]. This exponential growth makes the task of manually
extracting, comparing, and verifying references not only laborious but also prone to human
errors [6]. In this context, AI-powered platforms are emerging as potential aides for
literature reviews [7]. Contemporary innovations have introduced platforms such as
ChatGPT [8], Bing Chat [9] and Bard AI [10]. These tools are not just digital cataloging
systems but smart engines that claim to understand and retrieve precise information. The
allure of such platforms lies in their ability to rapidly sift through vast data sets, potentially
offering precise references that would take humans considerably longer to extract [11,12].

The emergence of ChatGPT, a creation of OpenAI, introduces promising prospects
spanning a variety of domains, with a pronounced emphasis on the enrichment of health-
care education [13]. This AI framework not only highlights its advanced acumen in
information retrieval but also adeptly addresses syntactical inaccuracies, thereby serv-
ing as a valuable resource for literature evaluations and the composition of scholarly
manuscripts [8]. In a parallel vein, Bing Chat, a product of Microsoft, emerges as an AI-
driven conversational agent capable of engendering inventive and novel content, spanning
the spectrum from poetic compositions and narratives to code snippets, essays, musical
compositions, satirical renditions of celebrities, and visual representations [9]. Akin to its
counterparts, Bard AI, the brainchild of Google, assumes its stance as a formidable entity
within the domain of AI models, having undergone rigorous training on an expansive
corpus encompassing textual and code-oriented knowledge culled from diverse sources,
including literary works and academic articles [10]. The transformative potential of these
technological tools in revolutionizing the paradigm of information retrieval is evident;
however, their precision, particularly in terms of adhering to meticulous citation protocols,
remains subject to meticulous examination.

The accuracy of citations within scholarly discourse is far from being a mere ritualistic
practice; rather, it holds a pivotal role. These references provide a conduit for readers to re-
trace the steps back to original sources, thereby ensuring the veracity of derived conclusions
and recommendations firmly anchored in authentic research endeavors. The presence of
even minute inaccuracies within references can cast a shadow of doubt over the entirety of a
scholarly paper, thereby undermining both its credibility and the integrity of the author [14].
This holds critical importance, especially in specialized fields such as Nephrology, where
medical treatments have far-reaching effects on patient health and general well-being,
including risks such as kidney failure or allograft rejection or failure. A single incorrect
reference carries the risk of initiating misunderstandings, which could eventually lead to
less than ideal or even harmful clinical decisions. The present investigation, therefore, is
conceived with the overarching aim of unraveling the precision exhibited by these emer-
gent AI entities in the realm of citations, particularly within the highly specialized terrain
of Nephrology.

The purpose of this study is to assess the citation accuracy of AI models including
ChatGPT (versions 3.5 and 4.0) [15], Bing Chat, and Bard AI in retrieving and validating
references for academic research in nephrology.

2. Materials and Methods
2.1. Search Strategy and Criteria

We used three distinct AI chatbots to perform literature searches in nephrology, in-
cluding (1) ChatGPT, (2) Bing Chat, and (3) Bard AI. To ensure the comparability of these
chatbots, we standardized the criteria for evaluating their performance based on search
results’ relevance, comprehensiveness, and the timeliness of the articles retrieved. ChatGPT
is a large language model developed by OpenAI and integrates both GPT-3.5 [16] and
GPT-4.0 models [15] that comprehend and generate human-like responses through text.
Bing Chat is powered by GPT-4.0 and incorporated into the Microsoft Edge browser, which
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has another capability to generate images and innovative content [9]. Bard AI, a robust
Large Language Model (LLM) developed by Google based on Pathways Language Model
2 (PaLM2) and trained on an expansive collection of text and code that exhibits creative
content design.

On 1 August 2023, we generated the prompt to ask AI chatbots to provide 20 references
in Vancouver style, a commonly used citation style in academic writing in each Nephrology
topics; The topics were chosen to reflect a comprehensive understanding of the field and
were pre-determined through a review of the most common nephrology subjects discussed
in existing literature. (1) general nephrology, (2) glomerular disease, (3) hypertension,
(4) acute kidney injury, (5) chronic kidney disease, (6) end-stage kidney disease,
(7) electrolyte disorders, (8) acid-base disturbances, (9) kidney stones, (10) hemodialysis,
(11) peritoneal dialysis and (12) kidney transplantation. There was slight difference be-
tween the prompts used for each individual AI chatbot as we modified the prompt to
optimize their responses; “please provide 20 references in Vancouver style and links of the
most updated literatures regarding (Nephrology topic)” for ChatGPT, “provide Vancouver
references with DOI of 20 articles on (Nephrology topic)” for Bing Chat, and “20 updated
references regarding (Nephrology topic) in Vancouver style” for Bard AI. We used only
GPT-3.5 model for ChatGPT because GPT-4.0 was unable to provide actual references but it
solely provided examples of references despite our attempt to modify the prompt used. We
documented five key components of provided references: (1) author name, (2) publication
title, (3) journal title, (4) publication year or issue and (5) digital object identifier (DOI).
This categorization was performed to ensure the verification process adhered to a uniform
criterion for all three chatbots, facilitating a balanced assessment.

