
Citation: Limon, A.; Mattei, C. The

Xenopus Oocyte: A Tool for

Membrane Biology. Membranes 2023,

13, 831. https://doi.org/10.3390/

membranes13100831

Received: 18 September 2023

Accepted: 11 October 2023

Published: 15 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

membranes

Editorial

The Xenopus Oocyte: A Tool for Membrane Biology
Agenor Limon 1 and César Mattei 2,*

1 Mitchell Center for Neurodegenerative Diseases, Department of Neurology, The University of Texas Medical
Branch, Galveston, TX 77555, USA; aglimonr@utmb.edu

2 Univ Angers, CarMe, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, 49000 Angers, France
* Correspondence: cesar.mattei@univ-angers.fr

The Xenopus is a special study model in experimental research. In embryology, it
has been used to understand the harmonious development of a complex organism from
its fertilized cell. In toxicology, it is the model of choice for observing the deleterious
effects of endocrine disruptors. In pharmacology, female oocytes have been used for over
forty years to express genes of interest. In fact, the membrane of Xenopus oocytes is
relatively poor in membrane receptors and ion channels. Furthermore, these cells are
relatively large (1–2 mm), making it easy to express proteins by injecting DNA or RNA, or
by transplanting membranes using a xenograft protocol. These techniques have enabled
scientists to characterize receptors and transporters outside their physiological context.

Our Special Issue, entitled “The Xenopus Oocyte: A Tool for Membrane Biology” in
the journal Membranes, aimed to give this cell, which is widely utilized by researchers
working on membrane proteins, the place it deserves in our time. Most of the articles
that are published in this issue use the oocyte as an expression system, i.e., a cell in which
we express or overexpress a protein whose normal or altered functioning we wish to
understand. Indeed, the heterologous expression of membrane receptors is indispensable
for understanding the changes, particularly electrophysiological, that are induced by
mutations in the corresponding gene or through their targeting with pharmacologically
active molecules.

The expression of various receptors and ion channels therefore constitutes most of the
papers published in this Special Issue. Using a classical electrophysiology approach based
on two-electrode voltage clamp recording, Bertaud et al. [1] compared the effect of several
widely used insecticides on human and insect GABA receptors. The use of the Xenopus
oocyte is underlined by the pharmacological differences that exist between these GABA
receptors in their differential sensitivity to insecticides. Rousset et al. [2] have adapted
the membrane transplantation method that was developed in the 1990s by Miledi [3] to
characterize the electrophysiological properties of voltage-gated Ca2+ channels from micro-
transplanted mouse tissues. This original method could eventually serve as a screening
platform for channelopathies. The same approach has been used by Miller et al. [4] to
characterize the currents that are linked to the activation of metabotropic glutamate re-
ceptors (mGluRs): the microtransplantation of synaptosome membranes from rat cortexes
facilitates the study of their properties. In a detailed review, Ivorra et al. recall the principle
of this membrane transplantation, as well as the advantages and disadvantages associated
with this original methodology, initiated with Torpedo electroplates and subsequently
extended to all types of mammalian and even invertebrate tissues [5–8].

Numerous membrane receptors can be expressed in the Xenopus oocyte to characterize
their biophysical or pharmacological properties using the two-electrode voltage clamp
technique. In a study by Isaev et al. [9], the antagonistic effect of methylene blue on KATP
channels was demonstrated by measuring the intensity of a current induced by cromakalim.
And Cav2.1 channel variants causing ataxic channelopathies revealed electrophysiological
gains or losses of function in the study by Folacci et al. [10]; the molecular modelling of
these mutations or of the associated neuronal excitability confirms the electrophysiological

Membranes 2023, 13, 831. https://doi.org/10.3390/membranes13100831 https://www.mdpi.com/journal/membranes

https://doi.org/10.3390/membranes13100831
https://doi.org/10.3390/membranes13100831
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/membranes
https://www.mdpi.com
https://orcid.org/0000-0002-6613-770X
https://orcid.org/0000-0002-2214-2611
https://doi.org/10.3390/membranes13100831
https://www.mdpi.com/journal/membranes
https://www.mdpi.com/article/10.3390/membranes13100831?type=check_update&version=1


Membranes 2023, 13, 831 2 of 3

findings. Lummis and Dougherty explored the contribution of proline residues on α1
subunit glycinergic receptors to their sensitivity to glycine. By generating substitution
point mutations, they demonstrated the functional importance of Pro residues [11]. Finally,
Stein et al. used the oocyte to express tight junction proteins in a two-cell model [12]. Their
data show that the activity of claudin proteins is largely pH-dependent.

However, far from being just an expression system, the Xenopus oocyte can also be
used as a cell for the development of innovative membrane protein monitoring techniques.
Thus, by coupling the measurement of voltage-gated Na+ and K+ currents with the op-
togenetic photosensitivity of channelrhodopsin, vom Dahl et al. [13] could observe and
measure the characteristics of action potentials that were specific to excitable cells. Their
work could lead to the development of a genuine pharmacological platform for testing
therapeutic compounds and assessing the impact of genetic mutations on cell excitability.
Some studies have focused on membrane targets that are endogenously expressed in the
Xenopus oocyte. For example, Bernareggi et al. [14] investigated endogenous Cl− currents
(TMEM16A Ca2+-activated chloride channels). This study shows that a compound that is
present in asbestos fibers, crocidolite, induces an indirect activation of these channels via an
increase in intracellular Ca2+, shedding further light on the carcinogenic effects of asbestos.

In conclusion, the use of this very special cell, the Xenopus oocyte, has enabled
numerous scientific teams to work on a considerable variety of receptors and transporters,
approaching them from biophysical, pharmacological, biochemical, electrophysiological
and toxicological angles, among others [15]. A number of studies that utilize this cell have
been cited hundreds of thousands of times, highlighting its versatility and adaptability for
the expression of any type of receptor [16]. It is a very convenient link between molecular
expression work and its physiological or pathophysiological extensions. As Gamba points
out, many fields of physiology, such as arterial blood pressure, neuronal excitability, mineral
metabolism and cell volume regulation, are initiated using the Xenopus oocyte [17]. Easy
to obtain and use, the Xenopus oocyte is a very practical system in the toolbox of scientists
who wish to have a cellular model for expressing genes of interest.
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