We verified the existence and accuracy of the references using several medical literature
databases. The databases were selected based on their reputability and coverage in the
field of nephrology. We initially used the provided DOI to search for its corresponding
references in PubMed [5], the widely recognized database in biomedical literatures. If
we could not find the reference in PubMed or we had incomplete or missing DOI, we
used Google Scholar [17] or Web of Science [18] as additional databases for comprehensive
search. We used University of Hawaii library website [19] and google search to check
references of textbook or book chapter.

We categorized the validity of the provided references from the AI chatbot into follow-
ing groups; (1) incomplete, (2) fabricated, (3) inaccurate, and (4) accurate. These categories
were defined to allow for the precise characterization of the search results, which is cru-
cial for determining the reliability and utility of AI-generated references. Reference was
defined as incomplete when the provided reference information was inadequate to verify
its existence in aforementioned medical databases. Reference was defined as fabricated
when we could not find the reference in the database. Reference was defined as existing
but inaccurate when we could identify the reference in the database but at least one of five
reference components were incorrect. Reference was defined as existing and accurate when
we could identify the reference in the database and all of five reference components were
correct. A flow diagram of the research methodology was Illustrated in Figure 1 and the
example of an assessment of references was illustrated in Figure 2.

To assess both the magnitude and directionality of linear relationships among different
performance indicators of the chatbots, we computed Pearson correlation coefficients. The
Pearson correlation method was chosen for its sensitivity to linear associations, making
it well-suited for our dataset, which we ascertained met the assumptions of linearity, nor-
mality, and homoscedasticity. In these matrices, individual cells contain the computed
Pearson coefficients, which are bounded between −1 and 1. The closer a coefficient is to 1,
the stronger the positive linear relationship, indicating that an increase in one performance
metric is likely paralleled by an increase in another. In contrast, a coefficient value nearing
−1 reveals a strong negative relationship, meaning that a rise in one metric typically results
in a decline in another. These boundaries are strict and allow for nuanced interpretation: a
value of exactly 1 or −1 would signify a perfect linear relationship, positive or negative
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respectively, although such a result is exceedingly rare in practical applications. Coefficients
approximating zero signify weak or negligible linear relationships, implying that changes
in one variable are not systematically accompanied by changes in another. The use of
Pearson correlation analysis in this context is instrumental for pinpointing specific perfor-
mance metrics that may be most amenable to enhancements, thereby aiding in targeted
optimization of chatbot functionalities.

1 

 

 Figure 1. Flow diagram of using AI chatbots for literature search and assessment of validity.
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2.2. Statistical Analysis

We reviewed the references and excluded duplicated reference from the same AI
chatbot before analysis. We presented the validity of the provided references as counts
with percentages and compared among AI chatbots using Chi-squared test. p-value < 0.05
was considered statistically significant. IBM SPSS statistics version 26 was used for all
statistical analyses.

The calculations of Pearson correlation coefficients involved generating correlation
matrices, executed with Python’s Seaborn library—a tool that efficiently interfaces with
Pandas for data structuring and Matplotlib for graphical output.

3. Results

Although each AI chatbots was expected to provide 240 references (20 references in
each of 12 nephrology topics), 41 (17%), 65 (29%) and 39 (26%) references provided by
ChatGPT, Bing Chat and Bard, respectively, were found as duplicated references, while
17 (7%) references from Bing Chat and 89 (37%) references from Bard were absent.

A total of 199 (83%), 158 (66%) and 112 (47%) unique references were provided from
ChatGPT, Bing Chat and Bard, respectively. ChatGPT provided 76 (38%) accurate, 82 (41%)
inaccurate, 32 (16%) fabricated and 9 (5%) incomplete references. Bing Chat provided
47 (30%) accurate, 77 (49%) inaccurate, 21 (13%) fabricated and 13 (8%) incomplete refer-
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ences. In contrast, Bard provided 3 (3%) accurate, 26 (23%) inaccurate, 71 (63%) fabricated
and 12 (11%) incomplete references. The proportion of existing references were similar
between ChatGPT and Bing Chat, but ChatGPT provided higher proportion of accurate
references. Bard had the highest proportion of fabricated and incomplete references. There
were statistically significant differences in proportion of accurate, inaccurate and fabricated
references between ChatGPT and Bard, and between Bing Chat and Bard. However, the
validity between ChatGPT and Bing Chat did not significantly differ (Table 1 and Figure 3).

Table 1. Validity of provided references from ChatGPT, Bing Chat and Bard AI.

ChatGPT-3.5
(n = 199)

Bing Chat
(n = 158)

Bard
(n = 112) p-Value

Accurate 76 (38.2%) * 47 (29.8%) ** 3 (2.7%) *,** <0.001
Inaccurate 82 (41.2%) * 77 (48.7%) ** 26 (23.2%) *,** <0.001
Fabricated 32 (16.1%) * 21 (13.3%) ** 71 (63.4%) *,** <0.001
Incomplete 9 (4.5%) 13 (8.2%) 12 (10.7%) 0.11

* Significant difference between ChatGPT-3.5 and Bard p < 0.05. ** Significant difference between Bing Chat and
Bard p < 0.05.
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Figure 3. Comparison of validity in providing literature between ChatGPT, Bing Chat and Bard AI.

When we assessed the reason for inaccurate references, DOI was the most common
inaccurate component in references provided by ChatGPT and Bing Chat, followed by
author name, publication year/issue, journal title, and reference title. In contrast, author
name was the most common reason inaccurate component in references provided by Bard,
followed by DOI, publication year/issue, journal title, and reference title. Significant
differences of all inaccuracy domains were found between ChatGPT and Bard, and between
Bing Chat and Bard, while ChatGPT and Bing Chat were not statistically different (Table 2
and Figures 4 and 5).
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Table 2. Types of inaccuracy detected among the inaccurate references between ChatGPT, Bing Chat
and Bard AI.

ChatGPT-3.5
(n = 82)

Bing Chat
(n = 77)

Bard
(n = 26) p-Value

Inaccurate DOI 74 (90.3%) * 68 (88.3%) ** 18 (69.2%) *,** 0.02
Inaccurate title 4 (4.9%) * 2 (2.6%) ** 7 (26.9%) *,** <0.001

Inaccurate author 18 (22.0%) * 13 (16.9%) ** 19 (73.1%) *,** <0.001
Inaccurate

journal/book 10 (12.2%) * 6 (7.8%) ** 8 (30.8%) *,** 0.010

Inaccurate year/issue 14 (17.1%) * 7 (9.1%) ** 15 (57.7%) *,** <0.001
* Significant difference between ChatGPT-3.5 and Bard p < 0.05. ** Significant difference between Bing Chat and
Bard p < 0.05.
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3.1. Correlation Analysis
3.1.1. Validity Metrics

Accurate vs. Inaccurate: A negative correlation of −0.92 suggests that as the accuracy
of a chatbot increases, the inaccuracy decreases.

Inaccurate vs. Incomplete: A high positive correlation (0.99) is observed, indicating
that chatbots that inaccurate information are also likely to provide incomplete answers
(Figure 6).

3.1.2. Incorrect Information Metrics

Missing DOI vs. Wrong DOI: A strong negative correlation of −0.75 implies that
chatbots that often miss DOIs are less likely to provide wrong DOIs.

Wrong Author vs. Wrong Journal/Book: A negative correlation of −0.58 suggests
that if a chatbot frequently gets the author wrong, it is less likely to get the journal or book
wrong (Figure 7).
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Figure 5. Heatmap visualizing the types of inaccuracies detected among the references provided by
each chatbot. The rows represent the chatbots: ChatGPT-3.5, Bing Chat, and Bard. The columns repre-
sent the types of inaccuracies: DOI, Title, Author, Journal/Book, and Year/Issue. The intensity of the
color indicates the magnitude of the inaccuracy, with darker shades representing higher percentages.

3.1.3. Missed and Duplicate Metrics

Missed vs. Duplicate: A strong negative correlation of -1 suggests that chatbots that
miss information are unlikely to produce duplicate information (Figure 8).
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4. Discussion

The advancement of AI within the medical field has led to substantial transforma-
tions [20,21], including assisting in the specialized diet supports [22,23], prevention of
potential allergic reactions [24,25], detection of prescription errors [26], extraction of drug
interactions from the literature [27], and particularly concerning literature reviews [28,29].
As the production of medical evidence continues to grow at an accelerated rate, the need
for effective tools to sift through and analyze pertinent information has become critically
important. In response to this need, AI-powered platforms such as ChatGPT, Bing Chat,
and Bard AI have emerged as potential aids in literature reviews [11,12,29]. The findings of
this study, however, demonstrate varying degrees of reliability and validity exhibited by the
three generative AI chatbots, namely ChatGPT-3.5, Bing Chat and Bard, when tasked with
providing references pertaining to Nephrology subjects. It is important to recognize that the
utilization of AI chatbots for generating dependable and valid references is accompanied
by certain limitations and challenges, encompassing concerns such as the generation of
fabricated, inaccurate and incomplete references.

The study outcomes delineate distinctive patterns regarding citation accuracy within
the purview of AI tools. ChatGPT emerges with the highest precision at 38%, emblematic
of its adherence to established citation protocols. This, however, coexists with a notable
proportion of erroneous references at 41%. In contrast, Bing Chat demonstrates an alterna-
tive pattern, characterized by a preponderance of inaccurate references (49%) alongside a
relatively diminished occurrence of entirely accurate references (30%). However, the valid-
ity of ChatGPT and Bing Chat in providing Nephrology references were not significantly
different. Bard AI, conversely, exhibits the highest incidence of fabricated references (63%)
and incomplete references (11%), suggesting an avenue for enhancement in its reference
generation mechanism. It is pertinent to underscore that the discordances identified, includ-
ing the misallocation of DOIs, underscore the criticality of scrupulous attention to minutiae
within the medical realm, where even minor inaccuracies bear substantial consequences.
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The study’s findings underscore the heterogeneity in citation accuracy among the
evaluated AI tools. While each tool showcased certain strengths, such as ChatGPT’s higher
accuracy rate, the discrepancies identified emphasize the need for careful and rigorous
vetting of AI-sourced references in the medical field. The precision and authenticity of
references hold critical significance, especially considering the potential consequences of
medical decisions that rely on these sources. The substantial discrepancies observed in
citation accuracy among these AI chatbots reveal that they may not consistently meet the
rigorous standards demanded by the medical realm. ChatGPT’s relatively high accuracy,
even with its considerable inaccuracies, signifies a degree of potential utility, but the
prevalence of incorrect and fabricated references remains a pressing concern.

In terms of optimizing chatbot performance for specific needs, several strategic con-
siderations emerge from the data. If accuracy is of utmost importance, ChatGPT-3.5 stands
out as the most reliable choice, although it would benefit from targeted improvements in
areas like DOI accuracy. BingChat, on the other hand, offers a different set of trade-offs:
it generates less fabricated information but is more prone to inaccuracies. Therefore, it
could serve as a viable option where the fabrication of data is a primary concern. The
analysis strongly suggests avoiding the experimental version of Bard as of 1 August 2023,
for tasks requiring high reliability, given its alarming rates of both fabricated and inaccurate
information. Additionally, each chatbot has identifiable weak areas—ChatGPT-3.5 with
incorrect DOIs and BingChat with missing DOIs, for instance. These weaknesses could be
mitigated through secondary verification systems. When it comes to handling duplicates
and missed responses, ChatGPT-3.5 offers the most favorable profile, despite a 17.08% du-
plication rate. For those prioritizing quality over quantity, the data indicate that focusing on
further optimizing ChatGPT-3.5 is the most effective approach. Advanced methods, such
as machine learning algorithms, could be employed to refine its performance in specific
areas like DOI accuracy. Finally, for those open to unconventional strategies, exploring
ensemble methods that combine the strengths of different chatbots could be a worthwhile
avenue for research. While speculative, such an approach could result in a more robust
and versatile chatbot solution.

Medical research is a cornerstone of evidence-based practice, where even minor errors
can have profound consequences on patient care, clinical decisions, and scientific advance-
ment [30]. The findings of this study serve as a warning against premature reliance on
AI-generated references in the medical domain. The presence of inaccuracies, fabrications,
and incomplete references is untenable, as these undermine the integrity of scholarly work
and compromise the trust placed in medical research. Consequently, policies and guidelines
need to be developed to ensure the responsible and ethical integration of AI tools in medical
research processes. These policies should emphasize the need for rigorous validation and
vetting of AI-generated references before their incorporation into clinical decision-making
or research publications.

The correlation analysis revealed several noteworthy aspects that could significantly
inform strategies for optimizing chatbot performance. First, there’s a clear trade-off in
validity; a chatbot that excels in accuracy tends to produce less inaccurate information.
However, such bots might still fabricate or provide incomplete information, necessitating
caution. Second, specific risk areas were identified. For instance, chatbots that frequently
miss DOIs are less prone to providing incorrect DOIs, and vice versa. This insight could
be invaluable for implementing targeted validation strategies. Moreover, the correlation
between missed and duplicated information suggests another layer of complexity. While
chatbots that frequently miss information are unlikely to produce duplicates, the correlation
is strong, thus requiring strategic monitoring. This monitoring could focus on specific error
types that a chatbot is prone to making. For example, a chatbot that often produces incor-
rect information may also be susceptible to delivering incomplete responses. Lastly, the
correlations offer avenues for customization and fine-tuning of chatbot behavior. Knowing
a bot’s strengths and weaknesses in particular areas enables the implementation of spe-
cialized validation or correction systems. As an example, if a chatbot is generally accurate
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but frequently errs in DOI references, a secondary validation system could be introduced
specifically to check and correct DOI information. This approach allows for the leveraging
of the chatbot’s strengths while mitigating its weaknesses.

The integration of AI tools in the medical field introduces complex ethical consid-
erations [28,29,31–33]. As evidenced by this study, the inaccuracies and fabrications in
AI-generated references could potentially lead to misinterpretation, misinformation, and
misguided medical decisions. Therefore, it is imperative to establish robust ethical frame-
works and policy guidelines that guide the responsible use of AI chatbots in generating
references for medical research. Such policies should prioritize patient safety, research
integrity, and the advancement of medical knowledge. To address these concerns, reg-
ulatory bodies and professional organizations should collaborate to develop guidelines
that mandate thorough validation and scrutiny of AI-generated references before they
are incorporated into research papers, clinical guidelines, or medical recommendations.
These guidelines could stipulate the necessity of human oversight, validation by domain ex-
perts, and cross-referencing with established databases. Furthermore, ethical considerations
should extend to the transparency of AI-generated content. Users should be informed when
references are AI-generated, allowing them to assess the reliability and credibility of the
sources. This transparency aligns with the principles of informed consent and empowers
readers to make informed judgments about the validity of the information presented.

5. Limitations

This study bears several limitations that warrant acknowledgment.

• AI platforms: Our assessment exclusively focused solely on ChatGPT (GPT-3.5 and
GPT-4.0), Bing Chat, and Bard AI, excluding other emerging AI platforms that may
exhibit distinct citation accuracy profiles.

• Lack of clinical implications: We did not explore the downstream impact of reference
inaccuracies on downstream research, clinical decision-making, or patient outcomes,
which could provide crucial insights into the practical implications of AI-generated
references in the medical domain.

• Limited citation assessment: While the study accounted for discrepancies in citation
elements such as DOIs and author names, we did not investigate potential errors in
other bibliographic elements, such as the accuracy of the Vancouver format or page
ranges. This omission could underestimate the full scope of inaccuracies present in
AI-generated references.

• Variability due to updates: The AI models used in this study are subject to updates
and modifications. The investigation was conducted with specific versions of AI
models, and as these models undergo continuous refinement, their citation accuracy
may evolve.

• Scope: The study’s sample size of Nephrology topics and AI-generated references
might not fully capture the breadth of medical literature or the complexity of citation
accuracy in other medical specialties. The study’s exclusive focus on AI chatbots limits
the exploration of potential variations in citation accuracy among different AI-powered
tools, such as summarization algorithms or natural language processing applications.

• Validity of databases: The assessment of AI-generated references relied on cross-
referencing with established databases, assuming the accuracy of these databases. Any
errors or discrepancies present in the reference databases could influence the study’s
findings and conclusions.

• Chatbot Extensions and Web Search: As the technological landscape evolves, chatbots
are increasingly being equipped with the ability to integrate extensions and external
resources, including web search functions. While this feature augments the utility
of chatbots, it simultaneously introduces another layer of complexity in terms of
citation accuracy and source validation. There is an imperative for future studies to
critically evaluate the accuracy and reliability of references generated through these
additional features.
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6. Conclusions

This study underscores the foundational significance of unwavering research fidelity
within the intricate domain of Nephrology. While the potential of AI tools for streamlining
literature reviews is evident, the identified discrepancies call for a cautious and meticulous
approach in their utilization. The medical community’s commitment to precision demands
that even minor inaccuracies remain unacceptable. As the potential for AI tools to revo-
lutionize medical research and practice persists, it is essential to refine and fortify these
chatbots before they can be confidently embraced as standard tools.
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